Environment, Business, and Health Care Prevail: A Comprehensive, Systematic Review of System Dynamics Application Domains
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Business
3.1.1. Business Performance
3.1.2. Project Management
3.1.3. Resource Management
3.1.4. Supply Chain
3.1.5. Mineral Markets
3.1.6. Market
3.1.7. Transport and Traffic Safety
3.2. Environment
3.2.1. Pollution
3.2.2. Emissions and Pollution
3.2.3. Sustainability
3.2.4. Water
3.2.5. Agriculture
3.2.6. Animals and Fauna
3.2.7. Land Use
3.2.8. Farming
3.3. Health
3.3.1. Physical Diseases
3.3.2. Health Care and Related Areas
3.4. Miscellaneous
3.4.1. R&D and Innovation
3.4.2. Social Issues
3.4.3. Decision-Making
3.4.4. Urban Issues
3.5. Additional Group Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Williams, A.; Kennedy, S.; Philipp, F.; Whiteman, G. Systems Thinking: A Review of Sustainability Management Research. J. Clean. Prod. 2017, 148, 866–881. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.C. Should System Dynamics Be Described as a ‘Hard’ or ‘Deterministic’ Systems Approach? Syst. Res. Behav. Sci. 2000, 17, 3–22. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Dong-Seok, K.; Chang-Kwon, C. Qualitative Simulation on the Dynamics between Social Capital and Business Performance in Strategic Networks. J. Distrib. Sci. 2016, 14, 31–45. [Google Scholar] [CrossRef]
- Cosenz, F.; Noto, G. A Dynamic Business Modelling Approach to Design and Experiment New Business Venture Strategies. Long Range Plann. 2018, 51, 127–140. [Google Scholar] [CrossRef]
- Aparicio, S.; Urbano, D.; Gómez, D. The Role of Innovative Entrepreneurship within Colombian Business Cycle Scenarios: A System Dynamics Approach. Futures 2016, 81, 130–147. [Google Scholar] [CrossRef] [Green Version]
- Minato, N.; Morimoto, R. Dynamically Interdependent Business Model for Airline–Airport Coexistence. J. Air Transp. Manag. 2017, 64, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.J.; Won, D.; Park, K.; Yang, J.; Zhao, X. Growth of a Platform Business Model as an Entrepreneurial Ecosystem and Its Effects on Regional Development. Eur. Plan. Stud. 2017, 25, 805–826. [Google Scholar] [CrossRef]
- Yan, M.-R.; Tran-Danh, N.; Hong, L.-Y. Knowledge-Based Decision Support System for Improving e-Business Innovations and Dynamic Capability of IT Project Management. Knowl. Manag. Res. Pract. 2019, 17, 125–136. [Google Scholar] [CrossRef]
- Rocha, H.; Kunc, M.; Audretsch, D.B. Clusters, Economic Performance, and Social Cohesion: A System Dynamics Approach. Reg. Stud. 2019, 1–14. [Google Scholar] [CrossRef]
- Anjomshoae, A.; Hassan, A.; Kunz, N.; Wong, K.Y.; de Leeuw, S. Toward a Dynamic Balanced Scorecard Model for Humanitarian Relief Organizations’ Performance Management. J. Humanit. Logist. Supply Chain Manag. 2017, 7, 194–218. [Google Scholar] [CrossRef]
- Yu, H.; Dong, S.; Li, F. A System Dynamics Approach to Eco-Industry System Effects and Trends. Pol. J. Environ. Stud. 2019, 28, 1469–1482. [Google Scholar] [CrossRef]
- Mhatre, T.N.; Thakkar, J.J.; Maiti, J. Modelling Critical Risk Factors for Indian Construction Project Using Interpretive Ranking Process (IRP) and System Dynamics (SD). Int. J. Qual. Reliab. Manag. 2017, 34, 1451–1473. [Google Scholar] [CrossRef]
- Wang, L.; Kunc, M.; Bai, S. Realizing Value from Project Implementation under Uncertainty: An Exploratory Study Using System Dynamics. Int. J. Proj. Manag. 2017, 35, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Van Oorschot, K.; Eling, K.; Langerak, F. Measuring the Knowns to Manage the Unknown: How to Choose the Gate Timing Strategy in NPD Projects: Measuring the Knowns to Manage the Unknown. J. Prod. Innov. Manag. 2018, 35, 164–183. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jiang, L.; Taylor, T.R.B.; Ford, D.N. Impact of Labour Controls on Tipping Point Dynamics in Large Complex Projects: Impact of Project Labor Controls on Tipping Point Dynamics. Syst. Res. Behav. Sci. 2018, 35, 605–618. [Google Scholar] [CrossRef]
- Pargar, F.; Kujala, J.; Aaltonen, K.; Ruutu, S. Value Creation Dynamics in a Project Alliance. Int. J. Proj. Manag. 2019, 37, 716–730. [Google Scholar] [CrossRef]
- Wang, L.; Kunc, M.; Li, J. Project Portfolio Implementation under Uncertainty and Interdependencies: A Simulation Study of Behavioural Responses. J. Oper. Res. Soc. 2019, 1–11. [Google Scholar] [CrossRef]
- Abbaspour, S.; Dabirian, S. Evaluation of Labor Hiring Policies in Construction Projects Performance Using System Dynamics. Int. J. Product. Perform. Manag. 2019, 69, 22–43. [Google Scholar] [CrossRef]
- Lee, K.; Son, S.; Kim, D.K.; Kim, S. A Dynamic Simulation Model for Economic Feasibility of Apartment Development Projects. Int. J. Strateg. Prop. Manag. 2019, 23, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.-H.; Angnakoon, P.; Li, J.; Allen, J. Virtual HRD and National Culture: An Information Processing Perspective. Eur. J. Train. Dev. 2016, 40, 21–35. [Google Scholar] [CrossRef]
- Škraba, A.; Stanovov, V.; Semenkin, E.; Kofjač, D. Hybridization of Stochastic Local Search and Genetic Algorithm for Human Resource Planning Management. Organizacija 2016, 49, 42–54. [Google Scholar] [CrossRef]
- Kunc, M.; O’Brien, F.A. Exploring the Development of a Methodology for Scenario Use: Combining Scenario and Resource Mapping Approaches. Technol. Forecast. Soc. Chang. 2017, 124, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh-Zoeram, A.; Pooya, A.; Naji-Azimi, Z.; Vafaee-Najar, A. Simulation of Quality Death Spirals Based on Human Resources Dynamics. Inq. J. Health Care Organ. Provis. Financ. 2019, 56, 004695801983743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, L.; Xue, M.; Hu, M. Dynamic Simulation and Assessment of the Coupling Coordination Degree of the Economy–Resource–Environment System: Case of Wuhan City in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wood, L.C.; Abdul-Rahman, H.; Lee, Y.T. When Traditional Information Technology Project Managers Encounter the Cloud: Opportunities and Dilemmas in the Transition to Cloud Services. Int. J. Proj. Manag. 2016, 34, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.R.; Anbuudayasankar, S.P. An Investigation on the Benefits of ICT Deployment in Supply Chain Management (SCM). Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- Keilhacker, M.L.; Minner, S. Supply Chain Risk Management for Critical Commodities: A System Dynamics Model for the Case of the Rare Earth Elements. Resour. Conserv. Recycl. 2017, 125, 349–362. [Google Scholar] [CrossRef]
- Cagliano, A.C.; De Marco, A.; Rafele, C. E-Grocery Supply Chain Management Enabled by Mobile Tools. Bus. Process Manag. J. 2017, 23, 47–70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Small and Medium-Sized Enterprises Closed-Loop Supply Chain Finance Risk Based on Evolutionary Game Theory and System Dynamics. J. Shanghai Jiaotong Univ. Sci. 2016, 21, 355–364. [Google Scholar] [CrossRef]
- Rawlins, J.M.; De Lange, W.J.; Fraser, G.C.G. An Ecosystem Service Value Chain Analysis Framework: A Conceptual Paper. Ecol. Econ. 2018, 147, 84–95. [Google Scholar] [CrossRef]
- Choi, K. A System Perspective on Revenue Sharing in the Mobile Value Chain: An Evidence from China Mobile Video Ecosystem. Supply Chain Manag. Int. J. 2018, 23, 136–152. [Google Scholar] [CrossRef]
- Armendáriz, V.; Armenia, S.; Atzori, A.S. Systemic Analysis of Food Supply and Distribution Systems in City-Region Systems—An Examination of FAO’s Policy Guidelines towards Sustainable Agri-Food Systems. Agriculture 2016, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-S.; Lin, Y.-T. The Effect of Lead-Time on Supply Chain Resilience Performance. Asia Pac. Manag. Rev. 2019, 24, 298–309. [Google Scholar] [CrossRef]
- Olafsdottir, A.H.; Sverdrup, H.U. Defining a Conceptual Model for Market Mechanisms in Food Supply Chains, and Parameterizing Price Functions for Coffee, Wheat, Corn, Soybeans, and Beef. Int. J. Food Syst. Dyn. 2019, 10, 224–247. [Google Scholar] [CrossRef]
- Bahadir, M.C.; Akdag, H.C. The System Dynamics Modelling for Container Capacity & Transportation Planning Policies. Asian J. Shipp. Logist. 2019, 35, 200–212. [Google Scholar] [CrossRef]
- Jin, H.-W. Analysis of Factors Affecting the Benefits of Demand Information Sharing. EM Ekon. Manag. 2019, 22, 204–219. [Google Scholar] [CrossRef]
- Jeon, J.W.; Yeo, G.T. Study of the Optimal Timing of Container Ship Orders Considering the Uncertain Shipping Environment. Asian J. Shipp. Logist. 2017, 33, 85–93. [Google Scholar] [CrossRef]
- Tong, W.; Mu, D.; Zhao, F.; Mendis, G.P.; Sutherland, J.W. The Impact of Cap-and-Trade Mechanism and Consumers’ Environmental Preferences on a Retailer-Led Supply Chain. Resour. Conserv. Recycl. 2019, 142, 88–100. [Google Scholar] [CrossRef]
- Choi, C.H.; Cao, J.; Zhao, F. System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies. Resour. Conserv. Recycl. 2016, 114, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Sverdrup, H.U. Modelling Global Extraction, Supply, Price and Depletion of the Extractable Geological Resources with the LITHIUM Model. Resour. Conserv. Recycl. 2016, 114, 112–129. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Ragnarsdottir, K.V. A System Dynamics Model for Platinum Group Metal Supply, Market Price, Depletion of Extractable Amounts, Ore Grade, Recycling and Stocks-in-Use. Resour. Conserv. Recycl. 2016, 114, 130–152. [Google Scholar] [CrossRef]
- Wang, D.; Nie, R.; Long, R.; Shi, R.; Zhao, Y. Scenario Prediction of China’s Coal Production Capacity Based on System Dynamics Model. Resour. Conserv. Recycl. 2018, 129, 432–442. [Google Scholar] [CrossRef]
- Arango-Aramburo, S.; Jaramillo, P.; Olaya, Y.; Smith, R.; Restrepo, O.J.; Saldarriaga-Isaza, A.; Arias-Gaviria, J.; Parra, J.F.; Larsen, E.R.; Gomez-Rios, L.M.; et al. Simulating Mining Policies in Developing Countries: The Case of Colombia. Socioecon. Plann. Sci. 2017, 60, 99–113. [Google Scholar] [CrossRef]
- Liu, D.; Gao, X.; An, H.; Qi, Y.; Sun, X.; Wang, Z.; Chen, Z.; An, F.; Jia, N. Supply and Demand Response Trends of Lithium Resources Driven by the Demand of Emerging Renewable Energy Technologies in China. Resour. Conserv. Recycl. 2019, 145, 311–321. [Google Scholar] [CrossRef]
- Hazra, T.; Samanta, B.; Dey, K. Real Option Valuation of an Indian Iron Ore Deposit through System Dynamics Model. Resour. Policy 2019, 60, 288–299. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Olafsdottir, A.H.; Ragnarsdottir, K.V. On the Long-Term Sustainability of Copper, Zinc and Lead Supply, Using a System Dynamics Model. Resour. Conserv. Recycl. X 2019, 4, 100007. [Google Scholar] [CrossRef]
- Zhang, X.; Geltner, D.; de Neufville, R. System Dynamics Modeling of Chinese Urban Housing Markets for Pedagogical and Policy Analysis Purposes. J. Real Estate Financ. Econ. 2018, 57, 476–501. [Google Scholar] [CrossRef] [Green Version]
- Chung, B. System Dynamics Modelling and Simulation of the Malaysian Rice Value Chain: Effects of the Removal of Price Controls and an Import Monopoly on Rice Prices and Self-Sufficiency Levels in Malaysia: The Effects of Removing Price Controls and Import Monopoly. Syst. Res. Behav. Sci. 2018, 35, 248–264. [Google Scholar] [CrossRef]
- Gonçalves, P. From Boom to Bust: An Operational Perspective of Demand Bubbles: P. Gonçalves: From Boom to Bust. Syst. Dyn. Rev. 2018, 34, 389–425. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Zhang, Y.; Wang, X.; Fan, L.; Song, F.; Ma, Y.; Wang, S. Chinese Power-Grid Financial Capacity Based on Transmission and Distribution Tariff Policy: A System Dynamics Approach. Util. Policy 2019, 60, 100941. [Google Scholar] [CrossRef]
- Wang, J.; Lai, J.-Y.; Chang, C.-H. Modeling and Analysis for Mobile Application Services: The Perspective of Mobile Network Operators. Technol. Forecast. Soc. Chang. 2016, 111, 146–163. [Google Scholar] [CrossRef]
- Yun, J.J.; Won, D.; Park, K.; Jeong, E.; Zhao, X. The Role of a Business Model in Market Growth: The Difference between the Converted Industry and the Emerging Industry. Technol. Forecast. Soc. Chang. 2019, 146, 534–562. [Google Scholar] [CrossRef]
- Pasaoglu, G.; Harrison, G.; Jones, L.; Hill, A.; Beaudet, A.; Thiel, C. A System Dynamics Based Market Agent Model Simulating Future Powertrain Technology Transition: Scenarios in the EU Light Duty Vehicle Road Transport Sector. Technol. Forecast. Soc. Chang. 2016, 104, 133–146. [Google Scholar] [CrossRef]
- Azmi, M.; Tokai, A. Electric Vehicle and End-of-Life Vehicle Estimation in Malaysia 2040. Environ. Syst. Decis. 2017. [Google Scholar] [CrossRef]
- Wen, L.; Bai, L. System Dynamics Modeling and Policy Simulation for Urban Traffic: A Case Study in Beijing. Environ. Model. Assess. 2017, 22, 363–378. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.; Chen, J.; Wang, Z.; Li, G.; Yang, Y. System Dynamics Model of Taxi Management in Metropolises: Economic and Environmental Implications for Beijing. J. Environ. Manag. 2018, 213, 555–565. [Google Scholar] [CrossRef]
- Fontoura, W.B.; Chaves, G.L.D.; Ribeiro, G.M. The Brazilian Urban Mobility Policy: The Impact in São Paulo Transport System Using System Dynamics. Transp. Policy 2019, 73, 51–61. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Ahn, J. Innovation towards Sustainable Technologies: A Socio-Technical Perspective on Accelerating Transition to Aviation Biofuel. Technol. Forecast. Soc. Chang. 2019, 145, 317–329. [Google Scholar] [CrossRef]
- Oliveira, G.D.; Roth, R.; Dias, L.C. Diffusion of Alternative Fuel Vehicles Considering Dynamic Preferences. Technol. Forecast. Soc. Chang. 2019, 147, 83–99. [Google Scholar] [CrossRef]
- Jeon, J.W.; Wang, Y.; Yeo, G.T. Ship Safety Policy Recommendations for Korea: Application of System Dynamics. Asian J. Shipp. Logist. 2016, 32, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Estay-Ossandon, C.; Mena-Nieto, A. Modelling the Driving Forces of the Municipal Solid Waste Generation in Touristic Islands. A Case Study of the Balearic Islands (2000–2030). Waste Manag. 2018, 75, 70–81. [Google Scholar] [CrossRef]
- Gutberlet, J.; Kain, J.-H.; Nyakinya, B.; Oloko, M.; Zapata, P.; Zapata Campos, M.J. Bridging Weak Links of Solid Waste Management in Informal Settlements. J. Environ. Dev. 2017, 26, 106–131. [Google Scholar] [CrossRef]
- Phonphoton, N.; Pharino, C. A System Dynamics Modeling to Evaluate Flooding Impacts on Municipal Solid Waste Management Services. Waste Manag. 2019, 87, 525–536. [Google Scholar] [CrossRef]
- Sukholthaman, P.; Sharp, A. A System Dynamics Model to Evaluate Effects of Source Separation of Municipal Solid Waste Management: A Case of Bangkok, Thailand. Waste Manag. 2016, 52, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Ardi, R.; Leisten, R. Assessing the Role of Informal Sector in WEEE Management Systems: A System Dynamics Approach. Waste Manag. 2016, 57, 3–16. [Google Scholar] [CrossRef]
- Dasgupta, D.; Debsarkar, A.; Hazra, T.; Bala, B.K.; Gangopadhyay, A.; Chatterjee, D. Scenario of Future E-Waste Generation and Recycle-Reuse-Landfill-Based Disposal Pattern in India: A System Dynamics Approach. Environ. Dev. Sustain. 2017, 19, 1473–1487. [Google Scholar] [CrossRef]
- Ghisolfi, V.; Diniz Chaves, G.L.; Ribeiro Siman, R.; Xavier, L.H. System Dynamics Applied to Closed Loop Supply Chains of Desktops and Laptops in Brazil: A Perspective for Social Inclusion of Waste Pickers. Waste Manag. 2017, 60, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Breach, P.A.; Simonovic, S.P. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment. Environ. Manag. 2018, 61, 624–636. [Google Scholar] [CrossRef]
- Nascimento, F.R.A.; Kiperstok, A.; Martín, J.; Morató, J.; Cohim, E. Decision Support System for Management of Reactive Nitrogen Flows in Wastewater System. Environ. Sci. Pollut. Res. 2018, 25, 8644–8653. [Google Scholar] [CrossRef]
- Prouty, C.; Mohebbi, S.; Zhang, Q. Socio-Technical Strategies and Behavior Change to Increase the Adoption and Sustainability of Wastewater Resource Recovery Systems. Water Res. 2018, 137, 107–119. [Google Scholar] [CrossRef]
- Rinsatitnon, N.; Dijaroen, W.; Limpiwun, T.; Suktavee, G.; Chinda, T. Reverse Logistics Implementation in the Construction Industry: Paper Waste Focus. J. Sci. Technol. 2018, 40, 798–805. [Google Scholar]
- Sea-lim, K.; Plianpho, C.; Sukmake, P.; Pongcharoenkiat, W.; Chinda, T. Feasibility Study of Reverse Logistic of Steel Waste in the Construction Industry. Songklanakarin J. Sci. Technol. 2018, 40, 271–277. [Google Scholar]
- Nedelciu, C.-E.; Ragnarsdóttir, K.V.; Stjernquist, I. From Waste to Resource: A Systems Dynamics and Stakeholder Analysis of Phosphorus Recycling from Municipal Wastewater in Europe. Ambio 2019, 48, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Chinda, T.; Engpanyalert, W.; Tananoo, A.; Chaikong, J.; Methawachananont, A. Dynamic Model for Construction and Demolition Waste Recycling in Bangkok, Thailand. Songklanakarin J. Sci. Technol. 2018, 40, 97–104. [Google Scholar]
- Ding, Z.; Yi, G.; Tam, V.W.Y.; Huang, T. A System Dynamics-Based Environmental Performance Simulation of Construction Waste Reduction Management in China. Waste Manag. 2016, 51, 130–141. [Google Scholar] [CrossRef]
- Sharma, N.; Vrat, P. Impact of Various Factors on Stock-Induced Food Waste in Indian Weddings: A System Dynamics Approach. J. Adv. Manag. Res. 2018, 15, 37–57. [Google Scholar] [CrossRef]
- Treadwell, J.L.; Clark, O.G.; Bennett, E.M. Dynamic Simulation of Phosphorus Flows through Montreal’s Food and Waste Systems. Resour. Conserv. Recycl. 2018, 131, 122–133. [Google Scholar] [CrossRef]
- Xiao, B.; Niu, D.; Guo, X. Can China Achieve Its 2020 Carbon Intensity Target? A Scenario Analysis Based on System Dynamics Approach. Ecol. Indic. 2016, 71, 99–112. [Google Scholar] [CrossRef]
- Liu, D.; Xiao, B. Can China Achieve Its Carbon Emission Peaking? A Scenario Analysis Based on STIRPAT and System Dynamics Model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Z.; Liu, R.; Tang, M.; Wu, F. Can China Achieve Its CO2 Emission Mitigation Target in 2030: A System Dynamics Perspective. Pol. J. Environ. Stud. 2018, 27, 2861–2871. [Google Scholar] [CrossRef]
- Li, W.; Lu, C.; Ding, Y. A Systematic Simulating Assessment within Reach Greenhouse Gas Target by Reducing PM2.5 Concentrations in China. Pol. J. Environ. Stud. 2017, 26, 683–698. [Google Scholar] [CrossRef]
- Freeman, R.; Yearworth, M.; Preist, C. Revisiting Jevons’ Paradox with System Dynamics: Systemic Causes and Potential Cures: Revisiting Jevons’ Paradox with System Dynamics. J. Ind. Ecol. 2016, 20, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Scolozzi, R.; Geneletti, D. The Anthroposphere as an Anticipatory System: Open Questions on Steering the Climate. Sci. Total Environ. 2017, 579, 957–965. [Google Scholar] [CrossRef]
- Navarro, A.; Tapiador, F.J. RUSEM: A Numerical Model for Policymaking and Climate Applications. Ecol. Econ. 2019, 165, 106403. [Google Scholar] [CrossRef]
- Zhao, R.; Han, J.; Zhong, S.; Huang, Y. Interaction between Enterprises and Consumers in a Market of Carbon-Labeled Products: A Game Theoretical Analysis. Environ. Sci. Pollut. Res. 2018, 25, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, D.; Xu, H. Factors Influencing Consumer Willingness to Pay for Low-Carbon Products: A Simulation Study in China: Consumer and Low Carbon Products. Bus. Strategy Environ. 2017, 26, 972–984. [Google Scholar] [CrossRef]
- Scolozzi, R.; Schirpke, U.; Geneletti, D. Enhancing Ecosystem Services Management in Protected Areas Through Participatory System Dynamics Modelling. Landsc. Online 2019, 73, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bixler, T.S.; Houle, J.; Ballestero, T.; Mo, W. A Dynamic Life Cycle Assessment of Green Infrastructures. Sci. Total Environ. 2019, 692, 1146–1154. [Google Scholar] [CrossRef]
- Chiu, C.-C.; Château, P.-A.; Lin, H.-J.; Chang, Y.-C. Modeling the Impacts of Coastal Land Use Changes on Regional Carbon Balance in the Chiku Coastal Zone, Taiwan. Land Use Policy 2019, 87, 104079. [Google Scholar] [CrossRef]
- Li, J.W. System Dynamic Analysis of Greenhouse Effect Based on Carbon Cycle and Prediction of Carbon Emissions. Appl. Ecol. Environ. Res. 2019, 17, 5067–5080. [Google Scholar] [CrossRef]
- Li, T.; Liu, N.; Zhang, Q. System Dynamics Research on Economic Transformation and Environmentally Coordinated Development in China’s Eastern Coastal Region. Pol. J. Environ. Stud. 2019, 28, 3569–3580. [Google Scholar] [CrossRef]
- Matthew, G.Jr.; Nuttall, W.J.; Mestel, B.; Dooley, L.S. Low Carbon Futures: Confronting Electricity Challenges on Island Systems. Technol. Forecast. Soc. Chang. 2019, 147, 36–50. [Google Scholar] [CrossRef]
- Cordier, M.; Uehara, T. How Much Innovation Is Needed to Protect the Ocean from Plastic Contamination? Sci. Total Environ. 2019, 670, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Dianati, K.; Zimmermann, N.; Milner, J.; Muindi, K.; Ezeh, A.; Chege, M.; Mberu, B.; Kyobutungi, C.; Fletcher, H.; Wilkinson, P.; et al. Household Air Pollution in Nairobi’s Slums: A Long-Term Policy Evaluation Using Participatory System Dynamics. Sci. Total Environ. 2019, 660, 1108–1134. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Lee, I.-H.; Chen, Y.-C. Evaluation of Hexavalent Chromium Concentration in Water and Its Health Risk with a System Dynamics Model. Sci. Total Environ. 2019, 669, 103–111. [Google Scholar] [CrossRef]
- da Silva, G.F.P.; Pegetti, A.L.; Piacesi, M.T.; Belderrain, M.C.N.; Bergiante, N.C.R. Dynamic Modeling of an Early Warning System for Natural Disasters. Syst. Res. Behav. Sci. 2019. [Google Scholar] [CrossRef]
- Ma, S.; Luo, Z.; Hu, S.; Chen, D. Promoting Information Technology for the Sustainable Development of the Phosphate Fertilizer Industry: A Case Study of Guizhou Province, China. R. Soc. Open Sci. 2018, 5, 181160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouseki, K.; Nicolau, M. Urban Heritage Dynamics in ‘Heritage-Led Regeneration’: Towards a Sustainable Lifestyles Approach. Hist. Environ. Policy Pract. 2018, 9, 229–248. [Google Scholar] [CrossRef]
- Kotir, J.H.; Smith, C.; Brown, G.; Marshall, N.; Johnstone, R. A System Dynamics Simulation Model for Sustainable Water Resources Management and Agricultural Development in the Volta River Basin, Ghana. Sci. Total Environ. 2016, 573, 444–457. [Google Scholar] [CrossRef]
- Iandolo, F.; Barile, S.; Armenia, S.; Carrubbo, L. A System Dynamics Perspective on a Viable Systems Approach Definition for Sustainable Value. Sustain. Sci. 2018, 13, 1245–1263. [Google Scholar] [CrossRef]
- Liu, P.; Lin, B.; Wu, X.; Zhou, H. Bridging Energy Performance Gaps of Green Office Buildings via More Targeted Operations Management: A System Dynamics Approach. J. Environ. Manag. 2019, 238, 64–71. [Google Scholar] [CrossRef]
- Ulli-Beer, S.; Kubli, M.; Zapata, J.; Wurzinger, M.; Musiolik, J.; Furrer, B. Participative Modelling of Socio-Technical Transitions: Why and How Should We Look Beyond the Case-Specific Energy Transition Challenge?: Participative Modelling of Socio-Technical Transitions. Syst. Res. Behav. Sci. 2017, 34, 469–488. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Ali, M.; Shahid, S.; He, R.; Xia, X.; Jiang, Z. Impact of Climate Change on Regional Irrigation Water Demand in Baojixia Irrigation District of China. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 233–247. [Google Scholar] [CrossRef]
- Baki, S.; Rozos, E.; Makropoulos, C. Designing Water Demand Management Schemes Using a Socio-Technical Modelling Approach. Sci. Total Environ. 2018, 622–623, 1590–1602. [Google Scholar] [CrossRef]
- Qin, H.; Cai, X.; Zheng, C. Water Demand Predictions for Megacities: System Dynamics Modeling and Implications. Water Policy 2018, 20, 53–76. [Google Scholar] [CrossRef]
- Garg, N.K.; Azad, S. Analysis of Cauvery Water-Sharing Award Using an Analytical Framework Model. J. Hydrol. 2019, 579, 124214. [Google Scholar] [CrossRef]
- Hu, M.-C.; Fan, C.; Huang, T.; Wang, C.-F.; Chen, Y.-H. Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management. Int. J. Environ. Res. Public Health 2018, 16, 90. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, J.; Han, Y.; Wang, L.; Li, X. Assessing Impacts of Water Regulations on Alleviating Regional Water Stress with a System Dynamics Model. Water Supply 2019, 19, 635–643. [Google Scholar] [CrossRef]
- Jin, L.; Chang, Y.; Ju, X.; Xu, F. A Study on the Sustainable Development of Water, Energy, and Food in China. Int. J. Environ. Res. Public Health 2019, 16, 3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Yu, D.; Zhao, Y.; Cao, R. Inter-Annual Change of the Drought Limit Water Level of a Reservoir Based on System Dynamics. Water Policy 2019, 21, 91–107. [Google Scholar] [CrossRef]
- Mahdavi, T.; Bagheri, A.; Hosseini, S.A. Applying the System of Environmental and Economic Accounts for Water (SEEA-Water) for Integrated Assessment of Water Security in an Aquifer Scale—Case Study: Azarshahr Aquifer, Iran. Groundw. Sustain. Dev. 2019, 9, 100261. [Google Scholar] [CrossRef]
- Su, Y.; Gao, W.; Guan, D. Integrated Assessment and Scenarios Simulation of Water Security System in Japan. Sci. Total Environ. 2019, 671, 1269–1281. [Google Scholar] [CrossRef]
- Zare, F.; Elsawah, S.; Bagheri, A.; Nabavi, E.; Jakeman, A.J. Improved Integrated Water Resource Modelling by Combining DPSIR and System Dynamics Conceptual Modelling Techniques. J. Environ. Manag. 2019, 246, 27–41. [Google Scholar] [CrossRef]
- Bester, R.; Blignaut, J.N.; Crookes, D.J. The Impact of Human Behaviour and Restoration on the Economic Lifespan of the Proposed Ntabelanga and Laleni Dams, South Africa: A System Dynamics Approach. Water Resour. Econ. 2019, 26, 100126. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Chen, X.; Xue, Y.; Li, R.; Zeng, W. An Integrated Approach to Investigate the Relationship of Coupling Coordination between Social Economy and Water Environment on Urban Scale—A Case Study of Kunming. J. Environ. Manag. 2019, 234, 189–199. [Google Scholar] [CrossRef]
- Hosseinzadeh Ghazichaki, Z.; Monem, M.J. Development of Quantified Model for Application of Control Systems in Irrigation Networks by System Dynamic Approach. Irrig. Drain. 2019, 68, 433–442. [Google Scholar] [CrossRef]
- Shahbazbegian, M.R.; Turton, A.; Mousavi Shafaee, S.M. Hydropolitical Self-Organization Theory; System Dynamics to Analyse Hydropolitics of Helmand Transboundary River. Water Policy 2016, 18, 1088–1119. [Google Scholar] [CrossRef]
- Pagano, A.; Pluchinotta, I.; Pengal, P.; Cokan, B.; Giordano, R. Engaging Stakeholders in the Assessment of NBS Effectiveness in Flood Risk Reduction: A Participatory System Dynamics Model for Benefits and Co-Benefits Evaluation. Sci. Total Environ. 2019, 690, 543–555. [Google Scholar] [CrossRef]
- Walters, J.P.; Archer, D.W.; Sassenrath, G.F.; Hendrickson, J.R.; Hanson, J.D.; Halloran, J.M.; Vadas, P.; Alarcon, V.J. Exploring Agricultural Production Systems and Their Fundamental Components with System Dynamics Modelling. Ecol. Model. 2016, 333, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Devadas, V. Modelling the Dynamics of Economic Development Driven by Agricultural Growth in Patna Region, India. J. Econ. Struct. 2017, 6. [Google Scholar] [CrossRef]
- Rich, K.M.; Rich, M.; Dizyee, K. Participatory Systems Approaches for Urban and Peri-Urban Agriculture Planning: The Role of System Dynamics and Spatial Group Model Building. Agric. Syst. 2018, 160, 110–123. [Google Scholar] [CrossRef]
- Ndhleve, S.; Obi, A.; Nakin, M.D.V. Public Spending on Agriculture and Poverty in Eastern Cape Province, South Africa. Afr. Stud. Q. 2017, 17, 23–46. [Google Scholar]
- Banson, K.E.; Nguyen, N.C.; Bosch, O.J.H. Using System Archetypes to Identify Drivers and Barriers for Sustainable Agriculture in Africa: A Case Study in Ghana: System Archetypes for African Agriculture. Syst. Res. Behav. Sci. 2016, 33, 79–99. [Google Scholar] [CrossRef]
- Cheng, X.; Shuai, C.; Liu, J.; Wang, J.; Liu, Y.; Li, W.; Shuai, J. Modelling Environment and Poverty Factors for Sustainable Agriculture in the Three Gorges Reservoir Regions of China. Land Degrad. Dev. 2018, 29, 3940–3953. [Google Scholar] [CrossRef]
- Kumar, J.L.G.; Zhao, Y.Q.; Hu, Y.S.; Babatunde, A.O.; Zhao, X.H. Nitrogen Dynamics Model for a Pilot Field-Scale Novel Dewatered Alum Sludge Cake-Based Constructed Wetland System. Environ. Technol. 2016, 36, 732–741. [Google Scholar] [CrossRef]
- Matinzadeh, M.M.; Abedi Koupai, J.; Sadeghi-Lari, A.; Nozari, H.; Shayannejad, M. Development of an Innovative Integrated Model for the Simulation of Nitrogen Dynamics in Farmlands with Drainage Systems Using the System Dynamics Approach. Ecol. Model. 2017, 347, 11–28. [Google Scholar] [CrossRef]
- Gao, W.; Hong, B.; Swaney, D.P.; Howarth, R.W.; Guo, H. A System Dynamics Model for Managing Regional N Inputs from Human Activities. Ecol. Model. 2016, 322, 82–91. [Google Scholar] [CrossRef]
- Hosseinzadeh, Z.; Monem, M.J.; Nahavandi, N.; Tehrani, M.V. Development of a Conceptual Model for Application of Hydro-Mechanical Gates in Irrigation Networks by a System Dynamic Approach: System Dynamic Conceptual Model for Automation of Irrigation Network. Irrig. Drain. 2017, 66, 808–819. [Google Scholar] [CrossRef]
- Gunda, T.; Turner, B.L.; Tidwell, V.C. The Influential Role of Sociocultural Feedbacks on Community-Managed Irrigation System Behaviors During Times of Water Stress. Water Resour. Res. 2018, 54, 2697–2714. [Google Scholar] [CrossRef]
- Mesgari, I. System Dynamics Modeling for National Agricultural System with Policy Recommendations: Application to Iran. Pak. J. Agric. Sci. 2017, 54, 457–466. [Google Scholar] [CrossRef]
- Kuhmonen, T. Systems View of Future of Wicked Problems to Be Addressed by the Common Agricultural Policy. Land Use Policy 2018, 77, 683–695. [Google Scholar] [CrossRef]
- Mokhtar, A.; Aram, S. Systemic Insights into Agricultural Groundwater Management: Case of Firuzabad Plain, Iran. Water Policy 2017, 19, 867–885. [Google Scholar] [CrossRef]
- Jin, X.; Xu, X.; Xiang, X.; Bai, Q.; Zhou, Y. System-Dynamic Analysis on Socio-Economic Impacts of Land Consolidation in China. Habitat Int. 2016, 56, 166–175. [Google Scholar] [CrossRef]
- Abdulla, I.; Arshad, F.M.; Bala, B.K.; Bach, N.L.; Mohammadi, S. Management of Beef Cattle Production in Malaysia: A Step Forward to Sustainability. Am. J. Appl. Sci. 2016, 13, 976–983. [Google Scholar] [CrossRef]
- Dizyee, K.; Baker, D.; Rich, K.M. A Quantitative Value Chain Analysis of Policy Options for the Beef Sector in Botswana. Agric. Syst. 2017, 156, 13–24. [Google Scholar] [CrossRef]
- Molina Benavides, R.A.; Sánchez- Guerrero, H.; Stanislao Atzori, A. A Conceptual Model to Describe Heat Stress in Dairy Cows from Actual to Questionable Loops. Acta Agronómica 2018, 67, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Dizyee, K.; Baker, D.; Omore, A. Upgrading the Smallholder Dairy Value Chain: A System Dynamics Ex-Ante Impact Assessment in Tanzania’s Kilosa District. J. Dairy Res. 2019, 86, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Farrell, L.J.; Tozer, P.R.; Kenyon, P.R.; Ramilan, T.; Cranston, L.M. The Effect of Ewe Wastage in New Zealand Sheep and Beef Farms on Flock Productivity and Farm Profitability. Agric. Syst. 2019, 174, 125–132. [Google Scholar] [CrossRef]
- Godde, C.; Dizyee, K.; Ash, A.; Thornton, P.; Sloat, L.; Roura, E.; Henderson, B.; Herrero, M. Climate Change and Variability Impacts on Grazing Herds: Insights from a System Dynamics Approach for Semi-arid Australian Rangelands. Glob. Chang. Biol. 2019, 25, 3091–3109. [Google Scholar] [CrossRef] [Green Version]
- Neudert, R.; Salzer, A.; Allahverdiyeva, N.; Etzold, J.; Beckmann, V. Archetypes of Common Village Pasture Problems in the South Caucasus: Insights from Comparative Case Studies in Georgia and Azerbaijan. Ecol. Soc. 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, T.L.; Chumbley, S.; Mathis, C.; Machen, R.; Turner, B.L. Managing Cow Herd Dynamics in Environments of Limited Forage Productivity and Livestock Marketing Channels: An Application to Semi-Arid Pacific Island Beef Production Using System Dynamics. Agric. Syst. 2019, 173, 78–93. [Google Scholar] [CrossRef]
- Lie, H.; Rich, K.M.; van der Hoek, R.; Dizyee, K. An Empirical Evaluation of Policy Options for Inclusive Dairy Value Chain Development in Nicaragua: A System Dynamics Approach. Agric. Syst. 2018, 164, 193–222. [Google Scholar] [CrossRef]
- Wallentin, G.; Neuwirth, C. Dynamic Hybrid Modelling: Switching between AB and SD Designs of a Predator-Prey Model. Ecol. Model. 2017, 345, 165–175. [Google Scholar] [CrossRef]
- Crookes, D.J. Does a Reduction in the Price of Rhino Horn Prevent Poaching? J. Nat. Conserv. 2017, 39, 73–82. [Google Scholar] [CrossRef]
- Pérez, J.M.; Moreno, V.; Navas, J.; Vélez de Mendizábal, N.; Quesada, J.M.; Esteban, F.J. A System Dynamics Model of the Population Dynamics of Oestrus Sp. (Diptera: Oestridae) Infesting Iberian Ibex, Capra Pyrenaica. Ital. J. Zool. 2016, 83, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.D.; Nguyen, N.C.; Bosch, O.J.H.; Nguyen, T.V.; Le, T.T.; Tran, H.T. A Systemic Approach to Understand the Conservation Status and Viability of the Critically Endangered Cat Ba Langur: Conservation Status of the Critically Endangered Cat Ba Langur. Syst. Res. Behav. Sci. 2016, 33, 742–752. [Google Scholar] [CrossRef] [Green Version]
- Herrera, H. From Metaphor to Practice: Operationalizing the Analysis of Resilience Using System Dynamics Modelling: Operationalizing the Analysis of Resilience Using System Dynamics Modelling. Syst. Res. Behav. Sci. 2017, 34, 444–462. [Google Scholar] [CrossRef]
- Rodríguez-Izquierdo, E.; Miquelajauregui, Y.; Padilla, P.; Bojórquez-Tapia, L.A. Modelling Approach for Crafting Environmental Regulations under Deep Uncertainty: Whale Watching in Ojo de Liebre, Mexico. Ecol. Model. 2019, 408, 108731. [Google Scholar] [CrossRef]
- Liu, D.; Zheng, X.; Zhang, C.; Wang, H. A New Temporal–Spatial Dynamics Method of Simulating Land-Use Change. Ecol. Model. 2017, 350, 1–10. [Google Scholar] [CrossRef]
- Dang, A.N.; Kawasaki, A. Integrating Biophysical and Socio-Economic Factors for Land-Use and Land-Cover Change Projection in Agricultural Economic Regions. Ecol. Model. 2017, 344, 29–37. [Google Scholar] [CrossRef]
- Sheng, X.; Cao, Y.; Zhou, W.; Zhang, H.; Song, L. Multiple Scenario Simulations of Land Use Changes and Countermeasures for Collaborative Development Mode in Chaobai River Region of Jing-Jin-Ji, China. Habitat Int. 2018, 82, 38–47. [Google Scholar] [CrossRef]
- de Freitas, M.W.D.; Muñoz, P.; dos Santos, J.R.; Alves, D.S. Land Use and Cover Change Modelling and Scenarios in the Upper Uruguay Basin (Brazil). Ecol. Model. 2018, 384, 128–144. [Google Scholar] [CrossRef]
- Park, G.; Park, H. Influence Analysis of Land Use by Population Growth on Urban Flood Risk Using System Dynamics; WIT Press: Naples, Italy, 2018; pp. 195–205. [Google Scholar]
- Sanga, G.J.; Mungatana, E.D. Integrating Ecology and Economics in Understanding Responses in Securing Land-Use Externalities Internalization in Water Catchments. Ecol. Econ. 2016, 121, 28–39. [Google Scholar] [CrossRef]
- Lim, C.L.; Prescott, G.W.; De Alban, J.D.T.; Ziegler, A.D.; Webb, E.L. Untangling the Proximate Causes and Underlying Drivers of Deforestation and Forest Degradation in Myanmar: Forest Degradation in Myanmar. Conserv. Biol. 2017, 31, 1362–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurike, Y.; Elmhirst, R.; Karimi, S.; Febriamans, R. Deforestation in Dharmasraya District, West Sumatra, Indonesia A Causal Loop Diagrams (CLD) Model. Asian J. Sci. Res. 2018, 11, 177–184. [Google Scholar] [CrossRef]
- Nazir, N.; Ahmad, S. Forest Land Conversion Dynamics: A Case of Pakistan. Environ. Dev. Sustain. 2018, 20, 389–405. [Google Scholar] [CrossRef]
- Forero Montaña, J.; Zimmerman, J.; Vakil, T.; Nelson, M.; Perez, M.; Medin, J. A Narrow Size Diameter Class Model for Tree Growth and Yield Simulation in a Mahoe (Talipariti Elatum (SW.) Fryxell, Malvaceae) Plantation in Puerto Rico. Ann. Silvic. Res. 2019, 43. [Google Scholar] [CrossRef]
- Fuglestad, E.M.; Palmer, E. Land Ownership and Distribution: Modeling the Relationship to Property Law in the Norwegian Case. J. Rural. Stud. 2019, 72, 11–22. [Google Scholar] [CrossRef]
- Tan, J.; Li, A.; Lei, G.; Xie, X. A SD-MaxEnt-CA Model for Simulating the Landscape Dynamic of Natural Ecosystem by Considering Socio-Economic and Natural Impacts. Ecol. Model. 2019, 410, 108783. [Google Scholar] [CrossRef]
- Pande, S.; Savenije, H.H.G. A Sociohydrological Model for Smallholder Farmers in Maharashtra, India: Smallholder Sociohydrology. Water Resour. Res. 2016, 52, 1923–1947. [Google Scholar] [CrossRef]
- Von Loeper, W.; Musango, J.; Brent, A.; Drimie, S. Analysing Challenges Facing Smallholder Farmers and Conservation Agriculture in South Africa: A System Dynamics Approach. S. Afr. J. Econ. Manag. Sci. 2016, 19, 747–773. [Google Scholar] [CrossRef]
- Lie, H.; Rich, K.M. Modeling Dynamic Processes in Smallholder Dairy Value Chains in Nicaragua: A System Dynamics Approach. Int. J. Food Syst. Dyn. 2016, 7. [Google Scholar] [CrossRef]
- Koláčková, G.; Krejčí, I.; Tichá, I. Dynamics of the Small Farmers’ Behaviour—Scenario Simulations. Agric. Econ. Zemědělská Ekon. 2017, 63, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Ha, T.M.; Bosch, O.J.H.; Nguyen, N.C.; Trinh, C.T. System Dynamics Modelling for Defining Livelihood Strategies for Women Smallholder Farmers in Lowland and Upland Regions of Northern Vietnam: A Comparative Analysis. Agric. Syst. 2017, 150, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Kopainsky, B.; Hager, G.; Herrera, H.; Nyanga, P.H. Transforming Food Systems at Local Levels: Using Participatory System Dynamics in an Interactive Manner to Refine Small-Scale Farmers’ Mental Models. Ecol. Model. 2017, 362, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Kopainsky, B.; Gerber, A.; Lara-Arango, D.; Nyanga, P.H. Short-Term versus Long-Term Decision Trade-Offs: Evidence from a Model-Based Observational Experiment with African Small-Scale Farmers. Syst. Res. Behav. Sci. 2019, 36, 215–228. [Google Scholar] [CrossRef]
- Sjaifuddin, S.; Hidayat, S.; Fathurrohman, M.; Ardie, R.; Islami, R.A.Z.E. The Development of Food Security Behavior Model through Environmental-Based Learning: A System Dynamics Approach. J. Pendidik. IPA Indones. 2019, 8, 230–240. [Google Scholar] [CrossRef]
- Sugiyama, T.; Goryoda, S.; Inoue, K.; Sugiyama-Ihana, N.; Nishi, N. Construction of a Simulation Model and Evaluation of the Effect of Potential Interventions on the Incidence of Diabetes and Initiation of Dialysis Due to Diabetic Nephropathy in Japan. BMC Health Serv. Res. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.; Gallaher, E.J.; Dingli, D. Personalized ESA Doses for Anemia Management in Hemodialysis Patients with End-Stage Renal Disease. Syst. Dyn. Rev. 2018, 34, 121–153. [Google Scholar] [CrossRef]
- Chen, H.-J.; Xue, H.; Liu, S.; Huang, T.T.K.; Wang, Y.C.; Wang, Y. Obesity Trend in the United States and Economic Intervention Options to Change It: A Simulation Study Linking Ecological Epidemiology and System Dynamics Modeling. Public Health 2018, 161, 20–28. [Google Scholar] [CrossRef]
- Carrete, L.; Arroyo, P.; Villaseñor, R. A Socioecological View toward an Understanding of How to Prevent Overweight in Children. J. Consum. Mark. 2017, 34, 156–168. [Google Scholar] [CrossRef]
- Liu, S.; Osgood, N.; Gao, Q.; Xue, H.; Wang, Y. Systems Simulation Model for Assessing the Sustainability and Synergistic Impacts of Sugar-Sweetened Beverages Tax and Revenue Recycling on Childhood Obesity Prevention. J. Oper. Res. Soc. 2016, 67, 708–721. [Google Scholar] [CrossRef]
- Jalali, M.S.; Rahmandad, H.; Bullock, S.L.; Lee-Kwan, S.H.; Gittelsohn, J.; Ammerman, A. Dynamics of Intervention Adoption, Implementation, and Maintenance inside Organizations: The Case of an Obesity Prevention Initiative. Soc. Sci. Med. 2019, 224, 67–76. [Google Scholar] [CrossRef]
- Safarishahrbijari, A.; Teyhouee, A.; Waldner, C.; Liu, J.; Osgood, N.D. Predictive Accuracy of Particle Filtering in Dynamic Models Supporting Outbreak Projections. BMC Infect. Dis. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.H.; Mustafee, N.; Brown, C.S. The Rôle of Knowledge in System Risk Identification and Assessment: The 2014 Ebola Outbreak. J. Oper. Res. Soc. 2018, 69, 1286–1308. [Google Scholar] [CrossRef]
- Kianmehr, H.; Sabounchi, N.S.; Sabounchi, S.S.; Cosler, L.E. A System Dynamics Model of Infection Risk, Expectations, and Perceptions on Antibiotic Prescribing in the United States. J. Eval. Clin. Pract. 2019. [Google Scholar] [CrossRef] [PubMed]
- van Ackere, A.; Schulz, P.J. Explaining Vaccination Decisions: A System Dynamics Model of the Interaction between Epidemiological and Behavioural Factors. Socioecon. Plann. Sci. 2019, 100750. [Google Scholar] [CrossRef]
- Cruz, J.P.; Guerrero Rueda, W.J.; Pérez, E.R.; Lizarazo Walteros, D.L.; Rico Ardila, P.C.; Castillo, A.M.; Torres Tinjacá, L.N. Kidney Procurement System in Colombia: A System Dynamics Approach. Gerenc. Políticas Salud 2019, 18, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Renmans, D.; Holvoet, N.; Criel, B. Combining Theory-Driven Evaluation and Causal Loop Diagramming for Opening the ‘Black Box’ of an Intervention in the Health Sector: A Case of Performance-Based Financing in Western Uganda. Int. J. Environ. Res. Public. Health 2017, 14, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilmola, O.-P.; Henttu, V. Transportation Costs Do Matter: Simulation Study from Hospital Investment Decision. J. Model. Manag. 2016, 11, 560–584. [Google Scholar] [CrossRef]
- Best, A.; Berland, A.; Herbert, C.; Bitz, J.; van Dijk, M.W.; Krause, C.; Cochrane, D.; Noel, K.; Marsden, J.; McKeown, S.; et al. Using Systems Thinking to Support Clinical System Transformation. J. Health Organ. Manag. 2016, 30, 302–323. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Fujiwara, K.; Ohba, H.; Suzuki, T.; Ogasawara, K. Forecasting the Regional Distribution and Sufficiency of Physicians in Japan with a Coupled System Dynamics—Geographic Information System Model. Hum. Resour. Health 2017, 15, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jetha, A.; Pransky, G.; Fish, J.; Hettinger, L.J. Return-to-Work Within a Complex and Dynamic Organizational Work Disability System. J. Occup. Rehabil. 2016, 26, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Farid, M.; Purdy, N.; Neumann, W.P. Using System Dynamics Modelling to Show the Effect of Nurse Workload on Nurses’ Health and Quality of Care. Ergonomics 2019, 63, 952–964. [Google Scholar] [CrossRef] [PubMed]
- McAvoy, S.; Staib, A.; Birch, S. Models of Evaluation under Ceteris Imparibus: System Dynamics and the Example of Emergency Care. Syst. Res. Behav. Sci. 2019. [Google Scholar] [CrossRef]
- Morgan, J.S.; Graber-Naidich, A. Small System Dynamics Model for Alleviating the General Practitioners Rural Care Gap in Ontario, Canada. Socioecon. Plann. Sci. 2019, 66, 10–23. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, L.; Antwi, H.A. The Impact of China’s Latest Population Policy Changes on Maternity Insurance—a Case Study in Jiangsu Province. Int. J. Health Plann. Manag. 2019, 34, e617–e633. [Google Scholar] [CrossRef] [Green Version]
- Luna-Reyes, L.F.; Black, L.J.; Ran, W.; Andersen, D.L.; Jarman, H.; Richardson, G.P.; Andersen, D.F. Modeling and Simulation as Boundary Objects to Facilitate Interdisciplinary Research: Modelling and Simulation for Interdisciplinary Research. Syst. Res. Behav. Sci. 2018. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Hao, J.-X.; Chen, X. Motivation Factors of Knowledge Collaboration in Virtual Communities of Practice: A Perspective from System Dynamics. J. Knowl. Manag. 2019, 23, 466–488. [Google Scholar] [CrossRef]
- Lansu, M.; Bleijenbergh, I.; Benschop, Y. Seeing the System: Systemic Gender Knowledge to Support Transformational Change towards Gender Equality in Science. Gend. Work Organ. 2019, 26, 1589–1605. [Google Scholar] [CrossRef]
- Lee, S.-Y. Development Strategies of Fiscal Programs for Universities in Korea—With Focused on Estimation of Effect of Restructuring of University Financial Support Project on University Competitiveness. Univers. J. Educ. Res. 2019, 7, 54–67. [Google Scholar] [CrossRef]
- Mendes, J.P.; Aleluia, M. Aging Effects in Public Policy Making. Syst. Dyn. Rev. 2019, 35, 232–254. [Google Scholar] [CrossRef]
- Mobus, G.E. Teaching Systems Thinking to General Education Students. Ecol. Model. 2018, 373, 13–21. [Google Scholar] [CrossRef]
- Howard, S.K.; Thompson, K. Seeing the System: Dynamics and Complexity of Technology Integration in Secondary Schools. Educ. Inf. Technol. 2016, 21, 1877–1894. [Google Scholar] [CrossRef]
- Davies, M.; Musango, J.K.; Brent, A.C. A Systems Approach to Understanding the Effect of Facebook Use on the Quality of Interpersonal Communication. Technol. Soc. 2016, 44, 55–65. [Google Scholar] [CrossRef]
- Carvalho, H.C.; Mazzon, J.A.; Santos, J.R. A Tale of Complexity. J. Soc. Mark. 2018. [Google Scholar] [CrossRef]
- Stringfellow, E.J. Applying Structural Systems Thinking to Frame Perspectives on Social Work Innovation. Res. Soc. Work Pract. 2017, 27, 154–162. [Google Scholar] [CrossRef]
- Hossain, M.S.; Dearing, J.A.; Eigenbrod, F.; Johnson, F.A. Operationalizing Safe Operating Space for Regional Social-Ecological Systems. Sci. Total Environ. 2017, 584–585, 673–682. [Google Scholar] [CrossRef]
- Givens, J.E.; Padowski, J.; Guzman, C.D.; Malek, K.; Witinok-Huber, R.; Cosens, B.; Briscoe, M.; Boll, J.; Adam, J. Incorporating Social System Dynamics in the Columbia River Basin: Food-Energy-Water Resilience and Sustainability Modeling in the Yakima River Basin. Front. Environ. Sci. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Ford, D.N.; White, R.J. Social Impact Bonds: The Goose and the Golden Eggs at Risk. Syst. Res. Behav. Sci. 2019. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, F. Research on Behavior Model of Rumor Maker Based on System Dynamics. Complexity 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Ibáñez, J.; Martínez-Valderrama, J. Global Effectiveness of Group Decision-Making Strategies in Coping with Forage and Price Variabilities in Commercial Rangelands: A Modelling Assessment. J. Environ. Manag. 2018, 217, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Zabid, M.F.M.; Abidin, N.Z.; Applanaidu, S.D. MYPOBDEX: An Interactive Decision Support System for Palm-Based Biodiesel Investors. Int. J. Econ. Perspect. 2017, 11, 260–272. [Google Scholar]
- Macmillan, A.; Davies, M.; Shrubsole, C.; Luxford, N.; May, N.; Chiu, L.F.; Trutnevyte, E.; Bobrova, Y.; Chalabi, Z. Integrated Decision-Making about Housing, Energy and Wellbeing: A Qualitative System Dynamics Model. Environ. Health 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.-R. Improving Entrepreneurial Knowledge and Business Innovations by Simulation-Based Strategic Decision Support System. Knowl. Manag. Res. Pract. 2018, 16, 173–182. [Google Scholar] [CrossRef]
- Bao, C.; He, D. Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China. Int. J. Environ. Res. Public Health 2019, 16, 3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling Regional Sustainable Development Scenarios Using the Urbanization and Eco-Environment Coupler: Case Study of Beijing-Tianjin-Hebei Urban Agglomeration, China. Sci. Total Environ. 2019, 689, 820–830. [Google Scholar] [CrossRef]
- Li, G.; Kou, C.; Wang, H. Estimating City-Level Energy Consumption of Residential Buildings: A Life-Cycle Dynamic Simulation Model. J. Environ. Manag. 2019, 240, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Beeton, R.J.S.; Sigler, T.; Halog, A. Enhancing the Adaptive Capacity for Urban Sustainability: A Bottom-up Approach to Understanding the Urban Social System in China. J. Environ. Manag. 2019, 235, 51–61. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; He, C.; Tu, M. Climate Change Will Constrain the Rapid Urban Expansion in Drylands: A Scenario Analysis with the Zoned Land Use Scenario Dynamics-Urban Model. Sci. Total Environ. 2019, 651, 2772–2786. [Google Scholar] [CrossRef]
- Shrubsole, C.; Hamilton, I.G.; Zimmermann, N.; Papachristos, G.; Broyd, T.; Burman, E.; Mumovic, D.; Zhu, Y.; Lin, B.; Davies, M. Bridging the Gap: The Need for a Systems Thinking Approach in Understanding and Addressing Energy and Environmental Performance in Buildings. Indoor Built Environ. 2019, 28, 100–117. [Google Scholar] [CrossRef] [Green Version]
- Sing, M.C.P.; Love, P.E.D.; Liu, H.J. Rehabilitation of Existing Building Stock: A System Dynamics Model to Support Policy Development. Cities 2019, 87, 142–152. [Google Scholar] [CrossRef]
- Moradi, H.; Sebt, M.H.; Shakeri, E. Evaluating the Impacts of Virtual Organization Absorption on the Quality of Urban Private Constructions; the System Dynamics Approach. Syst. Pract. Action Res. 2019, 32, 443–462. [Google Scholar] [CrossRef]
- Brockhaus, S.; Fawcett, S.; Kersten, W.; Knemeyer, M. A Framework for Benchmarking Product Sustainability Efforts: Using Systems Dynamics to Achieve Supply Chain Alignment. Benchmarking Int. J. 2016, 23, 127–164. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Egilmez, G. Integration of System Dynamics Approach toward Deepening and Broadening the Life Cycle Sustainability Assessment Framework: A Case for Electric Vehicles. Int. J. Life Cycle Assess. 2016, 21, 1009–1034. [Google Scholar] [CrossRef]
- Zou, B.; Guo, F.; Guo, J. Absorptive Capacity, Technological Innovation, and Product Life Cycle: A System Dynamics Model. SpringerPlus 2016, 5, 1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweiger, S.; Stouten, H.; Bleijenbergh, I.L. A System Dynamics Model of Resistance to Organizational Change: The Role of Participatory Strategies. Syst. Res. Behav. Sci. 2018, 35, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Yan, G.; Shen, A.; Zheng, J. A System Dynamics Model for Determining the Traffic Congestion Charges and Subsidies. Arab. J. Sci. Eng. 2017, 42, 5291–5304. [Google Scholar] [CrossRef]
- Lu, C.; Liu, H.-C.; Tao, J.; Rong, K.; Hsieh, Y.-C. A Key Stakeholder-Based Financial Subsidy Stimulation for Chinese EV Industrialization: A System Dynamics Simulation. Technol. Forecast. Soc. Chang. 2017, 118, 1–14. [Google Scholar] [CrossRef]
- Bureš, V.; Racz, F. Application of System Archetypes in Practice: An Underutilised Pathway to Better Managerial Performance. J. Bus. Econ. Manag. 2016, 17, 1081–1096. [Google Scholar] [CrossRef] [Green Version]
- Bureš, V.; Rácz, F. Identification of Sustainability Key Factors Based on Capturing Dominant Feedbacks of Behavioural Stereotypes in Socio-Economic Systems. Systems 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Rudneva, L.; Pchelintseva, I.; Gureva, M. Scenario Modelling of the “Green” Economy in an Economic Space. Resources 2018, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Nagase, Y.; Wakeland, W. Integrating Economics and System Dynamics Approaches for Modelling an Ecological–Economic System. Syst. Res. Behav. Sci. 2016, 33, 515–531. [Google Scholar] [CrossRef]
- Castellacci, F. Co-Evolutionary Growth: A System Dynamics Model. Econ. Model. 2018, 70, 272–287. [Google Scholar] [CrossRef]
- Aliani, H.; Kafaky, S.B.; Monavari, S.M.; Dourani, K. Modeling and Prediction of Future Ecotourism Conditions Applying System Dynamics. Environ. Monit. Assess. 2018, 190, 729. [Google Scholar] [CrossRef]
- Režný, L.; Bureš, V. Adding Feedbacks and Non-Linearity to the Neoclassical Growth Model: A New Realm for System Dynamics Applications. Systems 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Scholz, P.; Voracek, J. Organizational Culture and Green Management: Innovative Way Ahead in Hotel Industry. Meas. Bus. Excell. 2016, 20, 41–52. [Google Scholar] [CrossRef]
- Widhianthini, W. A Dynamic Model for Sustainable Tourism Village Planning Based on Local Institutions. J. Reg. City Plan. 2017, 28, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Biroscak, B.J.; Bryant, C.; Khaliq, M.; Schneider, T.; Panzera, A.D.; Courtney, A.; Parvanta, C.; Hovmand, P. Using System Dynamics Modeling to Evaluate a Community-Based Social Marketing Framework: A Computer Simulation Study. J. Soc. Mark. 2019, 9, 53–76. [Google Scholar] [CrossRef]
- Domegan, C.; McHugh, P.; Biroscak, B.J.; Bryant, C.; Calis, T. Non-Linear Causal Modelling in Social Marketing for Wicked Problems. J. Soc. Mark. 2017, 7, 305–329. [Google Scholar] [CrossRef]
- Jadun, P.; Vimmerstedt, L.J.; Bush, B.W.; Inman, D.; Peterson, S. Application of a Variance-Based Sensitivity Analysis Method to the Biomass Scenario Learning Model. Syst. Dyn. Rev. 2017, 33, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Mudavanhu, S.; Blignaut, J.; Nkambule, N.; Morokong, T.; Vundla, T. A Cost-Benefit Analysis of Using Rooikrans as Biomass Feedstock for Electricity Generation: A Case Study of the De Hoop Nature Reserve, South Africa. S. Afr. J. Econ. Manag. Sci. 2016, 19, 788–813. [Google Scholar] [CrossRef] [Green Version]
- Berariu, R.; Fikar, C.; Gronalt, M.; Hirsch, P. Resource Deployment under Consideration of Conflicting Needs in Times of River Floods. Disaster Prev. Manag. Int. J. 2016, 25, 649–663. [Google Scholar] [CrossRef]
- Xu, J.; Rao, R.; Dai, J. Risk Perception–Based Post-Seismic Relief Supply Allocation in the Longmen Shan Fault Area: Case Study of the 2013 Lushan Earthquake. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 825–844. [Google Scholar] [CrossRef]
- Nkambule, N.P.; Blignaut, J.N.; Vundla, T.; Morokong, T.; Mudavanhu, S. The Benefits and Costs of Clearing Invasive Alien Plants in Northern Zululand, South Africa. Ecosyst. Serv. 2017, 27, 203–223. [Google Scholar] [CrossRef]
- Inomata, S.O.; Gonzalez, A.M.G.O.; Román, R.M.S.; de Souza, L.A.; de Carvalho Freitas, C.E. Sustainability of Small-Scale Fisheries in the Middle Negro River (Amazonas—Brazil): A Model with Operational and Biological Variables. Ecol. Model. 2018, 368, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Rammelt, C.F.; van Schie, M. Ecology and Equity in Global Fisheries: Modelling Policy Options Using Theoretical Distributions. Ecol. Model. 2016, 337, 107–122. [Google Scholar] [CrossRef]
- Apostolopoulos, Y.; Lemke, M.K.; Barry, A.E.; Lich, K.H. Moving Alcohol Prevention Research Forward-Part II: New Directions Grounded in Community-Based System Dynamics Modeling: System Dynamics Modeling in Alcohol Prevention. Addiction 2018, 113, 363–371. [Google Scholar] [CrossRef]
- Clapp, J.D.; Madden, D.R.; Villasanti, H.G.; Giraldo, L.F.; Passino, K.M.; Reed, M.B.; Puentes, I.F. A System Dynamic Model of Drinking Events: Multi-Level Ecological Approach. Syst. Res. Behav. Sci. 2018, 35, 265–281. [Google Scholar] [CrossRef]
- Arantes do Amaral, J.A.; Hess, A. The Dynamics of Providing Support to Crack Cocaine Addicts in Open-Air Drug Scenes: The Lessons Learned by the ‘Helpers’ Intervention Project. Int. J. Action Res. 2018, 14, 30–51. [Google Scholar] [CrossRef]
- Matchar, D.B.; Ansah, J.P.; Koh, V.; Whitson, H.E. Trajectories of Functional Ability over the Life Course: A Conceptual Model of the Interaction of Stressor-Induced Functional Loss and Resilience. Syst. Dyn. Rev. 2018, 34, 481–502. [Google Scholar] [CrossRef] [PubMed]
- Wittenborn, A.K.; Rahmandad, H.; Rick, J.; Hosseinichimeh, N. Depression as a Systemic Syndrome: Mapping the Feedback Loops of Major Depressive Disorder. Psychol. Med. 2016, 46, 551–562. [Google Scholar] [CrossRef] [PubMed]
Type of Word | ||
---|---|---|
Research-related | SD-related | General concepts without domain associations |
Examples | ||
Methodology | Diagram | Process |
Introduction | Dynamics | Number |
Discussion | Loop | Year |
Paper | Feedback | Work |
Purpose | Behavior | Approach |
Objective | Variable | Problem |
Literature | Loop | Research |
Tool | Terms’ Frequency | Method | Distance Calculation | Specifics |
---|---|---|---|---|
Multidimensional scaling | 70–90–110 | Kruskal, Sammon, Classical | Jaccard, Cossine, Euclide | Number of clusters: 6–8–10 |
Co-occurrence network | 50–70–90 | N/A | Jaccard, Cossine, Euclide | Minimum spanning tree only edges with coefficient ≥ 0.15 |
Correspondence analysis | 70–90–110 | N/A | N/A | Words filtered by chi-square value: top 40–60–80 |
Hierarchical clustering | 70–90–110 | Ward Average Complete | Jaccard, Cossine, Euclide | Number of clusters: 6–8–10 |
Group | Subgroup | Selected Topics |
---|---|---|
Business | Company level | Business performance |
Project management | ||
Market | ||
Resource management | ||
Supply chains | ||
Specific industrial segments | Material markets | |
Transport and traffic safety | ||
Environment | Pollution | Carbon production and emissions |
Water | ||
Sustainability | ||
Agriculture | Agriculture general | |
Animals and fauna | ||
Land use | ||
Farming | ||
Health | Physical diseases | |
Health care and related areas | ||
Miscellaneous | R&D and innovation | |
Social issues | ||
Decision-making | ||
Urban issues |
Author | Date | Citation | Group | Subgroup | Selected Topics | Software | CLD | SFD |
---|---|---|---|---|---|---|---|---|
Kim and Chung | 2016 | [4] | Business | Company level | Business performance | Vensim | Yes | Yes |
Cosenz and Noto | 2018 | [5] | Business | Company level | Business performance | Powersim | No | Yes |
Aparicio et al. | 2016 | [6] | Business | Company level | Business performance | Vensim, Stella | Yes | Yes |
Minato and Morimoto | 2017 | [7] | Business | Company level | Business performance | Vensim | No | Yes |
Yun et al. | 2017 | [8] | Business | Company level | Business performance | Vensim | Yes | Yes |
Yan et al. | 2019 | [9] | Business | Company level | Business performance | Vensim | Yes | Yes |
Rocha et al. | 2019 | [10] | Business | Company level | Business performance | Vensim | Yes | No |
Anjomshoae et al. | 2017 | [11] | Business | Company level | Business performance | Unspecified | Yes | No |
Yu et al. | 2019 | [12] | Business | Company level | Business performance | Vensim | Yes | Yes |
Mhatre et al. | 2017 | [13] | Business | Company level | Project management | Vensim | No | Yes |
Wang et al. | 2017 | [14] | Business | Company level | Project management | Vensim | Yes | Yes |
van Oorschot et al. | 2018 | [15] | Business | Company level | Project management | Vensim | Yes | Yes |
Li et al. | 2018 | [16] | Business | Company level | Project management | Vensim | Yes | Yes |
Pargar et al. | 2019 | [17] | Business | Company level | Project management | Vensim | Yes | Yes |
Wang et al. | 2019 | [18] | Business | Company level | Project management | Vensim | No | Yes |
Abbaspour and Dabirian | 2019 | [19] | Business | Company level | Project management | Vensim | Yes | Yes |
Lee et al. | 2019 | [20] | Business | Company level | Project management | Unspecified | Yes | No |
Chung et al. | 2016 | [21] | Business | Company level | Resource management | Vensim | Yes | No |
Škraba et al. | 2016 | [22] | Business | Company level | Resource management | Unspecified | Yes | No |
Kunc and O’Brien | 2017 | [23] | Business | Company level | Resource management | Vensim | No | Yes |
Alizadeh-Zoeram et al. | 2019 | [24] | Business | Company level | Resource management | Vensim | Yes | Yes |
Xing et al. | 2019 | [25] | Business | Company level | Resource management | Vensim | Yes | Yes |
Wang et al. | 2016 | [26] | Business | Company level | Resource management | Vensim | Yes | Yes |
Nair and Anbuudayasankar | 2016 | [27] | Business | Company level | Supply chain | Vensim | Yes | No |
Keilhacker and Minner | 2017 | [28] | Business | Company level | Supply chain | Unspecified | Yes | No |
Cagliano et al. | 2017 | [29] | Business | Company level | Supply chain | Vensim | Yes | Yes |
Zhang | 2016 | [30] | Business | Company level | Supply chain | Vensim | Yes | Yes |
Rawlins et al. | 2018 | [31] | Business | Company level | Supply chain | Vensim | Yes | No |
Choi | 2018 | [32] | Business | Company level | Supply chain | Vensim | Yes | Yes |
Armendáriz et al. | 2016 | [33] | Business | Company level | Supply chain | Vensim | Yes | No |
Chang and Lin | 2019 | [34] | Business | Company level | Supply chain | Unspecified | Yes | No |
Olafsdottir and Sverdrup | 2019 | [35] | Business | Company level | Supply chain | Unspecified | Yes | No |
Bahadir and Akdag | 2019 | [36] | Business | Company level | Supply chain | Vensim | Yes | Yes |
Jin | 2019 | [37] | Business | Company level | Supply chain | Unspecified | No | Yes |
Jeon and Yeo | 2017 | [38] | Business | Company level | Supply chain | Vensim | Yes | Yes |
Tong et al. | 2019 | [39] | Business | Company level | Supply chain | Vensim | Yes | Yes |
Choi et al. | 2016 | [40] | Business | Specific industrial segments | Mineral markets | Powersim | Yes | Yes |
Sverdrup | 2016 | [41] | Business | Specific industrial segments | Mineral markets | Stella | Yes | Yes |
Sverdrup and Ragnarsdottir | 2016 | [42] | Business | Specific industrial segments | Mineral markets | Unspecified | Yes | No |
Wang et al. | 2018 | [43] | Business | Specific industrial segments | Mineral markets | Vensim | No | Yes |
Arango-Aramburo et al. | 2017 | [44] | Business | Specific industrial segments | Mineral markets | Vensim | Yes | No |
Liu et al. | 2019 | [45] | Business | Specific industrial segments | Mineral markets | Vensim | Yes | Yes |
Hazra et al. | 2019 | [46] | Business | Specific industrial segments | Mineral markets | Stella | No | Yes |
Sverdrup et al. | 2019 | [47] | Business | Specific industrial segments | Mineral markets | Unspecified | Yes | No |
Zhang et al. | 2018 | [48] | Business | Company level | Market | Vensim | Yes | Yes |
Chung et al. | 2018 | [49] | Business | Company level | Market | Vensim | Yes | Yes |
Gonçalves | 2018 | [50] | Business | Company level | Market | Vensim | Yes | Yes |
Wang, Y. et al. | 2019 | [51] | Business | Company level | Market | Vensim | Yes | Yes |
Wang, J. et al. | 2016 | [52] | Business | Company level | Market | Vensim | Yes | Yes |
Yun et al. | 2019 | [53] | Business | Company level | Market | Vensim | Yes | Yes |
Pasaoglu et al. | 2016 | [54] | Business | Specific industrial segments | Transport and traffic safety | Unspecified | Yes | No |
Azmi and Tokai | 2017 | [55] | Business | Specific industrial segments | Transport and traffic safety | Vensim | No | Yes |
Wen and Bai | 2017 | [56] | Business | Specific industrial segments | Transport and traffic safety | Vensim | Yes | Yes |
Wang | 2018 | [57] | Business | Specific industrial segments | Transport and traffic safety | Vensim | Yes | Yes |
Fontoura et al. | 2019 | [58] | Business | Specific industrial segments | Transport and traffic safety | Vensim | Yes | Yes |
Kim et al. | 2019 | [59] | Business | Specific industrial segments | Transport and traffic safety | Vensim | Yes | No |
Oliveira et al. | 2019 | [60] | Business | Specific industrial segments | Transport and traffic safety | Vensim | No | Yes |
Jeon et al. | 2016 | [61] | Business | Specific industrial segments | Transport and traffic safety | Vensim | Yes | Yes |
Estay-Ossandon and Mena-Nieto | 2018 | [62] | Environment | Pollution | Pollution | Vensim | No | Yes |
Gutberlet et al. | 2017 | [63] | Environment | Pollution | Pollution | Unspecified | Yes | No |
Phonphoton and Pharino | 2019 | [64] | Environment | Pollution | Pollution | Vensim | Yes | Yes |
Sukholthaman and Sharp | 2016 | [65] | Environment | Pollution | Pollution | Vensim | Yes | Yes |
Ardi and Leisten | 2016 | [66] | Environment | Pollution | Pollution | Unspecified | Yes | Yes |
Dasgupta et al. | 2017 | [67] | Environment | Pollution | Pollution | Stella | No | Yes |
Ghisolfi et al. | 2017 | [68] | Environment | Pollution | Pollution | Vensim | Yes | Yes |
Breach and Simonovic | 2018 | [69] | Environment | Pollution | Pollution | Vensim | Yes | Yes |
Nascimento et al. | 2018 | [70] | Environment | Pollution | Pollution | Vensim | Yes | Yes |
Prouty et al. | 2018 | [71] | Environment | Pollution | Pollution | Vensim | No | Yes |
Rinsatitnon et al. | 2018 | [72] | Environment | Pollution | Pollution | Stella | No | Yes |
Sea-lim et al. | 2018 | [73] | Environment | Pollution | Pollution | Stella | No | Yes |
Nedelciu et al. | 2019 | [74] | Environment | Pollution | Pollution | Unspecified | Yes | No |
Chinda et al. | 2018 | [75] | Environment | Pollution | Pollution | Stella | No | Yes |
Ding et al. | 2016 | [76] | Environment | Pollution | Pollution | Vensim | Yes | Yes |
Sharma and Vrat | 2018 | [77] | Environment | Pollution | Pollution | Stella | Yes | Yes |
Treadwell et al. | 2018 | [78] | Environment | Pollution | Pollution | Stella | No | Yes |
Xiao et al. | 2016 | [79] | Environment | Pollution | Emissions and pollution | Vensim | No | Yes |
Liu and Xiao | 2018 | [80] | Environment | Pollution | Emissions and pollution | Vensim | No | Yes |
Zhang et al. | 2018 | [81] | Environment | Pollution | Emissions and pollution | Unspecified | Yes | Yes |
Li et al. | 2017 | [82] | Environment | Pollution | Emissions and pollution | Vensim | Yes | Yes |
Freeman et al. | 2016 | [83] | Environment | Pollution | Emissions and pollution | Vensim | Yes | No |
Scolozzi and Geneletti | 2017 | [84] | Environment | Pollution | Emissions and pollution | Vensim | Yes | No |
Navarro and Tapiador | 2019 | [85] | Environment | Pollution | Emissions and pollution | Vensim | No | Yes |
Zhao et al. | 2018 | [86] | Environment | Pollution | Emissions and pollution | Stella | No | Yes |
Liu et al. | 2017 | [87] | Environment | Pollution | Emissions and pollution | AnyLogic | No | Yes |
Scolozzi et al. | 2019 | [88] | Environment | Pollution | Emissions and pollution | Vensim | Yes | Yes |
Bixler et al. | 2019 | [89] | Environment | Pollution | Emissions and pollution | Vensim | No | Yes |
Chiu et al. | 2019 | [90] | Environment | Pollution | Emissions and pollution | Vensim | Yes | No |
Li, J.W. | 2019 | [91] | Environment | Pollution | Emissions and pollution | Vensim | No | Yes |
Li, T. et al. | 2019 | [92] | Environment | Pollution | Emissions and pollution | Vensim | Yes | Yes |
Matthew et al. | 2019 | [93] | Environment | Pollution | Emissions and pollution | Vensim | Yes | Yes |
Cordier et al. | 2019 | [94] | Environment | Pollution | Emissions and pollution | Powersim | No | Yes |
Dianati et al. | 2019 | [95] | Environment | Pollution | Emissions and pollution | Vensim | Yes | Yes |
Tseng et al. | 2019 | [96] | Environment | Pollution | Emissions and pollution | Stella | No | Yes |
da Silva et al. | 2019 | [97] | Environment | Pollution | Emissions and pollution | Vensim | Yes | No |
Ma et al. | 2018 | [98] | Environment | Pollution | Sustainability | Vensim | No | Yes |
Fouseki and Nicolau | 2018 | [99] | Environment | Pollution | Sustainability | Vensim | Yes | Yes |
Kotir et al. | 2016 | [100] | Environment | Pollution | Sustainability | Vensim, Stella | Yes | Yes |
Iandolo et al. | 2018 | [101] | Environment | Pollution | Sustainability | Vensim | Yes | Yes |
Liu et al. | 2019 | [102] | Environment | Pollution | Sustainability | Vensim | Yes | No |
Ulli-Beer et al. | 2017 | [103] | Environment | Pollution | Sustainability | Unspecified | No | Yes |
Wang et al. | 2016 | [104] | Environment | Pollution | Water | Vensim | No | Yes |
Baki et al. | 2018 | [105] | Environment | Pollution | Water | Vensim | Yes | Yes |
Qin et al. | 2018 | [106] | Environment | Pollution | Water | Vensim | Yes | Yes |
Garg et al. | 2019 | [107] | Environment | Pollution | Water | Vensim | Yes | Yes |
Hu et al. | 2018 | [108] | Environment | Pollution | Water | NetLogo | No | Yes |
Huang et al. | 2019 | [109] | Environment | Pollution | Water | Vensim | No | Yes |
Jin et al. | 2019 | [110] | Environment | Pollution | Water | Vensim | Yes | Yes |
Li et al. | 2019 | [111] | Environment | Pollution | Water | Vensim | Yes | Yes |
Mahdavi et al. | 2019 | [112] | Environment | Pollution | Water | Vensim | No | Yes |
Su et al. | 2019 | [113] | Environment | Pollution | Water | Vensim | No | Yes |
Zare et al. | 2019 | [114] | Environment | Pollution | Water | Vensim | Yes | Yes |
Bester et al. | 2019 | [115] | Environment | Pollution | Water | Vensim | Yes | Yes |
Cui et al. | 2019 | [116] | Environment | Pollution | Water | Unspecified | Yes | No |
Hosseinzadeh Ghazichaki et al. | 2019 | [117] | Environment | Pollution | Water | Vensim | Yes | Yes |
Shahbazbegian et al. | 2016 | [118] | Environment | Pollution | Water | Vensim | Yes | No |
Pagano et al. | 2019 | [119] | Environment | Pollution | Water | Stella | No | Yes |
Walters et al. | 2016 | [120] | Environment | Agriculture | Agriculture general | Vensim, Stella | Yes | Yes |
Kumari | 2017 | [121] | Environment | Agriculture | Agriculture general | Stella | No | Yes |
Rich et al. | 2018 | [122] | Environment | Agriculture | Agriculture general | Vensim | Yes | Yes |
Ndhleve et al. | 2017 | [123] | Environment | Agriculture | Agriculture general | Vensim | No | Yes |
Banson et al. | 2016 | [124] | Environment | Agriculture | Agriculture general | Vensim | Yes | No |
Cheng et al. | 2018 | [125] | Environment | Agriculture | Agriculture general | Vensim | Yes | Yes |
Kumar et al. | 2016 | [126] | Environment | Agriculture | Agriculture general | Stella | No | Yes |
Matinzadeh et al. | 2017 | [127] | Environment | Agriculture | Agriculture general | Vensim | Yes | Yes |
Gao et al. | 2016 | [128] | Environment | Agriculture | Agriculture general | Vensim | No | Yes |
Hosseinzadeh et al. | 2017 | [129] | Environment | Agriculture | Agriculture general | Vensim | Yes | No |
Gunda et al. | 2018 | [130] | Environment | Agriculture | Agriculture general | Vensim | Yes | No |
Mesgari | 2017 | [131] | Environment | Agriculture | Agriculture general | Vensim | No | Yes |
Kuhmonen | 2018 | [132] | Environment | Agriculture | Agriculture general | Unspecified | Yes | No |
Mokhtar and Aram | 2017 | [133] | Environment | Agriculture | Agriculture general | Vensim | Yes | Yes |
Jin et al. | 2016 | [134] | Environment | Agriculture | Agriculture general | Vensim | Yes | Yes |
Abdulla et al. | 2016 | [135] | Environment | Agriculture | Animals and fauna | Vensim | Yes | Yes |
Dizyee et al. | 2017 | [136] | Environment | Agriculture | Animals and fauna | Vensim, Stella | Yes | Yes |
Molina Benavides et al. | 2018 | [137] | Environment | Agriculture | Animals and fauna | Vensim | Yes | No |
Dizyee et al. | 2019 | [138] | Environment | Agriculture | Animals and fauna | Vensim | No | Yes |
Farrell et al. | 2019 | [139] | Environment | Agriculture | Animals and fauna | Stella | No | Yes |
Godde et al. | 2019 | [140] | Environment | Agriculture | Animals and fauna | Vensim | No | Yes |
Neudert et al. | 2019 | [141] | Environment | Agriculture | Animals and fauna | Vensim | Yes | No |
Tinsley et al. | 2019 | [142] | Environment | Agriculture | Animals and fauna | Vensim | Yes | Yes |
Lie et al. | 2018 | [143] | Environment | Agriculture | Animals and fauna | Stella | No | Yes |
Wallentin and Neuwirth | 2017 | [144] | Environment | Agriculture | Animals and fauna | NetLogo | No | Yes |
Crookes | 2017 | [145] | Environment | Agriculture | Animals and fauna | Vensim | No | Yes |
Pérez et al. | 2016 | [146] | Environment | Agriculture | Animals and fauna | Vensim | No | Yes |
Phan et al. | 2016 | [147] | Environment | Agriculture | Animals and fauna | Vensim | Yes | No |
Herrera | 2017 | [148] | Environment | Agriculture | Animals and fauna | Vensim | Yes | Yes |
Rodríguez-Izquierdo et al. | 2019 | [149] | Environment | Agriculture | Animals and fauna | Vensim | Yes | Yes |
Liu et al. | 2017 | [150] | Environment | Agriculture | Land use | NetLogo | Yes | No |
Dang et al. | 2017 | [151] | Environment | Agriculture | Land use | Unspecified | Yes | No |
Sheng et al. | 2018 | [152] | Environment | Agriculture | Land use | Vensim | No | Yes |
de Freitas et al. | 2018 | [153] | Environment | Agriculture | Land use | NetLogo | No | Yes |
Park and Park | 2018 | [154] | Environment | Agriculture | Land use | Stella | Yes | Yes |
Sanga and Mungatana | 2016 | [155] | Environment | Agriculture | Land use | Stella | No | Yes |
Lim et al. | 2017 | [156] | Environment | Agriculture | Land use | Vensim | Yes | No |
Yurike et al. | 2018 | [157] | Environment | Agriculture | Land use | Unspecified | Yes | No |
Nazir and Ahmad | 2018 | [158] | Environment | Agriculture | Land use | Stella | Yes | Yes |
Forero Montaña et al. | 2019 | [159] | Environment | Agriculture | Land use | Stella | No | Yes |
Fuglestad and Palmer | 2019 | [160] | Environment | Agriculture | Land use | Stella | Yes | Yes |
Tan et al. | 2019 | [161] | Environment | Agriculture | Land use | Vensim | No | Yes |
Pande and Savenije | 2016 | [162] | Environment | Agriculture | Farming | Unspecified | Yes | No |
Von Loeper et al. | 2016 | [163] | Environment | Agriculture | Farming | Vensim | Yes | Yes |
Lie and Rich | 2016 | [164] | Environment | Agriculture | Farming | Vensim | Yes | Yes |
Koláčková et al. | 2017 | [165] | Environment | Agriculture | Farming | Vensim | Yes | Yes |
Ha et al. | 2017 | [166] | Environment | Agriculture | Farming | Vensim | Yes | No |
Kopainsky et al. | 2017 | [167] | Environment | Agriculture | Farming | Vensim | Yes | No |
Kopainsky et al. | 2019 | [168] | Environment | Agriculture | Farming | Vensim | Yes | No |
Sjaifuddin et al. | 2019 | [169] | Environment | Agriculture | Farming | Powersim | Yes | Yes |
Sugiyama et al. | 2017 | [170] | Health | Physical diseases | Vensim | No | Yes | |
Rogers et al. | 2018 | [171] | Health | Physical diseases | Stella | Yes | Yes | |
Chen et al. | 2018 | [172] | Health | Physical diseases | Unspecified | Yes | No | |
Carrete et al. | 2017 | [173] | Health | Physical diseases | Stella | No | Yes | |
Liu et al. | 2016 | [174] | Health | Physical diseases | Vensim | No | Yes | |
Jalali et al. | 2019 | [175] | Health | Physical diseases | Vensim | Yes | Yes | |
Safarishahrbijari et al. | 2017 | [176] | Health | Physical diseases | Unspecified | No | Yes | |
Powell et al. | 2018 | [177] | Health | Physical diseases | Vensim | Yes | No | |
Kianmehr et al. | 2019 | [178] | Health | Physical diseases | Vensim | No | Yes | |
van Ackere and Schulz | 2019 | [179] | Health | Physical diseases | Vensim | No | Yes | |
Cruz et al. | 2019 | [180] | Health | Physical diseases | Vensim, Stella | Yes | Yes | |
Renmans et al. | 2017 | [181] | Health | Health care and related areas | Vensim | Yes | No | |
Hilmola and Henttu | 2016 | [182] | Health | Health care and related areas | Vensim | Yes | No | |
Best et al. | 2016 | [183] | Health | Health care and related areas | Unspecified | Yes | No | |
Ishikawa et al. | 2017 | [184] | Health | Health care and related areas | Stella | Yes | Yes | |
Jetha et al. | 2016 | [185] | Health | Health care and related areas | Vensim | No | Yes | |
Farid et al. | 2019 | [186] | Health | Health care and related areas | Vensim | Yes | Yes | |
McAvoy et al. | 2019 | [187] | Health | Health care and related areas | Vensim | Yes | No | |
Morgan et al. | 2019 | [188] | Health | Health care and related areas | Vensim | Yes | No | |
Zhang et al. | 2019 | [189] | Health | Health care and related areas | Vensim | No | Yes | |
Luna-Reyes et al. | 2018 | [190] | Health | R&D and innovation | Vensim | No | Yes | |
Wang | 2019 | [191] | Miscellaneous | R&D and innovation | Vensim | Yes | Yes | |
Lansu et al. | 2019 | [192] | Miscellaneous | R&D and innovation | Vensim | Yes | No | |
Lee | 2019 | [193] | Miscellaneous | R&D and innovation | Unspecified | Yes | No | |
Mendes and Aleluia | 2019 | [194] | Miscellaneous | R&D and innovation | Vensim | No | Yes | |
Mobus | 2018 | [195] | Miscellaneous | R&D and innovation | Unspecified | No | Yes | |
Howard and Thompson | 2016 | [196] | Miscellaneous | R&D and innovation | Unspecified | Yes | No | |
Davies et al. | 2016 | [197] | Miscellaneous | Social issue | Vensim | Yes | No | |
Carvalho et al. | 2018 | [198] | Miscellaneous | Social issue | Vensim | Yes | No | |
Stringfellow | 2017 | [199] | Miscellaneous | Social issue | Vensim | Yes | Yes | |
Hossain et al. | 2017 | [200] | Miscellaneous | Social issue | Stella | Yes | No | |
Givens et al. | 2018 | [201] | Miscellaneous | Social issue | Vensim | Yes | No | |
Ford and White | 2019 | [202] | Miscellaneous | Social issue | Vensim | Yes | Yes | |
Zhu and Liu | 2017 | [203] | Miscellaneous | Social issue | Vensim | Yes | Yes | |
Ibáñez and Martínez-Valderrama | 2018 | [204] | Miscellaneous | Decision-making | Vensim | Yes | No | |
Zabid and Abidin | 2017 | [205] | Miscellaneous | Decision-making | Vensim | Yes | Yes | |
Macmillan et al. | 2016 | [206] | Miscellaneous | Decision-making | Vensim | Yes | No | |
Yan | 2018 | [207] | Miscellaneous | Decision-making | Vensim | No | Yes | |
Bao and He | 2019 | [208] | Miscellaneous | Urban issues | Vensim | Yes | Yes | |
Fang et al. | 2019 | [209] | Miscellaneous | Urban issues | Vensim | No | Yes | |
Li, G. et al. | 2019 | [210] | Miscellaneous | Urban issues | Vensim | Yes | Yes | |
Li, Y. et al. | 2019 | [211] | Miscellaneous | Urban issues | Vensim | Yes | No | |
Liu et al. | 2019 | [212] | Miscellaneous | Urban issues | Stella | No | Yes | |
Shrubsole et al. | 2019 | [213] | Miscellaneous | Urban issues | Vensim | Yes | No | |
Sing et al. | 2019 | [214] | Miscellaneous | Urban issues | Vensim | Yes | Yes | |
Moradi et al. | 2019 | [215] | Miscellaneous | Urban issues | Vensim | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanker, M.; Bureš, V.; Tučník, P. Environment, Business, and Health Care Prevail: A Comprehensive, Systematic Review of System Dynamics Application Domains. Systems 2021, 9, 28. https://doi.org/10.3390/systems9020028
Zanker M, Bureš V, Tučník P. Environment, Business, and Health Care Prevail: A Comprehensive, Systematic Review of System Dynamics Application Domains. Systems. 2021; 9(2):28. https://doi.org/10.3390/systems9020028
Chicago/Turabian StyleZanker, Marek, Vladimír Bureš, and Petr Tučník. 2021. "Environment, Business, and Health Care Prevail: A Comprehensive, Systematic Review of System Dynamics Application Domains" Systems 9, no. 2: 28. https://doi.org/10.3390/systems9020028
APA StyleZanker, M., Bureš, V., & Tučník, P. (2021). Environment, Business, and Health Care Prevail: A Comprehensive, Systematic Review of System Dynamics Application Domains. Systems, 9(2), 28. https://doi.org/10.3390/systems9020028