Data Elements Marketization and Corporate Investment Efficiency: Causal Inference via Double Machine Learning
Abstract
1. Introduction
2. Theoretical Model and Research Hypothesis
3. Methodology
3.1. Model Specification
3.2. Variable Selection
3.2.1. Dependent Variable: Corporate Investment Efficiency
3.2.2. Dependent Variable: Data Element Marketization
3.2.3. Control Variables
3.3. Sample Selection and Data Sources
4. Empirical Results and Analysis
4.1. Benchmark Regression
4.2. Endogenous Test
4.3. Robustness Check
4.3.1. Change the Measurement Method of Investment Efficiency
4.3.2. Explanatory Variable Lag by One Period
4.3.3. Changing the Assumptions of the Double Machine Learning Model
4.3.4. Parallel Trends Test
5. Further Study
5.1. Mechanism Analysis
5.1.1. Information Dispersion
5.1.2. Risk-Bearing Capacity
5.1.3. Operational Efficiency
5.2. Heterogeneity Test
5.2.1. Industry Heterogeneity
5.2.2. Firm Growth Potential Heterogeneity
5.2.3. Digital Infrastructure Heterogeneity
5.2.4. Investment Inefficiency Heterogeneity
6. Conclusions and Insights
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grover, V.; Chiang, R.H.; Liang, T.P.; Zhang, D. Creating strategic business value from big data analytics: A research framework. J. Manag. Inf. Syst. 2018, 35, 388–423. [Google Scholar] [CrossRef]
- DalleMule, L.; Davenport, T.H. What’s your data strategy. Harv. Bus. Rev. 2017, 95, 112–121. [Google Scholar]
- Jones, C.I.; Tonetti, C. Nonrivalry and the Economics of Data. Am. Econ. Rev. 2020, 110, 2819–2858. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Ma, C. Chinese innovation-driving factors: Regional structure, innovation effect, and economic development—Empirical research based on panel data. Ann. Reg. Sci. 2017, 59, 43–68. [Google Scholar] [CrossRef]
- Wang, D.; Liao, H.; Liu, A.; Li, D. Natural resource saving effects of data factor marketization: Implications for green recovery. Resour. Policy 2023, 85, 104019. [Google Scholar] [CrossRef]
- Wang, D.; Yang, T. Research on the Promotion Effect of the Marketization of Data Elements on the Digital Transformation of Manufacturing Enterprises: An Empirical Evaluation of a Multiperiod DID Model. Sustainability 2025, 17, 3199. [Google Scholar] [CrossRef]
- National Data Administration; Cyberspace Administration of China; Ministry of Industry and Information Technology; Ministry of Public Security; State-owned Assets Supervision and Administration Commission of the State Council. Opinions on Promoting the Development and Utilization of Enterprise Data Resources (Guoshu Ziyuan [2024] No. 125); Gov.cn. Available online: https://www.gov.cn/zhengce/zhengceku/202412/content_6994570.htm (accessed on 30 May 2025).
- Sala, R.; Pirola, F.; Pezzotta, G.; Cavalieri, S. Data-driven decision making in maintenance service delivery process: A case study. Appl. Sci. 2022, 12, 7395. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Huang, Z.; Wang, Y. Big data application and corporate investment decisions: Evidence from A-share listed companies in China. Int. Rev. Financ. Anal. 2024, 94, 103331. [Google Scholar] [CrossRef]
- Huang, H.; Qi, B.; Chen, L. Innovation and high-quality development of enterprises—Also on the effect of innovation driving the transformation of China’s economic development model. Sustainability 2022, 14, 8440. [Google Scholar] [CrossRef]
- Wang, W.; Xiao, D. Marketization of Data Elements and Enterprise Green Governance Performance: A Quasi-Natural Experiment Based on Data Trading Platforms. Manag. Decis. Econ. 2025, 46, 1686–1700. [Google Scholar] [CrossRef]
- Yang, B. Data element marketization and energy efficiency of heavy polluting enterprises: A technology innovation perspective. J. Environ. Manag. 2025, 391, 126318. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Hu, M. The impact of data elements marketization on corporate financing constraints: Quasi-experimental evidence from the establishment of data trading platforms in China. Financ. Res. Lett. 2024, 69, 106132. [Google Scholar] [CrossRef]
- Wang, P.; Cen, C. Does digital economy development promote innovation efficiency? A spatial econometric approach for Chinese regions. Technol. Anal. Strateg. Manag. 2024, 36, 931–945. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, X.; Yang, L.; Jiang, G. Unleashing the power of data element markets: Driving urban green growth through marketization, innovation, and digital finance. Int. Rev. Econ. Financ. 2025, 99, 104070. [Google Scholar] [CrossRef]
- Peng, H.; Wang, L. Digital economy and business investment efficiency: Inhibiting or facilitating. Res. Int. Bus. Financ. 2022, 63, 101797. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, T.; Zhong, X. Digital innovation, investment efficiency and total factor productivity: Evidence from enterprise digital patents. Appl. Econ. 2024, 56, 8183–8197. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, C.; Wei, Q. Digital technology adoption and enterprise investment efficiency. Financ. Res. Lett. 2025, 72, 106623. [Google Scholar] [CrossRef]
- Lv, P.; Xiong, H. Can FinTech improve corporate investment efficiency? Evidence from China. Res. Int. Bus. Financ. 2022, 60, 101571. [Google Scholar] [CrossRef]
- Xu, C.; Jin, L. Effects of government digitalization on firm investment efficiency: Evidence from China. Int. Rev. Econ. Financ. 2024, 92, 819–834. [Google Scholar] [CrossRef]
- Tsai, H.J.S.; Wu, Y.; Xu, B. Does capital market drive corporate investment efficiency? Evidence from equity lending supply. J. Corp. Financ. 2021, 69, 102042. [Google Scholar] [CrossRef]
- Abbas, A.E.; Agahari, W.; Van de Ven, M.; Zuiderwijk, A.; De Reuver, M. Business data sharing through data marketplaces: A systematic literature review. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3321–3339. [Google Scholar] [CrossRef]
- Eichler, R.; Gröger, C.; Hoos, E.; Schwarz, H.; Mitschang, B. From data asset to data product–the role of the data provider in the enterprise data marketplace. In Service-Oriented Computing, Proceedings of the Symposium and Summer School on Service-Oriented Computing, Cham, Switzerland, 4–8 July 2022; Springer: Cham, Switzerland, 2022; pp. 119–138. [Google Scholar]
- Ren, S. Optimization of Enterprise Financial Management and Decision-Making Systems Based on Big Data. J. Math. 2022, 2022, 1708506. [Google Scholar] [CrossRef]
- Liu, Y.; He, Q. Digital transformation, external financing, and enterprise resource allocation efficiency. Manag. Decis. Econ. 2024, 45, 2321–2335. [Google Scholar] [CrossRef]
- Nuccio, M.; Guerzoni, M. Big data: Hell or heaven? Digital platforms and market power in the data-driven economy. Compet. Change 2019, 23, 312–328. [Google Scholar] [CrossRef]
- Xu, J.; Hong, N.; Xu, Z.; Zhao, Z.; Wu, C.; Kuang, K.; Shum, H. Data-driven learning for data rights, data pricing, and privacy computing. Engineering 2023, 25, 66–76. [Google Scholar] [CrossRef]
- Popovič, A.; Hackney, R.; Coelho, P.S.; Jaklič, J. Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decis. Support Syst. 2012, 54, 729–739. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Stratopoulos, T.C.; Wang, V.X. Estimating the duration of competitive advantage from emerging technology adoption. Int. J. Account. Inf. Syst. 2022, 47, 100577. [Google Scholar] [CrossRef]
- Scala, N.M.; Rajgopal, J.; Vargas, L.G.; Needy, K.L. Group decision making with dispersion in the analytic hierarchy process. Group Decis. Negot. 2016, 25, 355–372. [Google Scholar] [CrossRef]
- Minciu, M.; Berar, F.A.; Dobrea, R.C. New decision systems in the VUCA world. Manag. Mark. 2020, 15, 236–254. [Google Scholar] [CrossRef]
- Jia, N.; Rai, A.; Xu, S.X. Reducing capital market anomaly: The role of information technology using an information uncertainty lens. Manag. Sci. 2020, 66, 979–1001. [Google Scholar] [CrossRef]
- Chang, C.Y. Risk-bearing capacity as a new dimension to the analysis of project governance. Int. J. Proj. Manag. 2015, 33, 1195–1205. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.F.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef]
- Reggi, L.; Dawes, S. Open government data ecosystems: Linking transparency for innovation with transparency for partici-pation and accountability. In Electronic Government, Proceedings of the 15th IFIP WG 8.5 International Conference on Electronic Government (EGOV 2016), Guimarães, Portugal, 5–8 September 2016; Springer: Cham, Switzerland, 2016; pp. 74–86. [Google Scholar]
- Elsayed, M.; Wickramainghe, A.; Razik, M.A. The association between strategic cost management and enterprise risk management: A critical literature review. Corp. Ownersh. Control 2011, 9, 184–195. [Google Scholar] [CrossRef]
- Riipa, M.B.; Begum, N.; Hriday, M.S.H.; Haque, S.A. Role of data analytics in enhancing business decision-making and operational efficiency. Int. J. Commun. Netw. Inf. Secur. 2025, 17, 400–412. [Google Scholar]
- Zhou, J. Empowering Internal Control: A Case Study in Leveraging Data and Technologies. J. Account. Ethics Public Policy 2024, 25, 26. [Google Scholar] [CrossRef]
- Yu, W.; Chavez, R.; Jacobs, M.A.; Feng, M. Data-driven supply chain capabilities and performance: A resource-based view. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 371–385. [Google Scholar] [CrossRef]
- Olayinka, O.H. Big data integration and real-time analytics for enhancing operational efficiency and market responsiveness. Int. J. Sci. Res. Arch. 2021, 4, 280–296. [Google Scholar] [CrossRef]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, C1–C68. Available online: https://academic.oup.com/ectj/article-abstract/21/1/C1/5056401 (accessed on 30 May 2025). [CrossRef]
- Richardson, S. Over-investment of free cash flow. Rev. Account. Stud. 2006, 11, 159–189. [Google Scholar] [CrossRef]
- Thomas, L.D.; Leiponen, A. Big data commercialization. IEEE Eng. Manag. Rev. 2016, 44, 74–90. [Google Scholar] [CrossRef]
- He, J.; Xu, S.; Wang, B.; Chan, K.C. Learn from peers? The impact of peer firms’ analyst earnings forecasts on a focal firm’s corporate investment efficiency. Int. Rev. Financ. Anal. 2023, 89, 102750. [Google Scholar] [CrossRef]
- Gong, M.; Zeng, Y.; Zhang, F. New infrastructure, optimization of resource allocation and upgrading of industrial structure. Financ. Res. Lett. 2023, 54, 103754. [Google Scholar] [CrossRef]
- Biddle, G.C.; Hilary, G.; Verdi, R.S. How does financial reporting quality relate to investment efficiency? J. Account. Econ. 2009, 48, 112–131. [Google Scholar] [CrossRef]
- Ali, A.; Liu, M.; Xu, D.; Yao, T. Corporate disclosure, analyst forecast dispersion, and stock returns. J. Account. Audit. Financ. 2019, 34, 54–73. [Google Scholar] [CrossRef]
- Wang, H.C.; Li, X.C.; Li, H.T. Digital innovation and enterprise investment efficiency: Evidence based on patent text analysis. Kuaiji Yanjiu (Account. Res.) 2023, 7, 55–71. Available online: https://kns.cnki.net/kcms2/article/abstract?v=qAFzQoAYOgTobQHmD69RWMVysk351AmTsMWzoDbQB0u_fpnor-zweXaqQMWREVojnL0SiE0X2ku49jJXsqRacPFYOj2sgkyapcvbzW_dJoLBBIhYlI_tsxMQ0YFEi_MSPP_Bb2vCNpeu_ZditrJD7PdyW_qvY9zPg_rdidNAljtobB33-RzQcQ==&uniplatform=NZKPT&language=CHS (accessed on 30 May 2025).
- Xu, Z. Can the participation of party organizations in corporate governance enhance the risk-bearing capacity of listed companies? Int. Rev. Econ. Financ. 2025, 101, 104129. [Google Scholar] [CrossRef]
- Obeidat, M.I.S.; AlMOMANI, M.A.; Almomani, T.M.; Darkel, N.M.A.M.Y. The moderating impact of major shareholding of equity on operational performance efficiency and firm value relationship: The evidence of the manufacturing listed firms at ASE. Wseas Trans. Bus. Econ. 2023, 20, 1408–1421. [Google Scholar] [CrossRef]
Variable Name | Symbol | Variable Definition |
---|---|---|
Corporate Investment Efficiency | Inv | Regression Residual |
Data element Marketization | Data | Whether a Data Trading Platform Was Established in the City in the Given Year |
Firm Size | Size | Natural Logarithm of Total Assets |
Tobin’s Q | Tobinq | Tobin’s Q |
Financial Leverage | Lev | Total Liabilities/Total Assets |
Profitability | Roa | Return on Assets |
Book-to-Market Ratio | Btm | Book Value of Equity/Market Value of the Firm |
Cash Turnover | Cet | Operating Revenue/Average Cash Balance |
Ownership Concentration | Stock | Shareholding Ratio of the Largest Shareholder |
CEO Duality | Cp | Dummy Variable: 1 if CEO and Chairman Are the Same Person, 0 Otherwise |
Proportion of Independent Directors | Idr | Number of Independent Directors/Total Number of Board Members |
Regional Economic Development Level | Agdp | Natural Logarithm of Regional GDP per Capita |
Variable | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
Inv | 25,477 | 37.408 | 43.156 | 0.400 | 258.222 |
Data | 25,477 | 0.308 | 0.462 | 0.000 | 1.000 |
Size | 25,477 | 22.363 | 1.296 | 20.170 | 26.410 |
Tobinq | 25,477 | 1.998 | 1.180 | 0.832 | 7.315 |
Lev | 25,477 | 0.426 | 0.192 | 0.061 | 0.839 |
Roa | 25,477 | 0.040 | 0.055 | −0.179 | 0.199 |
Btm | 25,477 | 0.339 | 0.153 | 0.074 | 0.797 |
Cet | 25,477 | 6.765 | 7.730 | 0.405 | 48.243 |
Stock | 25,477 | 34.280 | 14.836 | 8.259 | 73.984 |
Cp | 25,477 | 0.268 | 0.443 | 0.000 | 1.000 |
Idr | 25,477 | 37.510 | 5.228 | 33.330 | 57.140 |
Agdp | 25,477 | 11.460 | 0.561 | 9.744 | 12.208 |
(1) | (2) | |
---|---|---|
Inv | Inv | |
Data | −2.520 *** (0.807) | −2.488 *** (0.810) |
First-Order Control Variables | Yes | Yes |
Second-Order Control Variables | No | Yes |
Year FE | Yes | Yes |
Firm FE | Yes | Yes |
N | 25,477 | 25,477 |
(1) | (2) | |
---|---|---|
2SLS Data | 2SLS Inv | |
Data | −7.507 ** (3.818) | |
Off | −2.620 *** (0.065) | |
Control Variables | Yes | Yes |
Year FE | Yes | Yes |
Firm FE | Yes | Yes |
N | 20,762 | 20,762 |
Change the Measurement Method of Investment Efficiency | Explanatory Variable Lag by One Period | |
---|---|---|
(1) | (2) | |
Inv | Inv | |
Data | −4.071 *** (0.922) | −3.149 *** (0.894) |
Control Variables | Yes | Yes |
Year FE | Yes | Yes |
Firm FE | Yes | Yes |
N | 21,497 | 21,497 |
Change K | Change ML Algorithms | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Machine Learning Algorithms | K = 3 | K = 8 | RF | SVM |
Inv | Inv | Inv | Inv | |
Data | −2.448 *** (0.804) | −2.635 *** (0.810) | −5.348 ** (2.160) | −4.091 *** (0.607) |
Control Variables | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Firm FE | Yes | Yes | Yes | Yes |
N | 25,477 | 25,477 | 25,477 | 25,477 |
(1) | (2) | (3) | |
---|---|---|---|
Information Dispersion | Risk-Bearing Capacity | Operational Efficiency | |
Data | −0.606 ** (0.304) | −0.019 *** (0.005) | 0.014 ** (0.006) |
Control Variables | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
Firm FE | Yes | Yes | Yes |
N | 12,251 | 19,395 | 25,143 |
Industry | Firm Growth Potential | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Non-High-Tech Industry | High-Tech Industry | Low Growth Potential | High Growth Potential | |
Data | −0.324 (1.496) | −3.201 *** (0.968) | −1.587 (1.039) | −3.233 ** (1.251) |
Control Variables | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Firm FE | Yes | Yes | Yes | Yes |
N | 8558 | 16,919 | 12,739 | 12,738 |
Digital Infrastructure | Investment Inefficiency | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Low-Level Digital Infrastructure | High-Level Digital Infrastructure | Under-Investing Firms | Over-Investing Firms | |
Data | −2.362 (1.856) | −1.921 * (1.109) | −0.941 (0.811) | −4.018 ** (1.582) |
Control Variables | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Firm FE | Yes | Yes | Yes | Yes |
N | 11,092 | 14,385 | 15,214 | 10,263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Li, Z.; He, L. Data Elements Marketization and Corporate Investment Efficiency: Causal Inference via Double Machine Learning. Systems 2025, 13, 609. https://doi.org/10.3390/systems13070609
Ma Y, Li Z, He L. Data Elements Marketization and Corporate Investment Efficiency: Causal Inference via Double Machine Learning. Systems. 2025; 13(7):609. https://doi.org/10.3390/systems13070609
Chicago/Turabian StyleMa, Yeteng, Zhuo Li, and Li He. 2025. "Data Elements Marketization and Corporate Investment Efficiency: Causal Inference via Double Machine Learning" Systems 13, no. 7: 609. https://doi.org/10.3390/systems13070609
APA StyleMa, Y., Li, Z., & He, L. (2025). Data Elements Marketization and Corporate Investment Efficiency: Causal Inference via Double Machine Learning. Systems, 13(7), 609. https://doi.org/10.3390/systems13070609