Disaster Response Mechanisms for Key Technology Innovation in China’s Emergency Industry Under the New National System
Abstract
1. Introduction
2. Literature Review
3. Theoretical Basis and Research Hypothesis
3.1. The Direct Impact of Natural Disasters on Key Technologies in the Emergency Industry
3.2. Demand Path
3.3. Technology Path
3.4. Education Path
3.5. Spatial Effect
4. Data and Methodology
4.1. Model Setting
4.2. Data and Variables
4.2.1. Dependent Variable: Key Technology Level of the Emergency Industry ()
4.2.2. Primary Explanatory Variable ()
4.2.3. Mediator Variables
4.2.4. Control Variable
5. Empirical Analysis and Results
5.1. Benchmark Regression Analysis
5.2. Analysis of Mediating Effect
5.3. Spatial Econometric Analysis
5.3.1. Spatial Autocorrelation Test
5.3.2. The Results of the Spatial Econometrics
5.3.3. Robustness Test
6. Conclusions and Policy Implications
7. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Ju, Y.; Yang, J.; Ma, J.; Hou, Y. Assessing impacts of emergency industry demonstration on firm profitability: The role of blockchain strategies and technologies. Ind. Manag. Data Syst. 2024, 124, 1582–1606. [Google Scholar] [CrossRef]
- Ding, P.; Ye, S. Research on the development of China’s emergency industry based on system dynamics theory. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 2036–2043. [Google Scholar] [CrossRef]
- Aitsi-Selmi, A.; Murray, V.; Wannous, C.; Dickinson, C.; Johnston, D.; Kawasaki, A.; Stevance, A.-S.; Yeung, T. Reflections on a science and technology agenda for 21st century disaster risk reduction: Based on the scientific content of the 2016 UNISDR science and technology conference on the implementation of the Sendai framework for disaster risk reduction 2015–2030. Int. J. Disaster Risk Sci. 2016, 7, 1–29. [Google Scholar]
- Khan, H.A. China’s Augmented National Innovation System (ANIS) and the Development of the Semiconductors Industry. Chin. Econ. 2024, 57, 170–179. [Google Scholar] [CrossRef]
- Chen, L.; Li, T.; Jia, F.; Schoenherr, T. The impact of governmental COVID-19 measures on manufacturers’ stock market valuations: The role of labor intensity and operational slack. J. Oper. Manag. 2023, 69, 404–425. [Google Scholar] [CrossRef]
- Sun, W.; Bocchini, P.; Davison, B.D. Applications of artificial intelligence for disaster management. Nat. Hazards 2020, 103, 2631–2689. [Google Scholar] [CrossRef]
- de Souza Sierra, I.; Catapan, M.F. Designing for the pandemic: Individual and collective safety devices. Strateg. Des. Res. J. 2021, 14, 264–274. [Google Scholar]
- Rypestøl, J.O.; Martin, R.; Kyllingstad, N. New regional industrial path development and innovation networks in times of economic crisis. Ind. Innov. 2022, 29, 879–898. [Google Scholar] [CrossRef]
- Miao, Q.; Chen, C.; Lu, Y.; Abrigo, M. Natural disasters and financial implications for subnational governments: Evidence from China. Public Finance Rev. 2020, 48, 72–101. [Google Scholar] [CrossRef]
- Zhao, X.X.; Zheng, M.; Fu, Q. How natural disasters affect energy innovation? The perspective of environmental sustainability. Energy Econ. 2022, 109, 105992. [Google Scholar] [CrossRef]
- Khan, K.A.; Zaman, K.; Shoukry, A.M.; Sharkawy, A.; Gani, S.; Ahmad, J.; Sasmoko; Khan, A.; Hishan, S.S. Natural disasters and economic losses: Controlling external migration, energy and environmental resources, water demand, and financial development for global prosperity. Environ. Sci. Pollut. Res. 2019, 26, 14287–14299. [Google Scholar] [CrossRef]
- Oh, C.H. How do natural and man-made disasters affect international trade? A country-level and industry-level analysis. J. Risk Res. 2017, 20, 195–217. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C.C.; Zhou, F. How does fiscal policy uncertainty affect corporate innovation investment? Evidence from China’s new energy industry. Energy Econ. 2022, 105, 105767. [Google Scholar] [CrossRef]
- Lee, W.C.; Law, S.H. Roles of formal institutions and social capital in innovation activities: A cross-country analysis. Glob. Econ. Rev. 2017, 46, 203–231. [Google Scholar] [CrossRef]
- Guo, R.; Chen, Z.; Liu, H.; Dang, Z.; Li, J.; Liu, T. Demand forecast of emergency management talents in China: An empirical study. J. Conting. Crisis Manag. 2024, 32, e12583. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, D.; Shen, G.; Liu, J.; Yang, L. Numerical Simulation of Na-Tech Cascading Disasters in a Large Oil Depot. Int. J. Environ. Res. Public Health 2020, 17, 8620. [Google Scholar] [CrossRef]
- Smithers, J.; Blay-Palmer, A. Technology innovation as a strategy for climate adaptation in agriculture. Appl. Geogr. 2001, 21, 175–197. [Google Scholar] [CrossRef]
- Miao, Q.; Popp, D. Necessity as the mother of invention: Innovative responses to natural disasters. J. Environ. Econ. Manag. 2014, 68, 280–295. [Google Scholar] [CrossRef]
- Wang, H.J.; Tang, K. Extreme climate, innovative ability and energy efficiency. Energy Econ. 2023, 120, 106586. [Google Scholar] [CrossRef]
- Crespo Cuaresma, J.; Hlouskova, J.; Obersteiner, M. Natural disasters as creative destruction? Evidence from developing countries. Econ. Inq. 2008, 46, 214–226. [Google Scholar] [CrossRef]
- Loeys, T.; Moerkerke, B.; De Smet, O.; Buysse, A.; Steen, J.; Vansteelandt, S. Flexible mediation analysis in the presence of nonlinear relations: Beyond the mediation formula. Multivar. Behav. Res. 2013, 48, 871–894. [Google Scholar] [CrossRef]
- Freeman, C. The ‘National System of Innovation’ in historical perspective. Camb. J. Econ. 1995, 19, 5–24. [Google Scholar]
- de Lima Figueiredo, N.; Fernandes, C.I.; Abrantes, J.L. Triple Helix model: Cooperation in knowledge creation. J. Knowl. Econ. 2023, 14, 854–878. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Zhang, H.J.; Yang, D.Y. National innovation systems and the achievement of sustainable development goals: Effect of knowledge-based dynamic capability. J. Innov. Knowl. 2023, 8, 100310. [Google Scholar] [CrossRef]
- Poo, M.M. New focus on basic research in China’s advancement in science and technology. Natl. Sci. Rev. 2022, 9, nwac014. [Google Scholar] [CrossRef]
- Tan, J.; Hu, X.; Hassink, R.; Ni, J. Industrial structure or agency: What affects regional economic resilience? Evidence from resource-based cities in China. Cities 2020, 106, 102906. [Google Scholar] [CrossRef]
- Hu, L. The integration between and common prosperity of government and market: China’s experience of economic development. China Polit. Econ. 2020, 3, 289–302. [Google Scholar] [CrossRef]
- Zheng, K.; Deng, H.; Lyu, K.; Yang, S.; Cao, Y. Market integration, industrial structure, and carbon emissions: Evidence from China. Energies 2022, 15, 9371. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Liu, J. Analysis of the Development in China Emergency Industry and Suggestions. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2013, 1, 93–98. [Google Scholar]
- Guo, K.; Luan, L.; Zhang, D.; Ji, Q. Does climate risk affect the performance of companies in China? Appl. Econ. Lett. 2025, 32, 843–849. [Google Scholar] [CrossRef]
- Ministry of Industry and Information Technology of the People’s Republic of China. Action Plan for the Development of Key Areas in the Emergency Industry (2023–2025); Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2023. Available online: http://www.miit.gov.cn (accessed on 26 September 2023).
- Lin, Y.; Li, L.; Wen, J. Industrial disasters, financial constraints, and innovation: Firm-level evidence from China. Emerg. Mark. Financ. Trade 2024, 60, 1377–1391. [Google Scholar] [CrossRef]
- Peng, S.; Wu, S.B.; Tu, C.Y. On the Technological Innovation Chain’s Structure, Formation and Operation. Appl. Mech. Mater. 2012, 174, 2024–2028. [Google Scholar] [CrossRef]
- Sheng, X.U.; Lu, B.; Yue, Q. Impact of sci-tech finance on the innovation efficiency of China’s marine industry. Mar. Policy 2021, 133, 104708. [Google Scholar] [CrossRef]
- Donahue, A.K.; Joyce, P.G. A framework for analyzing emergency management with an application to federal budgeting. Public Adm. Rev. 2001, 61, 728–740. [Google Scholar] [CrossRef]
- Freebairn, J. Natural disasters and economic policy challenges. Aust. Econ. Pap. 2024, 63, 5–15. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L.; Hou, Y. Emergency Material Reserve Location Research in Urban Areas Based on the Supply and Demand Perspective: A Case from China. J. Comput. Commun. 2022, 10, 29–45. [Google Scholar] [CrossRef]
- Xing, G.; Li, Y.; Bao, H.; Zhang, G.; Li, Z. The Chinese system of government relief supplies: From the perspective of knowledge management. J. Knowl. Manag. 2022, 26, 1306–1318. [Google Scholar] [CrossRef]
- Pisano, G.P. The evolution of science-based business: Innovating how we innovate. Ind. Corp. Change 2010, 19, 465–482. [Google Scholar] [CrossRef]
- Ayres, R.U. Toward a non-linear dynamics of technological progress. J. Econ. Behav. Organ. 1994, 24, 35–69. [Google Scholar] [CrossRef]
- Zhou, D.; Chu, J. The carbon emission reduction effect of the digital economy from the perspective of biased technological progress. J. Environ. Manag. 2025, 373, 123857. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, X.; Qian, D.; Lyu, J. Strategic perspective of leveraging new generation information technology to enable modernization of emergency management. Bull. Chin. Acad. Sci. (Chin. Ver.) 2022, 37, 1727–1737. [Google Scholar] [CrossRef]
- Tsipoulanidis, A.; Nanos, I. Contemporary potentials and challenges of digital logistics and supply chain management. Int. J. Innov. Technol. Manag. 2022, 19, 2241003. [Google Scholar] [CrossRef]
- AlHinai, Y.S. Disaster management digitally transformed: Exploring the impact and key determinants from the UK national disaster management experience. Int. J. Disaster Risk Reduct. 2020, 51, 101851. [Google Scholar] [CrossRef]
- Li, R.; Di, Y.; Tian, H. Computer-aided resilience: Advanced techniques for disaster management in smart urban environments. Sustain. Cities Soc. 2024, 108, 105437. [Google Scholar] [CrossRef]
- Madhavaram, S.; Matos, V.; Blake, B.A.; Appan, R. ICTs in the context of disaster management, stakeholders, and implications. Journal of Information. J. Inf. Commun. Ethics Soc. 2017, 15, 32–52. [Google Scholar] [CrossRef]
- Saeedi, R.; Aghamohammadi, H.; Alesheikh, A.A.; Vafaeinejad, A. Smart emergency services using geographical information system and Internet of Things. Iran. J. Remote Sens. GIS 2024, 16, 159–178. [Google Scholar]
- Nath, N.D.; Cheng, C.S.; Behzadan, A.H. Drone mapping of damage information in GPS-Denied disaster sites. Adv. Eng. Inform. 2022, 51, 101450. [Google Scholar] [CrossRef]
- Pari, P.; Abbasi, T.; Abbasi, S.A. AI-based prediction of the improvement in air quality induced by emergency measures. J. Environ. Manag. 2024, 351, 119716. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z. Development strategies for higher education institutions based on the cultivation of core competitiveness. Int. J. Emerg. Technol. Learn. 2021, 16, 163–176. [Google Scholar] [CrossRef]
- Kenary, J. Supporting the Emergency Management Pipeline: How Institutions of Higher Education can Increase the Emergency Management Career Goal for Students to Enhance Disaster Preparedness and Response Globally. Prehosp. Disaster Med. 2023, 38, s153. [Google Scholar] [CrossRef]
- Liu, L.; Jing, Y. Policy Indications of International Experience for China’s Emergency Response Mechanism Construction. Am. J. Ind. Bus. Manag. 2021, 11, 887–904. [Google Scholar] [CrossRef]
- Paul, J.D.; Bee, E.; Budimir, M. Mobile phone technologies for disaster risk reduction. Clim. Risk Manag. 2021, 32, 100296. [Google Scholar] [CrossRef]
- Liu, C.L.; Liu, X.J. Urban innovation and entrepreneurship vitality and core technologies of emerging industries:Spatial polarization, scale threshold and mediating effect. Chin. Soft Sci. 2024, 38, 212–224. [Google Scholar]
- Bellstam, G.; Bhagat, S.; Cookson, J.A. A text-based analysis of corporate innovation. Manag. Sci. 2021, 67, 4004–4031. [Google Scholar] [CrossRef]
- Joo, H.; Choi, W.; Jeon, C. Selection of representative indicators for flood risk assessment using marginal entropy and mutual information. J. Flood Risk Manag. 2024, 17, e12976. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Liu, S. Structural robustness of China’s UAV enterprise operation network: A national and provincial analysis based on business homogeneity. Front. Phys. 2025, 13, 1651460. [Google Scholar] [CrossRef]
- Dryden, T. Evaluating Interprofessional Education in Disaster Management. Prehosp. Disaster Med. 2009, 24, s120–s121. [Google Scholar]
- Lu, X.X.; Wang, S.S. Why does China’s Economy Remain Resilient under Adverse Shocks? An Empirical Study Based on the Efficiency of Institutional Adaptability. J. Financ. Econ. 2023, 49, 4–18. [Google Scholar]
- Song, Y.; Yuan, C.H.; Zhang, S.M. How to break through key core technologies for leading equipment manufacturing companies. Stud. Sci. Sci. 2024, 40, 420–432. [Google Scholar]
- Liu, M.; Shan, Y.; Li, Y. Heterogeneous Partners, R&D cooperation and corporate innovation capability: Evidence from Chinese manufacturing firms. Technol. Soc. 2023, 72, 102183. [Google Scholar]
Key Words | Frequency | Key Words | Frequency | Key Words | Frequency |
---|---|---|---|---|---|
Forewarning | 0.01512 | Man-machine | 0.00461 | Communication | 0.00339 |
Celerity | 0.00878 | Security and protection | 0.00457 | Space | 0.00318 |
Merge | 0.00823 | Prediction | 0.00435 | Synergy | 0.00315 |
Cloud | 0.00757 | Urgency | 0.00431 | Detection | 0.00308 |
Evaluating | 0.00538 | Operation | 0.00414 | Dynamic | 0.00293 |
Green | 0.00532 | Satellite | 0.00412 | Automation | 0.00292 |
Platform | 0.00512 | Decision-making | 0.00402 | Intelligence | 0.00292 |
Digitization | 0.00494 | Network | 0.00375 | Infrastructure | 0.00284 |
Transducer | 0.00484 | Modularization | 0.00361 | Real-time | 0.00283 |
Monitor | 0.00467 | internet | 0.00352 | Rescue | 0.00276 |
Types of Variables | Variables | Observations | Max | Min | Average | SD |
---|---|---|---|---|---|---|
dependent variable | 713 | 0.82 | 0.05 | 0.31 | 0.18 | |
Core variable | 713 | 7865 | 0 | 111.74 | 316.05 | |
Mediator variable | 713 | 399.863 | 0.548 | 16.45 | 20.54 | |
713 | 32,269 | 5 | 2228.2 | 4453.27 | ||
713 | 86 | 1 | 11.16 | 13.9 | ||
Control variable | 713 | 0.95 | 0.002 | 0.12 | 0.12 | |
713 | 0.95 | 0.11 | 0.55 | 0.20 | ||
713 | 0.47 | 0.03 | 0.24 | 0.1 | ||
713 | 190,313 | 1018 | 30,206.77 | 30,821.96 | ||
713 | 12,372 | 5 | 831.36 | 1383.65 | ||
713 | 11,042 | 2 | 1038.38 | 1485.47 | ||
713 | 1 | 0.001 | 0.09 | 0.21 | ||
713 | 461 | 1 | 31.68 | 38.35 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | Model 9 |
---|---|---|---|---|---|---|---|---|---|
−0.096 *** (0.008) | −0.097 *** (0.01) | −0.032 *** (0.009) | −0.031 *** (0.009) | −0.401 *** (0.016) | −0.063 *** (.015) | −0.076 *** (0.025) | −0.015 *** (0.004) | −0.227 *** (0.007) | |
0.048 (0.061) | 0.078 *** (0.174) | 0.105 *** (0.019) | 0.113 *** (0.021) | 0.075 *** (0.018) | 0.093 *** (0.018) | 0.015 ** (0.008) | 0.013 * (0.008) | ||
1.133 *** (0.063) | 1.124 *** (0.063) | 1.001 *** (0.051) | 0.41 *** (0.161) | 0.135 (0.155) | 0.931 *** (0.042) | 0.784 *** (0.971) | |||
0.055 *** (0.031) | 0.061 *** (0.03) | 0.062 ** (0.028) | 0.072 *** (0.026) | 0.036 *** (0.012) | 0.032 *** (0.012) | ||||
0.023 (0.015) | 0.053 *** (0.019) | 0.093 *** (0.018) | 0.002 (0.005) | 0.009 * (0.005) | |||||
0.177 *** (0.037) | 0.181 *** (0.032) | 0.046 *** (0.01) | 0.036 *** (0.012) | ||||||
0.078 *** (0.024) | 0.059 *** (0.006) | 0.068 *** (0.007) | |||||||
0.304 *** (0.007) | 0.296 *** (0.009) | ||||||||
0.041 *** (0.012) | |||||||||
Intercept | −0.612 * (0.033) | −0.073 * (0.047) | −0.192 *** (0.009) | −0.205 *** (0.01) | −0.13 *** (0.05) | −0.718 *** (0.127) | −0.691 *** (0.129) | −0.317 *** (0.033) | −0.359 *** (0.051) |
Fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
71.93% | 71.93% | 92.01% | 92.06% | 92.16% | 92.91% | 98.8% | 98.8% | 98.85% | |
Observations | 713 | 713 | 713 | 713 | 713 | 713 | 713 | 713 | 713 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
0.111 *** (0.006) | ||||||
0.032 *** (0.007) | ||||||
0.050 *** (0.008) | ||||||
0.724 *** (0.055) | −0.002 * (0.002) | 1.277 *** (0.082) | −0.019 *** (0.006) | 0.655 *** (0.056) | −0.017 *** (0.005) | |
Control variable | Yes | Yes | Yes | Yes | Yes | Yes |
Fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
94.98% | 99.37% | 90.05% | 99.75% | 98.88% | 98.94% | |
Observations | 713 | 713 | 713 | 713 | 713 | 713 |
Sobel | −0.014 *** (0.001) | −0.003 *** (0.001) | −0.002 *** (0.001) | |||
Mediating effect | Partial mediating | Partial mediating | Partial mediating | |||
Bootstrap | Significance of the indirect effect | Significance of the indirect effect | Significance of the indirect effect |
Model Specification | AIC | BIC |
---|---|---|
First-order Lag Model | 1250.36 | 1295.82 |
Second-order Lag Model | 1268.91 | 1315.44 |
Third-order Lag Model | 1285.77 | 1334.52 |
Variables | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 0.038 *** | 0.9088 *** | 0.058 *** | 0.1758 *** | 0.18 *** | 0.298 *** | 0.0968 *** | 0.2968 *** | −0.106 | −0.281 |
2001 | 0.1358 *** | 0.9128 *** | 0.0418 *** | 0.1938 *** | 0.0998 *** | 0.3128 *** | 0.0888 *** | 0.2978 *** | 0.0958 *** | −0.2938 *** |
2002 | 0.1518 *** | 0.924 | 0.0478 *** | 0.1978 *** | 0.1058 *** | 0.2628 *** | 0.0868 *** | 0.2598 *** | 0.109 | −0.2558 *** |
2003 | 0.154 *** | 0.945 *** | 0.013 *** | 0.206 *** | 0.096 *** | 0.285 *** | 0.048 *** | 0.294 *** | 0.096 *** | −0.276 *** |
2004 | 0.141 *** | 0.968 *** | 0.037 *** | 0.209 *** | 0.103 *** | 0.293 *** | 0.083 *** | 0.306 *** | 0.099 *** | −0.268 *** |
2005 | 0.136 *** | 0.979 *** | 0.05 *** | 0.224 *** | 0.097 *** | 0.267 *** | 0.084 *** | 0.22 *** | −0.098 *** | −0.28 *** |
2006 | 0.147 | 0.98 *** | 0.076 *** | 0.247 *** | 0.107 *** | 0.285 *** | 0.106 *** | 0.27 *** | 0.098 *** | −0.297 *** |
2007 | 0.151 *** | 0.981 *** | 0.065 *** | 0.227 *** | 0.097 *** | 0.27 *** | 0.094 *** | 0.263 *** | 0.084 *** | −0.263 |
2008 | 0.163 *** | 0.983 *** | 0.076 *** | 0.235 *** | 0.1 *** | 0.293 *** | 0.098 *** | 0.286 *** | 0.084 *** | −0.305 |
2009 | 0.139 *** | 0.992 *** | 0.033 *** | 0.23 *** | 0.088 *** | 0.279 *** | 0.061 *** | 0.292 *** | −0.077 *** | −0.264 |
2010 | 0.147 *** | 0.988 *** | 0.032 *** | 0.243 *** | 0.083 *** | 0.288 *** | 0.066 *** | 0.293 *** | 0.068 *** | −0.273 |
2011 | 0.151 *** | 0.989 *** | 0.048 *** | 0.245 *** | 0.089 *** | 0.289 *** | 0.072 *** | 0.277 *** | 0.072 *** | −0.26 |
2012 | 0.168 *** | 0.992 *** | 0.062 *** | 0.253 *** | 0.083 *** | 0.279 *** | 0.077 *** | 0.258 *** | −0.071 *** | −0.265 *** |
2013 | 0.167 *** | 0.996 *** | 0.055 *** | 0.267 *** | 0.083 *** | 0.289 *** | 0.069 *** | 0.263 *** | 0.074 *** | −0.268 *** |
2014 | 0.178 *** | 0.992 *** | 0.043 *** | 0.271 *** | 0.079 *** | 0.299 *** | 0.063 *** | 0.299 *** | 0.075 *** | −0.29 *** |
2015 | 0.181 *** | 0.995 *** | 0.044 *** | 0.27 *** | 0.074 *** | 0.278 *** | 0.061 *** | 0.268 *** | −0.069 *** | −0.279 *** |
2016 | 0.164 *** | 0.986 *** | 0.083 *** | 0.256 *** | 0.093 *** | 0.253 *** | 0.086 *** | 0.253 *** | −0.086 *** | −0.251 |
2017 | 0.177 *** | 0.999 *** | 0.069 *** | 0.236 *** | 0.077 *** | 0.272 *** | 0.073 *** | 0.258 *** | −0.073 *** | −0.257 *** |
2018 | 0.177 *** | 1 *** | 0.05 *** | 0.272 *** | 0.043 * | 0.304 *** | 0.047 *** | 0.304 *** | −0.051 | −0.291 *** |
2019 | 0.181 *** | 1.002 *** | 0.091 *** | 0.246 *** | 0.069 *** | 0.28 *** | 0.078 *** | 0.27 *** | −0.091 *** | −0.253 * |
2020 | 0.169 *** | 1.005 *** | 0.063 *** | 0.266 *** | 0.052 *** | 0.297 *** | 0.067 *** | 0.293 *** | −0.066 *** | −0.284 *** |
2021 | 0.177 *** | 1.009 *** | 0.094 *** | 0.275 *** | 0.055 *** | 0.323 *** | 0.078 *** | 0.303 *** | −0.082 *** | −0.313 *** |
2022 | 0.187 *** | 1.011 *** | 0.09 *** | 0.288 *** | 0.047 *** | 0.281 *** | 0.07 *** | 0.286 *** | −0.077 *** | −0.285 *** |
Method | ||
---|---|---|
LM-lag | 44.25 *** | 64.48 *** |
R-LM-lag | 10.39 *** | 20.6 *** |
LM-error | 35.29 *** | 22.06 *** |
R-LM-error | 10.78 *** | 13.41 *** |
Wald-lag | 11.25 *** | 0.38 |
LR-lag | 17.21 *** | 17.38 *** |
Wald-error | 6.54 *** | 1.15 |
LR-error | 27.35 *** | 13.83 *** |
Variables | Benchmark Model | Mediator Variable | ||||||
---|---|---|---|---|---|---|---|---|
−0.016 ** (0.006) | 0.15 *** 0.056 | −0.002 ** (0.005) | 0.628 *** (0.162) | −0.012 * (0.007) | 0.092 * (0.059) | −0.013 ** (0.005) | ||
0.004 * (0.002) | 0.103 *** (0.043) | 0.005 * (0.009) | 0.045 * (0.062) | 0.004 ** (0.002) | 0.124 *** (0.047) | 0.004 ** (0.002) | ||
— | — | 0.119 *** (0.018) | — | 0.026 ** (0.008) | — | 0.037 *** (0.013) | ||
— | — | 0.018 *** (0.032) | — | 0.016 *** (0.012) | — | 0.018 * (0.01) | ||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Direct effect | −0.016 *** (0.007) | 0.192 *** (0.059) | 0.005 *** (0.005) | 0.676 *** (0.155) | −0.013 ** (0.006) | 0.133 ** (0.063) | −0.013 *** (0.005) | |
— | — | 0.118 *** (0.015) | — | 0.026 ** (0.008) | — | 0.038 *** (0.013) | ||
Indirect effect | 0.001 * (0.003) | 0.460 *** (0.097) | −0.002 * 0.01 | 0.6 *** (0.096) | 0.002 (0.003) | 0.45 *** (0.107) | 0.002 (0.002) | |
— | — | 0.021 *** (0.025) | — | 0.022 * (0.012) | — | 0.029 * (0.016) | ||
95.92% | 97.12% | 99.37% | 98.73% | 99.76% | 91.72% | 98.21% | ||
Observation | 713 | 713 | 713 | 713 | 713 | 713 | 713 |
Variables | Benchmark Model | Mediator Variable | ||||||
---|---|---|---|---|---|---|---|---|
−0.016 ** (0.007) | 0.086 *** (0.034) | −0.002 * (0.002) | 0.542 *** (0.148) | −0.012 * (0.007) | 0.024 * (0.036) | −0.013 ** (0.006) | ||
0.024 ** (0.01) | 0.287 *** (0.079) | 0.02 ** (0.007) | 0.315 ** (0.15) | 0.029 ** (0.011) | 0.299 *** (0.083) | 0.031 *** (0.002) | ||
— | — | 0.108 *** (0.009) | — | 0.029 ** (0.007) | — | 0.037 *** (0.013) | ||
— | — | 0.015 *** (0.024) | — | 0.05 * (0.3) | — | 0.021 * (0.015) | ||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Fixed effects | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Direct effect | −0.015 ** (0.007) | 0.104 *** (0.033) | −0.001 * 0.001 | 0.561 *** (0.145) | −0.012 * (0.006) | 0.042 ** (0.036) | −0.012 *** (0.006) | |
— | — | 0.109 ***(0.009) | — | 0.03 *** (0.007) | — | 0.036 *** (0.011) | ||
Indirect effect | 0.027 * (0.018) | 0.74 *** (0.123) | 0.024 ** 0.011 | 0.95 *** (0.161) | 0.039 * (0.021) | 0.741 *** (0.132) | 0.042 * (0.023) | |
— | — | 0.048 *** (0.044) | — | 0.086 * (0.045) | — | 0.051 * (0.044) | ||
98.46% | 78.69% | 97.33% | 78.1% | 95.95% | 74.6% | 96.02% | ||
Observations | 713 | 713 | 713 | 713 | 713 | 713 | 713 |
Model Form | Benchmark Model | Mediator Variable | Direct Effect | Indirect Effect | ||||
---|---|---|---|---|---|---|---|---|
Disaster coefficient | −0.013 ** (0.046) | −0.013 ** (0.088) | 0.318 *** (0.132) | 0.692 *** (0.096) | −0.015 ** (0.006) | −0.009 ** (0.007) | 0.001 (0.005) | 0.013 * (0.029) |
Control variables | Yes | Yes | Yes | Yes | ||||
Fixed effects | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Chen, H.; Wu, L.; Mao, W. Disaster Response Mechanisms for Key Technology Innovation in China’s Emergency Industry Under the New National System. Systems 2025, 13, 803. https://doi.org/10.3390/systems13090803
Yu G, Chen H, Wu L, Mao W. Disaster Response Mechanisms for Key Technology Innovation in China’s Emergency Industry Under the New National System. Systems. 2025; 13(9):803. https://doi.org/10.3390/systems13090803
Chicago/Turabian StyleYu, Guanyi, Heng Chen, Lei Wu, and Wenjun Mao. 2025. "Disaster Response Mechanisms for Key Technology Innovation in China’s Emergency Industry Under the New National System" Systems 13, no. 9: 803. https://doi.org/10.3390/systems13090803
APA StyleYu, G., Chen, H., Wu, L., & Mao, W. (2025). Disaster Response Mechanisms for Key Technology Innovation in China’s Emergency Industry Under the New National System. Systems, 13(9), 803. https://doi.org/10.3390/systems13090803