The Dark Side of the Carbon Emissions Trading System and Digital Transformation: Corporate Carbon Washing
Abstract
1. Introduction
2. Literature Review
2.1. Influencing Factors of Greenwashing
2.2. The Economic Effects of Carbon Emissions Trading Policy
2.3. Environmental Effects of Digital Transformation
3. Theoretical Framework and Research Hypotheses
3.1. Background of the Carbon Emissions Trading Policy
3.2. Carbon Emissions Trading System and Carbon Washing
3.3. Corporate Digital Transformation and Carbon Washing
3.4. Theoretical Analysis Framework Diagram
4. Research Design
4.1. Sample Selection and Data Sources
4.2. Model Specification and Variable Measurement
5. Empirical Results
5.1. Descriptive Statistics of Main Variables
5.2. DID Regression Results
5.3. Moderating Variable Regression Results
5.4. Parallel Trend Test
5.5. Placebo Test
5.6. Robustness Tests
5.6.1. Entropy Balance Method
5.6.2. Replacement of the Explained Variable
5.6.3. Inclusion of Higher-Order Interaction Term “Industry × Year”
5.6.4. Excluding the Impact of the COVID-19 Pandemic
5.6.5. Firm Fixed Effect
5.6.6. Heterogeneous Treatment Effect Tests
5.7. Policy Uniqueness Test
6. Mechanism Analysis and Economic Consequence Analysis
6.1. Mechanism Analysis
6.2. Economic Consequence Analysis
7. Further Analysis: The Moderating Effects of Government Environmental Subsidies, Media Supervision, and Public Environmental Concern
8. Conclusions and Recommendations
9. Constraints and Scope for Further Study
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | China Greenwashing Watchlist (2023–2024). Available online: https://weibo.com/ttarticle/p/show?id=2309405065176218206566 (accessed on 30 April 2025). |
References
- Desai, R. Determinants of corporate carbon disclosure: A step towards sustainability reporting. Borsa Istanb. Rev. 2022, 22, 886–896. [Google Scholar] [CrossRef]
- Grauel, J.; Gotthardt, D. The relevance of national contexts for carbon disclosure decisions of stock-listed companies: A multilevel analysis. J. Clean. Prod. 2016, 133, 1204–1217. [Google Scholar] [CrossRef]
- Marquis, C.; Toffel, M.W.; Zhou, Y. Scrutiny, Norms, and Selective Disclosure: A Global Study of Greenwashing. Organ. Sci. 2016, 27, 483–504. [Google Scholar] [CrossRef]
- Yang, Z.; Nguyen, T.T.H.; Nguyen, H.N.; Nguyen, T.T.N.; Cao, T.T. Greenwashing Behaviours: Causes, Taxonomy and Consequences Based on a Systematic Literature Review. J. Bus. Econ. Manag. 2020, 21, 1486–1507. [Google Scholar] [CrossRef]
- Yu, E.P.-y.; Luu, B.V.; Chen, C.H. Greenwashing in environmental, social and governance disclosures. Res. Int. Bus. Financ. 2020, 52, 101192. [Google Scholar] [CrossRef]
- Jin, X.; Zuo, C.; Fang, M.; Li, T.; Nie, H. Measurement Problem of Enterprise Digital Transformation: New Methods and Findings Based on Large Language Models. Econ. Res. 2024, 59, 34–53. [Google Scholar]
- Lu, Z.; Lin, Y.; Li, Y. Does corporate engagement in digital transformation influence greenwashing? Evidence from China. Financ. Res. Lett. 2023, 58, 104558. [Google Scholar] [CrossRef]
- Sarkis, J.; Kouhizadeh, M.; Zhu, Q.S. Digitalization and the greening of supply chains. Ind. Manag. Data Syst. 2020, 121, 65–85. [Google Scholar] [CrossRef]
- Jia, F.; Du, K.; Chen, L.; Lim, M.K.; Cheng, Y. The Side Effects of Corporate Digitalization on Corporate Social Responsibility: A Fraud Triangle Perspective. Br. J. Manag. 2025, 36, 1360–1373. [Google Scholar] [CrossRef]
- Son, B.-G.; Kim, H.; Hur, D.; Subramanian, N. The dark side of supply chain digitalisation: Supplier-perceived digital capability asymmetry, buyer opportunism and governance. Int. J. Oper. Prod. Manag. 2021, 41, 1220–1247. [Google Scholar] [CrossRef]
- Delmas, M.A.; Burbano, V.C. The Drivers of Greenwashing. Calif. Manag. Rev. 2011, 54, 64–87. [Google Scholar] [CrossRef]
- Cao, J.; Huang, Z.; Shahid, A.U. Fostering environmental integrity via investor-focused communications: Private in-house meeting disclosures and greenwashing behaviors. J. Econ. Behav. Organ. 2025, 232, 106946. [Google Scholar] [CrossRef]
- Bilicka, K.; Casi, E.; Seregni, C.; Stage, B.M.B. Tax Strategy Disclosure: A Greenwashing Mandate? J. Account. Res. 2025. [Google Scholar] [CrossRef]
- Zhang, D. Green financial system regulation shock and greenwashing behaviors: Evidence from Chinese firms. Energy Econ. 2022, 111, 106064. [Google Scholar] [CrossRef]
- Zhang, G. Regulatory-driven corporate greenwashing: Evidence from “low-carbon city” pilot policy in China. Pac.-Basin Financ. J. 2023, 78, 101951. [Google Scholar] [CrossRef]
- Hu, S.; Wang, A.; Du, K. Environmental tax reform and greenwashing: Evidence from Chinese listed companies. Energy Econ. 2023, 124, 106873. [Google Scholar] [CrossRef]
- Wang, J.; Ke, Y.; Sun, L.; Liu, H. Speculative culture and corporate greenwashing: Evidence from China. Int. Rev. Financ. Anal. 2024, 95, 103447. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, Y.; Vigne, S.A. Does family culture hamper corporate deceptive green behavior decision-making? J. Econ. Behav. Organ. 2024, 228, 106812. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, L.; Johan, S.; Zhao, L. FinTech Adoption and Corporate Greenwashing: A Technology Affordance Perspective. Br. J. Manag. 2024, 36, 978–1002. [Google Scholar] [CrossRef]
- Hao, X.; Miao, E.; Wen, S.; Wu, H.; Xue, Y. Executive Green Cognition on Corporate Greenwashing Behavior: Evidence From A-Share Listed Companies in China. Bus. Strategy Environ. 2024, 34, 2012–2034. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Woodward, R.T.; Zhang, Y.-J. Has Carbon Emissions Trading Reduced PM2.5 in China? Environ. Sci. Technol. 2021, 55, 6631–6643. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhang, W.; Liu, D. Does carbon emission trading system induce enterprises’ green innovation? J. Asian Econ. 2023, 86, 101597. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Chen, F. Do carbon emission trading schemes stimulate green innovation in enterprises? Evidence from China. Technol. Forecast. Soc. Change 2021, 168, 120744. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, S.; Zhou, C. Does the pilot emissions trading system in China promote innovation? Evidence based on green technology innovation in the energy sector. Energy Econ. 2023, 126, 106984. [Google Scholar] [CrossRef]
- Ni, X.; Jin, Q.; Huang, K. Environmental regulation and the cost of debt: Evidence from the carbon emission trading system pilot in China. Financ. Res. Lett. 2022, 49, 103134. [Google Scholar] [CrossRef]
- Long, W.; Qu, X.; Yin, S. How does carbon emissions trading policy affect accrued earnings management in corporations? Evidence from China. Financ. Res. Lett. 2023, 55, 103840. [Google Scholar] [CrossRef]
- Song, M.; Zheng, H.; Shen, Z. Whether the carbon emissions trading system improves energy efficiency–Empirical testing based on China’s provincial panel data. Energy 2023, 275, 127465. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y. How does carbon emission price stimulate enterprises’ total factor productivity? Insights from China’s emission trading scheme pilots. Energy Econ. 2022, 109, 105990. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, L.; Ren, Y.; Yao, Y. Effects of carbon emission trading system on corporate green total factor productivity: Does environmental regulation play a role of green blessing? Environ. Res. 2024, 248, 118295. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Zhang, Y.; Li, B.; Chen, Z.; Ni, G.; Lyu, N. How does carbon emission trading scheme affect enterprise market value? A roadmap towards natural resources sustainability. Resour. Policy 2024, 88, 104542. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Guo, F. Digital transformation and environmental performance: Evidence from Chinese resource-based enterprises. Corp. Soc. Responsib. Environ. Manag. 2023, 30, 1816–1840. [Google Scholar] [CrossRef]
- Bendig, D.; Schulz, C.; Theis, L.; Raff, S. Digital orientation and environmental performance in times of technological change. Technol. Forecast. Soc. Change 2023, 188, 122272. [Google Scholar] [CrossRef]
- Yu, C.; Xiang, L.; Hanli, H.; Guangyu, W.; Shouyang, W. How Does Digitalization Promote Green Transformation in Manufacturing Enterprises?—An Exploratory Case Study from the Perspective of Resource Orchestration Theory. Manag. World 2023, 39, 96–112+126+113. [Google Scholar]
- Zhang, K.; Ahmed, B.; Wang, R.; Gu, B. The Influence of Internal Governance and External Legitimacy on Greenwashing: A Digitalization Perspective. Environ. Dev. Sustain. 2023, 27, 4881–4909. [Google Scholar] [CrossRef]
- Xu, T.; Sun, Y.; He, W. Government digitalization and corporate greenwashing. J. Clean. Prod. 2024, 452, 142015. [Google Scholar] [CrossRef]
- Jun, H.; Qi, F.; Wenbin, L. Carbon Emission Regulation, Corporate Emission Reduction Incentives, and Total Factor Productivity: A Natural Experiment Based on China’s Emissions Trading Scheme. Econ. Res. J. 2023, 58, 77–94. [Google Scholar]
- Suchman, M.C. Managing Legitimacy: Strategic and Institutional Approaches. Acad. Manag. Rev. 1995, 20, 571–610. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The Iron Cage Revisited: Institutional Isomorphism and Collective Rationality in Organizational Fields. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef]
- Meyer, J.W.; Rowan, B. Institutionalized Organizations: Formal Structure as Myth and Ceremony. Am. J. Sociol. 1977, 83, 340–363. [Google Scholar] [CrossRef]
- Neu, D.; Warsame, H.; Pedwell, K. Managing Public Impressions: Environmental Disclosures in Annual Reports. Account. Organ. Soc. 1998, 23, 265–282. [Google Scholar] [CrossRef]
- Kurpierz, J.R.; Smith, K. The greenwashing triangle: Adapting tools from fraud to improve CSR reporting. Sustain. Account. Manag. Policy J. 2020, 11, 1075–1093. [Google Scholar] [CrossRef]
- Duchin, R.A.N.; Gao, J.; Xu, Q. Sustainability or Greenwashing: Evidence from the Asset Market for Industrial Pollution. J. Financ. 2024, 80, 699–754. [Google Scholar] [CrossRef]
- Dayuan, L.; Xiaolin, J.; Linna, X. A Review and Prospect of Research on Corporate Greenwashing Behavior. Foreign Econ. Manag. 2015, 37, 86–96. [Google Scholar]
- Liu, Z.; Zhang, N. The productivity effect of digital financial reporting. Rev. Account. Stud. 2023, 29, 2350–2390. [Google Scholar] [CrossRef]
- Gangqiang, Y.; Haisen, W.; Ziyang, Y.; Gang, L. Customer Digital Transformation, Supplier Carbon Emission Reduction, and Carbon Disclosure Catering. China Ind. Econ. 2024, 99–117. [Google Scholar] [CrossRef]
- Zhu, B.; Zhao, Y. Carbon risk and the cost of bank loans: Evidence from China. Technol. Forecast. Soc. Change 2022, 180, 121741. [Google Scholar] [CrossRef]
- Cao, J.; Huang, Z.; Kristanto, A.B. Brightening the Dark Side of Environmental Regulation: Evidence from Green Revenues and Greenwashing Behaviors. J. Int. Account. Res. 2025, 1–34. Available online: https://publications.aaahq.org/ (accessed on 30 April 2025). [CrossRef]
- Qing-feng, C. Driving Effects of National New Zone on Regional Economic Growth—Evidence from 70 Cities of China. China Ind. Econ. 2020, 7, 43–60. [Google Scholar]
- Hainmueller, J. Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies. Political Anal. 2012, 20, 25–46. [Google Scholar] [CrossRef]
- Goodman-Bacon, A.A. Difference-in-differences with variation in treatment timing. J. Econom. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Borusyak, K.; Jaravel, X.; Spiess, J. Revisiting Event-Study Designs: Robust and Efficient Estimation. Rev. Econ. Stud. 2024, 91, 3253–3285. [Google Scholar] [CrossRef]
- Li, W. Why Does Government Environmental Protection Subsidy Induce Deviate Behavior of Green Governance?—From the Perspective of Resource Dependence Theory. Account. Res. 2024, 138–149. Available online: http://www.asc.net.cn/ (accessed on 30 April 2025).
- Clarkson, P.M.; Li, Y.; Richardson, G.D.; Vasvari, F.P. Revisiting the relation between environmental performance and environmental disclosure: An empirical analysis. Account. Organ. Soc. 2008, 33, 303–327. [Google Scholar] [CrossRef]
- Jiang, W. Negative Media Coverage, Impression Management and Strategic Environmental Governance. Account. Res. 2023, 11, 150–162. [Google Scholar]
- Jiang, W.; Gao, Z.; Choi, D.; Karolyi, A. Attention to Global Warming. Rev. Financ. Stud. 2020, 33, 1112–1145. [Google Scholar]
- Lin, B.; Zhang, Q. Corporate environmental responsibility in polluting firms: Does digital transformation matter? Corp. Soc. Responsib. Environ. Manag. 2023, 30, 2234–2246. [Google Scholar] [CrossRef]
Variable Type | Variable Symbol | Variable Name | Variable Definition |
---|---|---|---|
Dependent Variable | CW | Carbon washing | The gap between reported carbon disclosure and actual reduction performance is converted into a dimensionless standardized variable. |
Independent Variable | ETS | Carbon dioxide emissions trading system | If the firm is part of the treatment group and within the pilot policy implementation period, the value is 1; otherwise, it is 0. |
Control Variables | Age | Firm age | There are no zero values for firm age in the sample; therefore, the natural logarithm of firm age is used. Firm age (observation year minus IPO year). |
ROA | Corporate profitability | Net earnings/mean total assets | |
Lev | Enterprise asset-liability ratio | Total liabilities/total assets | |
BS | Board size | Since the number of board members in the sample is never zero, the natural logarithm of the number of board members is used. | |
Ind | Proportion of independent directors | Independent-to-total director ratio | |
SOE | Nature of ownership of the enterprise | State-owned enterprises are coded as 1, and non-state-owned enterprises are coded as 0 | |
Cap | Capital expenditure | Cash paid for acquisition of property, plant and equipment, intangible assets, and other long-term assets/total assets at end of period | |
Reg | Government environmental regulation | Ratio of investment in industrial pollution control to GDP | |
Moderating Variable | DT | Corporate digital transformation | Machine learning is used to analyze the annual report texts of Chinese listed companies to determine whether the company has adopted digital technologies; if yes, the value is 1, otherwise, it is 0. |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | N | Mean | sd | Min | p50 | Max |
CW | 10,870 | 0.277 | 1.061 | −1.400 | 0.077 | 3.888 |
SOE | 10,870 | 0.423 | 0.494 | 0.000 | 0.000 | 1.000 |
Age | 10,870 | 2.175 | 0.735 | 0.693 | 2.303 | 3.258 |
Lev | 10,870 | 0.423 | 0.191 | 0.048 | 0.419 | 0.928 |
BS | 10,870 | 2.145 | 0.200 | 1.609 | 2.197 | 2.708 |
Ind | 10,870 | 0.375 | 0.054 | 0.333 | 0.333 | 0.571 |
ROA | 10,870 | 0.037 | 0.061 | −0.224 | 0.034 | 0.221 |
Cap | 10,870 | 0.053 | 0.044 | 0.002 | 0.041 | 0.218 |
Reg | 10,870 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 |
DT | 10,267 | 0.633 | 0.482 | 0.000 | 1.000 | 1.000 |
(1) | (2) | |
---|---|---|
Variables | CW | CW |
ETS | 0.522 *** | 0.409 *** |
(4.85) | (4.13) | |
Age | 0.095 *** | |
(3.02) | ||
Lev | 0.670 *** | |
(5.93) | ||
BS | 0.793 *** | |
(6.45) | ||
Ind | 1.400 *** | |
(3.74) | ||
ROA | 1.968 *** | |
(8.01) | ||
SOE | 0.188 *** | |
(3.65) | ||
Cap | 1.098 *** | |
(2.72) | ||
Reg | −17.441 | |
(−0.33) | ||
Constant | 0.255 *** | −2.656 *** |
(12.29) | (−7.33) | |
Observations | 10,870 | 10,870 |
R-squared | 0.155 | 0.214 |
Industry FE | YES | YES |
Year FE | YES | YES |
(1) | |
---|---|
Variables | CW |
ETS | 0.160 ** |
(2.08) | |
ETS × DT | 0.250 ** |
(2.04) | |
DT | 0.175 *** |
(5.76) | |
Age | 0.117 *** |
(3.78) | |
Lev | 0.648 *** |
(5.62) | |
BS | 0.808 *** |
(6.49) | |
Ind | 1.271 *** |
(3.41) | |
ROA | 1.849 *** |
(7.25) | |
SOE | 0.177 *** |
(3.46) | |
Cap | 1.053 *** |
(2.58) | |
Reg | −24.165 |
(−0.47) | |
Constant | −2.776 *** |
(−7.55) | |
Observations | 10,261 |
R-squared | 0.219 |
Industry FE | YES |
Year FE | YES |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Variables | Entropy Balance | Replacement of the Explained Variable 1 | Replacement of the Explained Variable 2 | Industry FE × Year FE | Excluding the Impact of COVID-19 | Firm Fixed Effect | Difference-in-Differences Imputation Regression |
ETS | 0.272 *** | 0.054 *** | 0.415 *** | 0.405 *** | 0.431 *** | 0.137 * | 0.402 *** |
(3.02) | (4.15) | (3.98) | (4.00) | (4.17) | (1.87) | (4.25) | |
Age | 0.159 ** | 0.013 *** | 0.072 ** | 0.098 *** | 0.085 *** | 0.031 | 0.084 *** |
(2.03) | (3.18) | (2.21) | (3.09) | (2.64) | (0.61) | (2.67) | |
Lev | 0.744 *** | 0.077 *** | 0.464 *** | 0.707 *** | 0.644 *** | 0.085 | 0.681 *** |
(3.07) | (5.41) | (3.92) | (6.12) | (5.57) | (0.88) | (5.94) | |
BS | 0.918 *** | 0.100 *** | 0.801 *** | 0.797 *** | 0.793 *** | 0.147 | 0.774 *** |
(3.50) | (6.44) | (6.36) | (6.40) | (6.24) | (1.28) | (6.26) | |
Ind | 1.065 * | 0.167 *** | 1.219 *** | 1.404 *** | 1.318 *** | 0.000 | 1.423 *** |
(1.67) | (3.51) | (3.06) | (3.74) | (3.45) | (0.00) | (3.69) | |
ROA | 2.202 *** | 0.208 *** | 0.220 | 1.905 *** | 1.952 *** | 0.768 *** | 1.952 *** |
(3.97) | (6.87) | (0.77) | (7.57) | (7.66) | (4.25) | (7.81) | |
SOE | 0.403 *** | 0.024 *** | 0.187 *** | 0.179 *** | 0.208 *** | 0.038 | 0.174 *** |
(2.90) | (3.72) | (3.54) | (3.44) | (3.93) | (0.57) | (3.42) | |
Cap | 0.729 | 0.142 *** | 0.968 ** | 1.148 *** | 1.097 *** | 0.406 * | 1.126 *** |
(0.67) | (2.84) | (2.22) | (2.76) | (2.60) | (1.68) | (2.81) | |
Reg | 145.728 | −1.772 | −76.181 | −17.853 | −15.205 | 91.724 ** | −13.317 |
(0.50) | (−0.27) | (−1.39) | (−0.33) | (−0.29) | (2.08) | (−0.25) | |
Constant | −3.003 *** | −0.603 *** | −2.370 *** | −2.687 *** | −2.615 *** | −0.250 | |
(−4.21) | (−13.22) | (−6.35) | (−7.33) | (−7.03) | (−0.69) | ||
Observations | 10,870 | 10,870 | 10,870 | 10,858 | 9707 | 10,870 | 10,870 |
R-squared | 0.253 | 0.256 | 0.189 | 0.238 | 0.212 | 0.693 | |
Industry FE | YES | YES | YES | YES | YES | YES | |
Year FE | YES | YES | YES | YES | YES | YES | YES |
Firm FE | YES | ||||||
Industry FE × Year FE | YES |
DD Comparison | Weight | Avg DD Est |
---|---|---|
Earlier T vs. Later C | 0.412 | 0.550 |
Later T vs. Earlier C | 0.005 | 0.556 |
T vs. Never treated | 0.583 | 0.521 |
(1) | (2) | (3) | |
---|---|---|---|
Variables | Exclusion of Other Policy Interference: Carbon City | Exclusion of Other Policy Interference: Tax | Exclusion of Other Policy Interference: Finance |
ETS | 0.403 *** | 0.410 *** | 0.410 *** |
(4.05) | (4.14) | (4.14) | |
Age | 0.095 *** | 0.094 *** | 0.095 *** |
(3.03) | (3.00) | (3.02) | |
Lev | 0.670 *** | 0.679 *** | 0.682 *** |
(5.93) | (6.01) | (6.03) | |
BS | 0.795 *** | 0.790 *** | 0.791 *** |
(6.46) | (6.43) | (6.43) | |
Ind | 1.395 *** | 1.392 *** | 1.392 *** |
(3.73) | (3.72) | (3.73) | |
ROA | 1.963 *** | 1.935 *** | 1.931 *** |
(8.01) | (7.86) | (7.87) | |
SOE | 0.188 *** | 0.187 *** | 0.186 *** |
(3.65) | (3.62) | (3.61) | |
Cap | 1.097 *** | 1.100 *** | 1.112 *** |
(2.72) | (2.73) | (2.76) | |
Reg | −3.423 | −15.002 | −15.362 |
(−0.06) | (−0.29) | (−0.29) | |
Carbon City | 0.029 | ||
(0.71) | |||
Tax | 0.121 *** | ||
(2.65) | |||
Finance | 0.154 *** | ||
(3.47) | |||
Constant | −2.684 *** | −2.664 *** | −2.685 *** |
(−7.30) | (−7.36) | (−7.41) | |
Observations | 10,870 | 10,870 | 10,870 |
R-squared | 0.214 | 0.214 | 0.215 |
Industry FE | YES | YES | YES |
Year FE | YES | YES | YES |
(1) | (2) | |
---|---|---|
Variables | PC | CW |
ETS | 0.024 ** | 0.398 *** |
(2.37) | (3.98) | |
PC | 0.707 *** | |
(4.30) | ||
BS | 0.057 *** | 0.793 *** |
(4.35) | (6.46) | |
Ind | 0.012 | 1.443 *** |
(0.28) | (3.88) | |
ROA | −0.943 *** | 2.525 *** |
(−23.94) | (9.43) | |
Cap | 0.010 | 1.003 ** |
(0.23) | (2.49) | |
Reg | 8.673 | −24.461 |
(1.29) | (−0.47) | |
Growth | 0.011 ** | |
(2.56) | ||
CFO | −0.113 *** | |
(−3.65) | ||
Age | 0.079 ** | |
(2.51) | ||
Lev | 0.583 *** | |
(5.04) | ||
SOE | 0.158 *** | |
(3.08) | ||
Constant | 0.639 *** | −3.119 *** |
(16.45) | (−8.45) | |
Observations | 10,870 | 10,870 |
R-squared | 0.503 | 0.219 |
Industry FE | YES | YES |
Year FE | YES | YES |
(1) | |
---|---|
Variables | WACC |
CW | −0.048 *** |
(−4.35) | |
Lev | −1.945 *** |
(−29.12) | |
ROA | −0.427 ** |
(−2.21) | |
Growth | 0.001 |
(0.56) | |
CFO | −0.189 |
(−1.25) | |
Cap | 0.270 |
(1.13) | |
Reg | −20.882 |
(−0.74) | |
SOE | −0.018 |
(−0.64) | |
Age | −0.072 *** |
(−3.72) | |
BS | −0.195 *** |
(−2.90) | |
Ind | −0.673 *** |
(−2.96) | |
Constant | 7.645 *** |
(37.47) | |
Observations | 10,675 |
R−squared | 0.598 |
Industry FE | YES |
Year FE | YES |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | CW | CW | CW | CW |
ETS | 0.438 *** | 0.526 *** | 0.535 *** | 0.230 |
(4.19) | (4.15) | (4.89) | (1.03) | |
ETS × GES1 | −1.210 ** | |||
(−2.26) | ||||
GES1 | 0.170 | |||
(1.04) | ||||
ETS × GES2 | −0.024 ** | |||
(−2.54) | ||||
GES2 | 0.008 *** | |||
(3.03) | ||||
ETS × Media | −0.310 ** | |||
(−2.10) | ||||
Media | 0.103 *** | |||
(4.15) | ||||
ETS × EPSVI | 0.001 | |||
(0.63) | ||||
EPSVI | 0.002 *** | |||
(3.13) | ||||
Age | 0.094 *** | 0.092 *** | 0.098 *** | 0.106 *** |
(3.01) | (2.96) | (3.11) | (3.37) | |
Lev | 0.670 *** | 0.646 *** | 0.663 *** | 0.658 *** |
(5.93) | (5.73) | (5.88) | (5.83) | |
BS | 0.793 *** | 0.781 *** | 0.788 *** | 0.813 *** |
(6.45) | (6.37) | (6.38) | (6.64) | |
Ind | 1.398 *** | 1.384 *** | 1.389 *** | 1.415 *** |
(3.73) | (3.69) | (3.71) | (3.81) | |
ROA | 1.977 *** | 1.949 *** | 1.913 *** | 1.927 *** |
(8.04) | (7.95) | (7.74) | (7.79) | |
SOE | 0.187 *** | 0.182 *** | 0.183 *** | 0.175 *** |
(3.63) | (3.52) | (3.54) | (3.41) | |
Cap | 1.097 *** | 1.082 *** | 1.088 *** | 1.137 *** |
(2.73) | (2.69) | (2.69) | (2.84) | |
Reg | −16.562 | −20.842 | −21.708 | 63.243 |
(−0.32) | (−0.40) | (−0.41) | (1.15) | |
Constant | −2.661 *** | −2.645 *** | −2.672 *** | −2.865 *** |
(−7.34) | (−7.33) | (−7.34) | (−7.79) | |
Observations | 10,870 | 10,869 | 10,779 | 10,815 |
R-squared | 0.214 | 0.216 | 0.215 | 0.217 |
Industry FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lyu, C. The Dark Side of the Carbon Emissions Trading System and Digital Transformation: Corporate Carbon Washing. Systems 2025, 13, 619. https://doi.org/10.3390/systems13080619
Wang Y, Lyu C. The Dark Side of the Carbon Emissions Trading System and Digital Transformation: Corporate Carbon Washing. Systems. 2025; 13(8):619. https://doi.org/10.3390/systems13080619
Chicago/Turabian StyleWang, Yuxuan, and Chan Lyu. 2025. "The Dark Side of the Carbon Emissions Trading System and Digital Transformation: Corporate Carbon Washing" Systems 13, no. 8: 619. https://doi.org/10.3390/systems13080619
APA StyleWang, Y., & Lyu, C. (2025). The Dark Side of the Carbon Emissions Trading System and Digital Transformation: Corporate Carbon Washing. Systems, 13(8), 619. https://doi.org/10.3390/systems13080619