Multiobjective Distributionally Robust Dominating Set Design for Networked Systems Under Correlated Uncertainty
Abstract
1. Introduction
- We introduce a distributionally robust formulation of the weighted dominating set problem that explicitly accounts for correlated uncertainty through mean–covariance ambiguity sets.
- We model the resulting DRO–WDS problem as a bi-objective approach that allows us to simultaneously capture the deployment cost and risk. This, in turn, enables a systematic exploration of efficiency–robustness trade-offs.
- A detailed computational is conducted and a geometric analysis of the Pareto Frontier is studied, revealing non-supported solutions, structural discontinuities, and regions where small robustness gains require significant cost increases. These features cannot be captured by standard scalarization methods.
2. Related Work
3. Problem Formulation and Mathematical Models
3.1. Notation and Problem Definition
3.2. Distributionally Robust Weighted Dominating Set
3.3. A Feasible Solution to (Distributionally Robust) Weighted Dominating Set
3.4. The Distributionally Robust Weighted Dominating Set Multiobjective Formulation
4. Multiobjective Solution Approaches
4.1. Scalarization-Based Methods
4.2. -Constraint Method
| Algorithm 1 Adaptive -Constraint Method for DRO–WDS |
|
4.3. Methodological Comparison
5. Numerical Experiments
5.1. Experimental Setup and Instance Generation
5.2. Uncertainty and Covariance Structures
5.3. Multiobjective Solution Approaches and Implementation Details
5.4. Pareto-Front Analysis and Discussion for n = 50
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delage, E.; Ye, Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 2010, 58, 595–612. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, X.; Zhang, J.; Yang, H.; Zheng, T. Multi-objective optimization of UAV relay deployment for air-to-ground communications via distributed collaborative beamforming. IEEE Open J. Commun. Soc. 2025, 6, 6437–6450. [Google Scholar] [CrossRef]
- Ren, Y.; Friderikos, V. Pareto optimal task offloading and mobile robots paths in edge cloud assisted mmWave networks. In 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC); IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, H.; Hou, P.; Zhang, H.; Zhao, H.; Zhu, H. Pilot assignment in NOMA-aided cell-free mMIMO systems: A hypergraph coloring scheme. IEEE Wirel. Commun. Lett. 2025, 14, 2079–2083. [Google Scholar] [CrossRef]
- Melo, M.C.D.; Santos, P.B.; Faustino, E.; Bastos-Filho, C.J.A.; Cerqueira Sodré, A. Computational intelligence-based methodology for antenna development. IEEE Access 2022, 10, 1860–1870. [Google Scholar] [CrossRef]
- Xu, S.; Li, R.; Yang, Q. Improved genetic algorithm-based intelligent resource allocation in 5G ultra-dense networks. In 2018 IEEE Wireless Communications and Networking Conference (WCNC); IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Bi, Y.; Meixner, C.C.; Bunyakitanon, M.; Vasilakos, X.; Nejabati, R.; Simeonidou, D. Multi-objective deep reinforcement learning-assisted service function chains placement. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4134–4150. [Google Scholar] [CrossRef]
- Shang, W.; Friderikos, V. The energy-delay Pareto Frontier in cache-enabled integrated access and backhaul mmWave HetNets. In 2022 IEEE International Conference on Communications Workshops (ICC Workshops); IEEE: Piscataway, NJ, USA, 2022; pp. 758–763. [Google Scholar] [CrossRef]
- Cai, X.; Sun, W.; Misir, M.; Tan, K.C.; Li, X.; Xu, T.; Fan, Z. A bi-objective constrained robust gate assignment problem: Formulation, instances and algorithm. IEEE Trans. Cybern. 2021, 51, 4488–4500. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, Y.; Wang, Y.; Gong, D.; Sun, X.; Zeng, B. A multitask multiobjective operation optimization method for coal mine integrated energy system. IEEE Trans. Ind. Inform. 2024, 20, 11149–11160. [Google Scholar] [CrossRef]
- Fukunaga, T. Adaptive algorithm for finding connected dominating sets in uncertain graphs. IEEE/ACM Trans. Netw. 2020, 28, 387–398. [Google Scholar] [CrossRef]
- Pang, L.M.; Ishibuchi, H.; Shang, K. Decomposition-based multi-objective evolutionary algorithm design under two algorithm frameworks. IEEE Access 2020, 8, 163197–163208. [Google Scholar] [CrossRef]
- Sheikh, M.M.; Sreenath, J.G.; Tripathy, P.; Adda, R. Topology-guided network clustering and allocation of edge estimation points for monitoring of distribution networks. IEEE Trans. Smart Grid 2025, 16, 4279–4292. [Google Scholar] [CrossRef]
- Tang, K.; Osaragi, T. Multi-objective distributionally robust optimization for earthquake shelter planning under demand uncertainties. GeoHazards 2024, 5, 1308–1325. [Google Scholar] [CrossRef]
- Benyamina, D.; Hafid, A.; Gendreau, M. Wireless mesh network planning: A multi-objective optimization approach. In 2008 5th International Conference on Broadband Communications, Networks and Systems (BROADNETS); IEEE: Piscataway, NJ, USA, 2008; pp. 602–609. [Google Scholar] [CrossRef]
- Mnif, K.; Rong, B.; Kadoch, M. A distributed approach for computing the minimum connected dominating set in ad hoc networks. In Canadian Conference on Electrical and Computer Engineering (CCECE), 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 2065–2068. [Google Scholar] [CrossRef]
- Ferdous, C.N.; Karimi, L.; Gaur, D.R. Integer programs for contention-aware connected dominating sets in wireless multi-hop networks. In 2022 IEEE Wireless Communications and Networking Conference (WCNC); IEEE: Piscataway, NJ, USA, 2022; pp. 2142–2147. [Google Scholar] [CrossRef]
- Tian, C.; Jiang, H.; Wang, C.; Wu, Z.; Chen, J.; Liu, W. Neither shortest path nor dominating set: Aggregation scheduling by greedy growing tree in multihop wireless sensor networks. IEEE Trans. Veh. Technol. 2011, 60, 3462–3472. [Google Scholar] [CrossRef]
- Mao, Z.; Wang, H.; Dong, C. On calculating channel-based connected dominating sets for efficient broadcast in multi-channel WMNs. In 2016 First IEEE International Conference on Computer Communication and the Internet (ICCCI); IEEE: Piscataway, NJ, USA, 2016; pp. 129–134. [Google Scholar] [CrossRef]
- Adasme, P. Stochastic value-at-risk-based optimization and independent dominating sets for wireless network design. IEEE Access 2025, 13, 203086–203112. [Google Scholar] [CrossRef]
- Wu, W.; Liu, R.; Yang, Q.; Quek, T.Q.S. Robust resource allocation for vehicular communications with imperfect CSI. IEEE Trans. Wirel. Commun. 2021, 20, 5883–5897. [Google Scholar] [CrossRef]
- Sun, J.; Chen, X.; Wang, J.; Cui, H.; Jia, H.; Wu, S. Data-driven distributionally robust optimization for energy-efficient offloading in UAV-satellite edge computing networks. In 2025 International Wireless Communications and Mobile Computing Conference (IWCMC); IEEE: Piscataway, NJ, USA, 2025; pp. 734–739. [Google Scholar] [CrossRef]
- Zhan, M.; Xu, S. Delay-aware distributionally robust trajectory UAV-assisted MEC with uncertain task size. In 2024 IEEE Wireless Communications and Networking Conference (WCNC); IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Lan, X.; Tang, X.; Zhang, R.; Li, B.; Zhai, D.; Lin, W.; Han, Z. Distributionally robust mining for proof-of-work blockchain under resource uncertainties. In 2024 IEEE Wireless Communications and Networking Conference (WCNC); IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Du, P.; Li, B.; Zeng, Q.; Zhai, D.; Zhou, D.; Ran, L. Distributionally robust two-stage energy management for hybrid energy powered cellular networks. IEEE Trans. Veh. Technol. 2020, 69, 12162–12174. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, L.; Cai, K.; Zhu, Y.; Han, Z. RIS-aided ground-aerial NOMA communications: A distributionally robust DRL approach. IEEE J. Sel. Areas Commun. 2022, 40, 1287–1301. [Google Scholar] [CrossRef]
- Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Ehrgott, M. Multicriteria Optimization; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Stewart, R.H.; Palmer, T.S.; DuPont, B. A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers. Prog. Nucl. Energy 2021, 138, 103830. [Google Scholar] [CrossRef]
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization, LLC: Beaverton, OR, USA, 2023; Available online: https://www.gurobi.com (accessed on 15 November 2025).

| Reference | Dominating Set | Uncertainty | DRO | Correlation | Multiobjective | Exact Pareto Frontier Analysis |
|---|---|---|---|---|---|---|
| [2] | ✓ | |||||
| [3] | ✓ | |||||
| [7] | ✓ | |||||
| [8] | ✓ | |||||
| [9] | ✓ | ✓ | ||||
| [11] | ✓ | ✓ | ||||
| [14] | ✓ | ✓ | ✓ | |||
| [15] | ✓ | |||||
| [16] | ✓ | |||||
| [17] | ✓ | |||||
| [18] | ✓ | |||||
| [19] | ✓ | |||||
| [20] | ✓ | ✓ | ||||
| [22] | ✓ | ✓ | ||||
| [23] | ✓ | ✓ | ||||
| [25] | ✓ | ✓ | ||||
| This work | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Scenario | Number of Weighted | Number of -Points |
|---|---|---|
| Rad = 200, Dense | 15 | 57 |
| Rad = 200, Sparse (50%) | 15 | 131 |
| Rad = 200, Diagonal | 15 | 71 |
| Rad = 250, Dense | 15 | 101 |
| Rad = 250, Sparse (50%) | 15 | 239 |
| Rad = 250, Diagonal | 15 | 171 |
| Rad = 300, Dense | 15 | 97 |
| Rad = 300, Sparse (50%) | 15 | 93 |
| Rad = 300, Diagonal | 15 | 93 |
| Scenario | ||||
|---|---|---|---|---|
| Rad = 200, Dense | 2.05 | 3.92 | 19.86 | 21.64 |
| Rad = 200, Sparse (50%) | 2.01 | 4.17 | 8.74 | 9.13 |
| Rad = 200, Diagonal | 2.05 | 3.90 | 1.48 | 1.65 |
| Rad = 250, Dense | 1.66 | 3.97 | 14.71 | 19.76 |
| Rad = 250, Sparse (50%) | 1.68 | 4.41 | 7.39 | 8.57 |
| Rad = 250, Diagonal | 1.69 | 4.63 | 1.19 | 1.49 |
| Rad = 300, Dense | 1.23 | 3.70 | 12.37 | 12.78 |
| Rad = 300, Sparse (50%) | 1.23 | 4.07 | 8.57 | 9.23 |
| Rad = 300, Diagonal | 1.23 | 3.99 | 1.02 | 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Adasme, P.; Dehghan Firoozabadi, A.; Rosa, R.L.; Ugochukwu, M.O.; Zegarra Rodríguez, D. Multiobjective Distributionally Robust Dominating Set Design for Networked Systems Under Correlated Uncertainty. Systems 2026, 14, 174. https://doi.org/10.3390/systems14020174
Adasme P, Dehghan Firoozabadi A, Rosa RL, Ugochukwu MO, Zegarra Rodríguez D. Multiobjective Distributionally Robust Dominating Set Design for Networked Systems Under Correlated Uncertainty. Systems. 2026; 14(2):174. https://doi.org/10.3390/systems14020174
Chicago/Turabian StyleAdasme, Pablo, Ali Dehghan Firoozabadi, Renata Lopes Rosa, Matthew Okwudili Ugochukwu, and Demóstenes Zegarra Rodríguez. 2026. "Multiobjective Distributionally Robust Dominating Set Design for Networked Systems Under Correlated Uncertainty" Systems 14, no. 2: 174. https://doi.org/10.3390/systems14020174
APA StyleAdasme, P., Dehghan Firoozabadi, A., Rosa, R. L., Ugochukwu, M. O., & Zegarra Rodríguez, D. (2026). Multiobjective Distributionally Robust Dominating Set Design for Networked Systems Under Correlated Uncertainty. Systems, 14(2), 174. https://doi.org/10.3390/systems14020174

