# On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. The Conservation of Energy and Momentum in Electrodynamics

## 3. The Damped Oscillator and Its Double

## 4. Dissipation and Quantization

## 5. Coherence and Fractal Self-Similarity

## 6. Conclusions

## Conflicts of Interest

## References

- Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North-Holland Publ. Co.: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro and Thermal Concepts; American Institute of Physics: Melville, NY, USA, 1993. [Google Scholar]
- Blasone, M.; Jizba, P.; Vitiello, G. Quantum Field Theory and Its Macroscopic Manifestations; Imperial College Press: London, UK, 2011. [Google Scholar]
- Bunkov, Y.M.; Godfrin, H. Topological Defects and the Nonequilibrium Dynamics of Symmetry Breaking Phase Transitions; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Vitiello, G. Fractals, coherent states and self-similarity induced noncommutative geometry. Phys. Lett.
**2012**, A376, 2527–2532. [Google Scholar] [CrossRef] - Vitiello, G. Coherent states, fractals and brain waves. New Math. Nat. Comput.
**2009**, 5, 245–264. [Google Scholar] [CrossRef] - Vitiello, G. Fractals and the Fock-Bargmann representation of coherent states. In Quantum Interaction; Lecture Notes in Artificial Intelligence; Lawless, W., van Rijsbergen, K., Klusch, M., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2009; pp. 6–16. [Google Scholar]
- Vitiello, G. Topological defects, fractals and the structure of quantum field theory. In Vision of Oneness; Licata, I., Sakaji, A.J., Eds.; Aracne Edizioni: Roma, Italy, 2011; pp. 155–179. [Google Scholar]
- Celeghini, E.; Graziano, E.; Nakamura, K.; Vitiello, G. Finite temperature quantum field theory and gauge field. Phys. Lett.
**1992**, B285, 98–102. [Google Scholar] [CrossRef] - Blasone, M.; Graziano, E.; Pashaev, O.K.; Vitiello, G. Dissipation and topologically massive gauge theories in the pseudo-euclidean plane. Ann. Phys.
**1996**, 252, 115–132. [Google Scholar] [CrossRef] - Celeghini, E.; Rasetti, M.; Vitiello, G. Quantum dissipation. Ann. Phys.
**1992**, 215, 156–170. [Google Scholar] [CrossRef] - Blasone, M.; Srivastava, Y.N.; Vitiello, G.; Widom, A. Phase coherence in quantum brownian motion. Ann. Phys.
**1998**, 267, 61–74. [Google Scholar] [CrossRef] - Srivastava, Y.N.; Vitiello, G.; Widom, A. Quantum dissipation and quantum noise. Ann. Phys.
**1995**, 238, 200–207. [Google Scholar] [CrossRef] [Green Version] - Perelomov, A. Generalized Coherent States and Their Applications; Springer-Verlag: Berlin, Germany, 1986. [Google Scholar]
- Klauder, J.R.; Skagerstam, B. Coherent States; World Scientific: Singapore, 1985. [Google Scholar]
- Celeghini, E.; De Martino, S.; De Siena, S.; Rasetti, M.; Vitiello, G. Quantum groups, coherent states, squeezing and lattice quantum mechanics. Ann. Phys.
**1995**, 241, 50–67. [Google Scholar] [CrossRef] - Celeghini, E.; Rasetti, M.; Tarlini, M.; Vitiello, G. SU(1,1) squeezed states as damped oscillators. Mod. Phys. Lett.
**1989**, B3, 1213–1220. [Google Scholar] [CrossRef] - Celeghini, E.; Rasetti, M.; Vitiello, G. On squeezing and quantum groups. Phys. Rev. Lett.
**1991**, 66, 2056–2059. [Google Scholar] [CrossRef] [PubMed] - De Filippo, S.; Vitiello, G. Vacuum structure for unstable particles. Lett. Nuovo Cim.
**1977**, 19, 92–96. [Google Scholar] [CrossRef] - ’t Hooft, G. Quantum gravity as a dissipative deterministic system. Classical Quant. Grav.
**1999**, 16, 3263–3279. [Google Scholar] [CrossRef] - ’t Hooft, G. A mathematical theory for deterministic quantum mechanics. J. Phys. Conf. Series
**2007**, 67, 012015. [Google Scholar] [CrossRef] - Blasone, M.; Jizba, P.; Vitiello, G. Dissipation and quantization. Phys. Lett.
**2001**, A287, 205–210. [Google Scholar] [CrossRef] - Blasone, M.; Celeghini, E.; Jizba, P.; Vitiello, G. Quantization, group contraction and zero point energy. Phys. Lett.
**2003**, A310, 393–399. [Google Scholar] [CrossRef] - Blasone, M.; Jizba, P.; Scardigli, F.; Vitiello, G. Dissipation and quantization in composite systems. Phys. Lett.
**2009**, A373, 4106–4112. [Google Scholar] [CrossRef] - Marzuoli, A.; Raffa, F.A.; Rasetti, M. Algebraic characterization of bosons. In preparation.
- Bunde, A.; Havlin, S. Fractals in Science; Springer-Verlag: Berlin, Germany, 1995. [Google Scholar]
- Peitgen, H.O.; Jürgens, H.; Saupe, D. Chaos and Fractals: New Frontiers of Science; Springer-Verlag: Berlin, Germany, 1986. [Google Scholar]
- Andronov, A.A.; Vitt, A.A.; Khaikin, S.E. Theory of Oscillators; Dover Publications, Inc.: Mineola, NY, USA, 1966. [Google Scholar]
- Yuen, H.P. Two-photon coherent states of the radiation field. Phys. Rev.
**1976**, 13, 2226–2243. [Google Scholar] [CrossRef] - Sivasubramanian, S.; Srivastava, Y.N.; Vitiello, G.; Widom, A. Quantum dissipation induced noncommutative geometry. Phys. Lett.
**2003**, A311, 97–105. [Google Scholar] [CrossRef] - Celeghini, E.; De Martino, S.; De Siena, S.; Iorio, A.; Rasetti, M.; Vitiello, G. Thermo field dynamics and quantum algebras. Phys. Lett.
**1998**, A244, 455–461. [Google Scholar] [CrossRef] - Vitiello, G. Links. Relating different physical systems through the common QFT algebraic structure. In Quantum Analogues: From Phase Transitions to Black Holes and Cosmology; Lectures Notes in Physics 718; Unruh, W.G., Schuetzhold, R., Eds.; Springer: Berlin, Germany, 2007; pp. 165–205. [Google Scholar]
- Iorio, A.; Vitiello, G. Quantum groups and Von Neumann theorem. Mod. Phys. Lett.
**1994**, B8, 269–276. [Google Scholar] [CrossRef] - Vitiello, G. Struttura e Funzione. Una visione ecologica integrata. Riv. Filos. Neo-Scolast.
**2012**, 4, 625–637. [Google Scholar] - Montagnier, L.; Aissa, J.; Del Giudice, E.; Lavallee, C.; Tedeschi, A.; Vitiello, G. DNA waves and water. J. Phys. Conf. Series
**2011**, 306, 012007. [Google Scholar] [CrossRef] - Pashaev, O.K.; Nalci, S. Golden quantum oscillator and Binet-Fibonacci calculus. J. Phys. A Math. Theor.
**2012**, 45, 015303. [Google Scholar] [CrossRef]

## Appendix

## The Golden Spiral and the Fibonacci Progression

© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Vitiello, G.
On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature. *Systems* **2014**, *2*, 203-216.
https://doi.org/10.3390/systems2020203

**AMA Style**

Vitiello G.
On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature. *Systems*. 2014; 2(2):203-216.
https://doi.org/10.3390/systems2020203

**Chicago/Turabian Style**

Vitiello, Giuseppe.
2014. "On the Isomorphism between Dissipative Systems, Fractal Self-Similarity and Electrodynamics. Toward an Integrated Vision of Nature" *Systems* 2, no. 2: 203-216.
https://doi.org/10.3390/systems2020203