A Systems Approach to Carbon Emission Networks and Spatial Spillovers in China: Evidence from 31 Provinces Using the Spatial Durbin Model and Social Network Analysis
Abstract
:1. Introduction
2. Theoretical Process and Research Hypotheses
2.1. Carbon Emission
2.2. Theory and Hypothesis of Carbon Emission Influencing Factors and Spatial Effects
2.3. Innovation of This Study
3. Methodology
3.1. Moran Index
3.2. Spatial Metrology Algorithm
3.3. Social Network Analysis
3.4. Variables and Data
4. Empirical Analysis
4.1. Spatial Autocorrelation Analysis
4.1.1. Spatial Distribution Map
4.1.2. Spatial Autocorrelation
4.1.3. U-Test
4.2. Results of SDM
4.2.1. LM, LR, and Wald Tests
4.2.2. Results of Regression
4.2.3. Robustness Test
4.3. Result of Social Network Analysis
5. Conclusions and Systemic Policy Implications
5.1. Conclusions
- (1)
- Spatial spillovers and system coupling
- (2)
- Green innovation as a nonlinear system input
- (3)
- Emission networks and structural asymmetries
5.2. Systemic Policy Implications
5.3. Future Research Directions and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Liu, S.; Shao, X.; He, Y. Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China’s carbon emissions trading policy. Renew. Sustain. Energy Rev. 2022, 153, 111779. [Google Scholar] [CrossRef]
- Sun, H.; Edziah, B.K.; Sun, C.; Kporsu, A.K. Institutional quality, green innovation and energy efficiency. Energy Policy 2019, 135, 111002. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y. Environmental regulation and green innovation: Evidence from China’s carbon emissions trading policy. Financ. Res. Lett. 2022, 48, 103051. [Google Scholar] [CrossRef]
- Yu, Z.; Khan, S.A.R.; Ponce, P.; de Sousa Jabbour, A.B.L.; Jabbour, C.J.C. Factors affecting carbon emissions in emerging economies in the context of a green recovery: Implications for sustainable development goals. Technol. Forecast. Soc. Change 2022, 176, 121417. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, J.; Yang, T.; Ding, T. Spatial and temporal evolution characteristics and spillover effects of China’s regional carbon emissions. J. Environ. Manag. 2023, 325, 116423. [Google Scholar] [CrossRef]
- Semieniuk, G.; Campiglio, E.; Mercure, J.F.; Volz, U.; Edwards, N.R. Low-carbon transition risks for finance. Wiley Interdiscip. Rev. Clim. Change 2021, 12, e678. [Google Scholar] [CrossRef]
- Hanna, R.; Heptonstall, P.; Gross, R. Job creation in a low carbon transition to renewables and energy efficiency: A review of international evidence. Sustain. Sci. 2024, 19, 125–150. [Google Scholar] [CrossRef]
- Daumas, L. Financial stability, stranded assets and the low-carbon transition—A critical review of the theoretical and applied literatures. J. Econ. Surv. 2024, 38, 601–716. [Google Scholar] [CrossRef]
- Huang, C.; Gan, X.; Wan, Y.; Jin, L.; Teng, J.; Li, Z. China contributed to low-carbon development: Carbon emission increased but carbon intensity decreased. Front. Ecol. Evol. 2024, 12, 1338742. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, C.; Wang, H.; Zhang, F.; Li, Z. Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China. Renew. Sustain. Energy Rev. 2024, 189, 113955. [Google Scholar] [CrossRef]
- Zhang, F.; Deng, X.; Phillips, F.; Fang, C.; Wang, C. Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China. Technol. Forecast. Soc. Change 2020, 154, 119949. [Google Scholar] [CrossRef]
- Zhou, X.; Ji, J. A multi-objective optimization approach for interprovincial carbon emission reduction in China: Considering industrial structure and ownership attributes. J. Environ. Manag. 2025, 373, 123646. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Bu, S. Evaluation and mitigation of carbon emissions in energy industry. Renew. Sustain. Energy Rev. 2025, 212, 115329. [Google Scholar] [CrossRef]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Gao, J.; Hua, G.; Huo, B. Turning “green” into “gold”: A study on the impact of green finance pilot zone policy on energy carbon emission efficiency. Sustain. Dev. 2025, 33, 129–143. [Google Scholar] [CrossRef]
- Li, Z.Z.; Li, R.Y.M.; Malik, M.Y.; Murshed, M.; Khan, Z.; Umar, M. Determinants of carbon emission in China: How good is green investment? Sustain. Prod. Consum. 2021, 27, 392–401. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, S.; Han, J.; Tan, Z.; Mu, S.; Jiayi, W. The carbon emission reduction effect of renewable resource utilization: From the perspective of green innovation. Atmos. Pollut. Res. 2024, 15, 102121. [Google Scholar] [CrossRef]
- He, M.; Sun, Y.; Han, B. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. 2022, 134, e202112835. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Y.; Han, M. Impact of carbon emission price and natural resources development on the green economic recovery: Fresh insights from China. Resour. Policy 2023, 81, 103255. [Google Scholar] [CrossRef]
- Chen, Q.; Tsai, S.-B.; Zhai, Y.; Zhou, J.; Yu, J.; Chang, L.-C.; Li, G.; Zheng, Y.; Wang, J. An empirical study on low-carbon: Human capital performance evaluation. Int. J. Environ. Res. Public Health 2018, 15, 62. [Google Scholar] [CrossRef]
- Faeni, D.P.; Oktaviani, R.F.; Riyadh, H.A.; Faeni, R.P.; Beshr, B.A.H. Green Human Resource Management (GHRM) and Corporate Social Responsibility (CSR) in Reducing Carbon Emissions for Sustainable Practices. Environ. Qual. Manag. 2025, 34, e70048. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, E. Voluntary disclosure of carbon emissions and sustainable existence of firms: With a focus on human capital of internal control system. Sustainability 2021, 13, 9955. [Google Scholar] [CrossRef]
- Andhella, S.; Djajadikerta, H.; Marjuka, M.Y. Behavioral Change Supporting Human Resource Management for Achieving Carbon Emission Reduction. Qual.-Access Success 2024, 25, 237. [Google Scholar]
- Xu, L.; Fan, M.; Yang, L.; Shao, S. Heterogeneous green innovations and carbon emission performance: Evidence at China’s city level. Energy Econ. 2021, 99, 105269. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management—An exploratory literature review. R&D Manag. 2012, 42, 180–192. [Google Scholar]
- Zhao, Z.; Zhao, Y.; Shi, X.; Zheng, L.; Fan, S.; Zuo, S. Green innovation and carbon emission performance: The role of digital economy. Energy Policy 2024, 195, 114344. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- da Silva, L.B.P.; Soltovski, R.; Pontes, J.; Treinta, F.T.; Leitão, P.; Mosconi, E.; de Resende, L.M.M.; Yoshino, R.T. Human capital management 4.0: Literature review and trends. Comput. Ind. Eng. 2022, 168, 108111. [Google Scholar] [CrossRef]
- Sakarina, S.; Ena, Z.; Jenita; Cakranegara, P.A.; Surahman, S. Digital transformation in human resource management in the industrial age 4.0. Quant. Econ. Manag. Stud. 2022, 3, 750–756. [Google Scholar] [CrossRef]
- Zhou, X.; Niu, A.; Lin, C. Optimizing carbon emission forecast for modelling China’s 2030 provincial carbon emission quota allocation. J. Environ. Manag. 2023, 325, 116523. [Google Scholar] [CrossRef]
- Niu, X.; Ma, Z.; Ma, W.; Yang, J.; Mao, T. The spatial spillover effects and equity of carbon emissions of digital economy in China. J. Clean. Prod. 2024, 434, 139885. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T.; Wang, J.; Guo, F.; Kan, X.; Yuan, R. Spatial analysis on carbon emission abatement capacity at provincial level in China from 1997 to 2014: An empirical study based on SDM model. Atmos. Pollut. Res. 2019, 10, 97–104. [Google Scholar] [CrossRef]
- Lv, K.; Feng, X.; Kelly, S.; Zhu, L.; Deng, M. A study on embodied carbon transfer at the provincial level of China from a social network perspective. J. Clean. Prod. 2019, 225, 1089–1104. [Google Scholar] [CrossRef]
- Wang, F.; Gao, M.; Liu, J.; Fan, W. The spatial network structure of China’s regional carbon emissions and its network effect. Energies 2018, 11, 2706. [Google Scholar] [CrossRef]
- Sun, L.; Qin, L.; Taghizadeh-Hesary, F.; Zhang, J.; Mohsin, M.; Chaudhry, I.S. Analyzing carbon emission transfer network structure among provinces in China: New evidence from social network analysis. Environ. Sci. Pollut. Res. 2020, 27, 23281–23300. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Jin, X. Recent advances in the relationship between economic development and carbon emissions. Manag. Environ. Qual. Int. J. 2022, 33, 141–165. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, T. The impact of cross-region industrial structure optimization on economy, carbon emissions and energy consumption: A case of the Yangtze River Delta. Sci. Total Environ. 2021, 778, 146089. [Google Scholar] [CrossRef]
- Qiao, R.; Liu, X.; Gao, S.; Liang, D.; GesangYangji, G.; Xia, L.; Zhou, S.; Ao, X.; Jiang, Q.; Wu, Z. Industrialization, urbanization, and innovation: Nonlinear drivers of carbon emissions in Chinese cities. Appl. Energy 2024, 358, 122598. [Google Scholar] [CrossRef]
- Pickson, R.B.; Gui, P.; Jian, L.; Boateng, E. Do population-related factors matter for carbon emissions? Lessons from different income groups of countries. Urban Clim. 2024, 55, 101934. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Shen, Y. Technology-driven carbon reduction: Analyzing the impact of digital technology on China’s carbon emission and its mechanism. Technol. Forecast. Soc. Change 2024, 200, 123124. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Ma, S. The impact of different transportation infrastructures on urban carbon emissions: Evidence from China. Energy 2024, 295, 131041. [Google Scholar] [CrossRef]
- Cao, Y.; Ren, W.; Yue, L. Environmental regulation and carbon emissions: New mechanisms in game theory. Cities 2024, 149, 104945. [Google Scholar] [CrossRef]
- Xie, Z.; Teng, X.; Liu, F.-P.; Chiu, Y.-H. The impact of China’s financial expenditure on energy and carbon emission efficiency: Applying a meta-dynamic non-radial directional distance function. Energy Environ. 2023, 34, 155–175. [Google Scholar] [CrossRef]
- Jiang, S.; Chishti, M.Z.; Rjoub, H.; Rahim, S. Environmental R&D and trade-adjusted carbon emissions: Evaluating the role of international trade. Environ. Sci. Pollut. Res. 2022, 29, 63155–63170. [Google Scholar]
- Dong, K.; Wang, S.; Hu, H.; Guan, N.; Shi, X.; Song, Y. Financial development, carbon dioxide emissions, and sustainable development. Sustain. Dev. 2024, 32, 348–366. [Google Scholar] [CrossRef]
- Xiao, B.; Fan, Y.; Guo, X.; Voigt, S.; Cui, L. Effects of linking national carbon markets on international macroeconomics: An open-economy E-DSGE model. Comput. Ind. Eng. 2022, 169, 108166. [Google Scholar] [CrossRef]
- Wang, T.; Shen, B.; Springer, C.H.; Hou, J. What prevents us from taking low-carbon actions? A comprehensive review of influencing factors affecting low-carbon behaviors. Energy Res. Soc. Sci. 2021, 71, 101844. [Google Scholar] [CrossRef]
- Raihan, A. Toward sustainable and green development in Chile: Dynamic influences of carbon emission reduction variables. Innov. Green Dev. 2023, 2, 100038. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The digital economy, industrial structure upgrading, and carbon emission intensity—Empirical evidence from China’s provinces. Energy Strategy Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Pachiyappan, D.; Ansari, Y.; Alam, S.; Thoudam, P.; Alagirisamy, K.; Manigandan, P. Short and long-run causal effects of CO2 emissions, energy use, GDP and population growth: Evidence from India using the ARDL and VECM approaches. Energies 2021, 14, 8333. [Google Scholar] [CrossRef]
- Jiang, Y.; Khan, H. The relationship between renewable energy consumption, technological innovations, and carbon dioxide emission: Evidence from two-step system GMM. Environ. Sci. Pollut. Res. 2023, 30, 4187–4202. [Google Scholar] [CrossRef]
- Wang, T.; Song, Z.; Zhou, J.; Sun, H.; Liu, F. Low-carbon transition and green innovation: Evidence from pilot cities in China. Sustainability 2022, 14, 7264. [Google Scholar] [CrossRef]
- Nitza-Makowska, A.; Longhurst, K.; Skiert-Andrzejuk, K. Green Soft Power? Checking in on China as a Responsible Stakeholder. Pol. Political Sci. Yearb. 2024, 1, 17–33. [Google Scholar] [CrossRef]
- Cai, A.; Zheng, S.; Cai, L.; Yang, H.; Comite, U. How does green technology innovation affect carbon emissions? A spatial econometric analysis of China’s provincial panel data. Front. Environ. Sci. 2021, 9, 813811. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, Y.; Ahmad, M.; Ahmed, Z.; Rjoub, H.; Adebayo, T.S. Linking innovative human capital, economic growth, and CO2 emissions: An empirical study based on Chinese provincial panel data. Int. J. Environ. Res. Public Health 2021, 18, 8503. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zhou, K.; Zhang, H.; Ma, Z.; Li, J. The cause and correlation network of air pollution from a spatial perspective: Evidence from the Beijing–Tianjin–Hebei region. Sustainability 2023, 15, 3626. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Yang, H.C.; Feng, G.F.; Gong, Q.; Chang, C.P. The impact of political competition on green innovation: A new insight into sustainable development. Sustain. Dev. 2023, 31, 3692–3708. [Google Scholar] [CrossRef]
- Li, C.; Solangi, Y.A.; Ali, S. Evaluating the factors of green finance to achieve carbon peak and carbon neutrality targets in China: A delphi and fuzzy AHP approach. Sustainability 2023, 15, 2721. [Google Scholar] [CrossRef]
- He, X.; Xu, C. Is policy uncertainty always harmful?-Empirical evidence from China’s energy policy and city green transition. Energy 2024, 291, 130204. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X.; Zhu, J. Does the digital economy contribute to carbon emissions reduction? A city-level spatial analysis in China. Chin. J. Popul. Resour. Environ. 2022, 20, 105–114. [Google Scholar] [CrossRef]
- Goodland, R. The concept of environmental sustainability. Annu. Rev. Ecol. Syst. 1995, 26, 1–24. [Google Scholar] [CrossRef]
- Shan, H.; Shao, S. Impact of green innovation on carbon reduction in China. Sci. Rep. 2024, 14, 14032. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Jamaani, F. Does green innovation, energy productivity and environmental taxes limit carbon emissions in developed economies: Implications for sustainable development. Struct. Change Econ. Dyn. 2022, 63, 66–78. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Yu, Y. China’s carbon emission peak pre-2030: Exploring multi-scenario optimal low-carbon behaviors for China’s regions. J. Clean. Prod. 2019, 231, 963–979. [Google Scholar] [CrossRef]
- Kong, T.; Feng, T.; Ye, C. Advanced manufacturing technologies and green innovation: The role of internal environmental collaboration. Sustainability 2016, 8, 1056. [Google Scholar] [CrossRef]
- Chen, P.C.; Hung, S.W. Collaborative green innovation in emerging countries: A social capital perspective. Int. J. Oper. Prod. Manag. 2014, 34, 347–363. [Google Scholar] [CrossRef]
- Jiao, H.; Deng, H.; Hu, S. The Power of Collaboration: How Does Green Innovation Network Affect Urban Green Total Factor Productivity? Sustainability 2025, 17, 433. [Google Scholar] [CrossRef]
- Bai, D.; Li, M.; Wang, Y.; Mallek, S.; Shahzad, U. Impact mechanisms and spatial and temporal evolution of digital economy and green innovation: A perspective based on regional collaboration within urban agglomerations. Technol. Forecast. Soc. Change 2024, 207, 123613. [Google Scholar] [CrossRef]
- Castro, G.M.D.; Delgado-Verde, M.; Amores-Salvadó, J.; Navas-López, J.E. Linking human, technological, and relational assets to technological innovation: Exploring a new approach. Knowl. Manag. Res. Pract. 2013, 11, 123–132. [Google Scholar] [CrossRef]
- Ramadhani, W.; Khuzaini, K.; Shaddiq, S. Resistance to Change: Human capital Issues in the Implementation of Industry 4.0 Technology. In ATD; Islamic University of Kalimantan: South Kalimantan, Indonesia, 2024. [Google Scholar] [CrossRef]
- Maria, N.; Susan, M. Transformative Human capital: Mapping Future Directions for Innovation in Information Technology and Multidisciplinary Applications. In Proceedings of the 2024 2nd International Conference on Technology Innovation and Its Applications (ICTIIA), Medan, Indonesia, 12–13 September 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Aftab, J.; Abid, N.; Cucari, N.; Savastano, M. Green human resource management and environmental performance: The role of green innovation and environmental strategy in a developing country. Bus. Strategy Environ. 2023, 32, 1782–1798. [Google Scholar] [CrossRef]
- Adikari, A.P.; Liu, H.; Dissanayake, D.M.S.L.B.; Ranagalage, M. Human capital and carbon emissions: The way forward reducing environmental degradation. Sustainability 2023, 15, 2926. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; Liu, K. Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages. Renew. Sustain. Energy Rev. 2021, 135, 110258. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H. Environmental, Social and Governance Performance on Brand Value in the Context of “Dual Carbon”: The Mediating Effect of R&D Innovation. Sustainability 2024, 16, 10046. [Google Scholar] [CrossRef]
- Abbas, S.; Saqib, N.; Mohammed, K.S.; Sahore, N.; Shahzad, U. Pathways towards carbon neutrality in low carbon cities: The role of green patents, R&D and energy use for carbon emissions. Technol. Forecast. Soc. Change 2024, 200, 123109. [Google Scholar]
- Gu, G.; Wang, Z.; Wu, L. Carbon emission reductions under global low-carbon technology transfer and its policy mix with R&D improvement. Energy 2021, 216, 119300. [Google Scholar]
- Chen, H.; Zhu, S.; Sun, J.; Zhong, K.; Shen, M.; Wang, X. A study of the spatial structure and regional interaction of agricultural green total factor productivity in China based on SNA and VAR methods. Sustainability 2022, 14, 7508. [Google Scholar] [CrossRef]
- Di, K.; Liu, Z.; Chai, S.; Li, K.; Li, Y. Spatial correlation network structure of green innovation efficiency and its driving factors in the Bohai Rim region. Environ. Dev. Sustain. 2024, 26, 27227–27247. [Google Scholar] [CrossRef]
- Bai, R.; Lin, B. An in-depth analysis of green innovation efficiency: New evidence based on club convergence and spatial correlation network. Energy Econ. 2024, 132, 107424. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, M.; Zhang, M.; Liu, Q.; Du, Y.; Zhang, L. A comparative analysis of Chinese green building policies from the central and local perspectives using LDA and SNA. Archit. Eng. Des. Manag. 2024, 20, 1037–1059. [Google Scholar] [CrossRef]
- Hewa Welege, N.M.; Pan, W.; Kumaraswamy, M. Social network analysis applications in sustainable construction and built environment management: A review. Built Environ. Proj. Asset Manag. 2021, 11, 511–528. [Google Scholar] [CrossRef]
- Yu, K.; Li, Z. Coupling coordination and spatial network characteristics of carbon emission efficiency and urban green innovation in the Yellow River Basin, China. Sci. Rep. 2024, 14, 27690. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Lin, H.; Zhong, K. Spatial spillover effects and driving factors of regional green innovation efficiency in China from a network perspective. Front. Environ. Sci. 2022, 10, 997084. [Google Scholar] [CrossRef]
- Li, H.Y.; Liu, Q.; Ye, H.Z. Digital development influencing mechanism on green innovation performance: A perspective of green innovation network. IEEE Access 2023, 11, 22490–22504. [Google Scholar] [CrossRef]
- Wang, G.; Deng, X.; Wang, J.; Zhang, F.; Liang, S. Carbon emission efficiency in China: A spatial panel data analysis. China Econ. Rev. 2019, 56, 101313. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Poon, J.; He, Z. China’s carbon dioxide emission and driving factors: A spatial analysis. J. Clean. Prod. 2019, 211, 640–651. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Wei, C.; Ni, J.; Du, L. Regional allocation of carbon dioxide abatement in China. China Econ. Rev. 2012, 23, 552–565. [Google Scholar] [CrossRef]
- Cherniwchan; Jevan; Najjar, N. Free trade and the formation of environmental policy: Evidence from US legislative votes. Am. Econ. J. Econ. Policy 2025, 17, 224–258. [Google Scholar] [CrossRef]
- Hufbauer, G.C.; Hogan, M. The birth of NAFTA in a neoliberal moment. In The Elgar Companion to North American Trade and Integration; Edward Elgar Publishing: Cheltenham, UK, 2025; pp. 15–24. [Google Scholar]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; Bergamaschi, P.; Pagliari, V.; Olivier, J.G.; Peters, J.A.; et al. EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef]
- Lu, B. Expedited patent examination for green inventions: Developing countries’ policy choices. Energy Policy 2013, 61, 1529–1538. [Google Scholar] [CrossRef]
- Guo, Y.; Xia, X.; Zhang, S.; Zhang, D. Environmental regulation, government R&D funding and green technology innovation: Evidence from China provincial data. Sustainability 2018, 10, 940. [Google Scholar] [CrossRef]
- Wuttaphan, N. Human capital theory: The theory of human resource development, implications, and future. Life Sci. Environ. J. 2017, 18, 240–253. [Google Scholar]
- Chaolin, G.U.; Liya, W.U.; Cook, I. Progress in research on Chinese urbanization. Front. Archit. Res. 2012, 1, 101–149. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, B.; Ning, Y.; Wang, Y. Comprehensive analysis of carbon emissions, economic growth, and employment from the perspective of industrial restructuring: A case study of China. Environ. Sci. Pollut. Res. 2021, 28, 50767–50789. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. How does trade openness impact carbon intensity? J. Clean. Prod. 2021, 295, 126370. [Google Scholar] [CrossRef]
- Sun, A.; He, Q.; Xiao, C.; Hua, Y.; Zhang, J. The spatial spillover effects of regional integration on carbon emissions. Int. Rev. Econ. Financ. 2024, 95, 103447. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Shen, L.; Xie, Q. Multiscale time-lagged correlation networks for detecting air pollution interaction. Phys. A Stat. Mech. Its Applications 2022, 602, 127627. [Google Scholar] [CrossRef]
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
open | 713 | 0.297 | 0.353 | 0.008 | 1.711 |
lnCO2 | 713 | 18.898 | 1.124 | 14.883 | 20.887 |
lnedu | 713 | 15.332 | 1.150 | 11.309 | 18.041 |
lngreen | 713 | 6.036 | 2.147 | 0.000 | 10.722 |
lngreen_r | 713 | 6.518 | 2.132 | 0.000 | 10.933 |
lnRD | 713 | 13.803 | 1.872 | 7.604 | 17.602 |
urb | 713 | 0.515 | 0.1620 | 0.140 | 0.900 |
HC | 713 | 0.016 | 0.008 | 0.002 | 0.044 |
work | 713 | 0.539 | 0.054 | 0.364 | 0.723 |
Year | I | E (I) | Sd (I) | Z | p-Value |
---|---|---|---|---|---|
2000 | 0.281 | −0.033 | 0.115 | 2.730 | 0.006 |
2001 | 0.291 | −0.033 | 0.115 | 2.815 | 0.005 |
2002 | 0.303 | −0.033 | 0.115 | 2.934 | 0.003 |
2003 | 0.297 | −0.033 | 0.113 | 2.924 | 0.004 |
2004 | 0.299 | −0.033 | 0.114 | 2.929 | 0.003 |
2005 | 0.312 | −0.033 | 0.115 | 3.008 | 0.003 |
2006 | 0.317 | −0.033 | 0.115 | 3.056 | 0.002 |
2007 | 0.326 | −0.033 | 0.115 | 3.116 | 0.002 |
2008 | 0.346 | −0.033 | 0.116 | 3.280 | 0.001 |
2009 | 0.350 | −0.033 | 0.116 | 3.311 | 0.001 |
2010 | 0.348 | −0.033 | 0.116 | 3.284 | 0.001 |
2011 | 0.337 | −0.033 | 0.117 | 3.182 | 0.002 |
2012 | 0.340 | −0.033 | 0.117 | 3.202 | 0.001 |
2013 | 0.338 | −0.033 | 0.116 | 3.191 | 0.001 |
2014 | 0.338 | −0.033 | 0.116 | 3.192 | 0.001 |
2015 | 0.344 | −0.033 | 0.116 | 3.253 | 0.001 |
2016 | 0.336 | −0.033 | 0.116 | 3.196 | 0.001 |
2017 | 0.336 | −0.033 | 0.116 | 3.198 | 0.001 |
2018 | 0.342 | −0.033 | 0.116 | 3.244 | 0.001 |
2019 | 0.344 | −0.033 | 0.116 | 3.261 | 0.001 |
2020 | 0.335 | −0.033 | 0.116 | 3.185 | 0.001 |
2021 | 0.331 | −0.033 | 0.116 | 3.132 | 0.002 |
2022 | 0.331 | −0.033 | 0.117 | 3.121 | 0.002 |
Lower Bound | Upper Bound | |
---|---|---|
Interval | 0.000 | 10.722 |
Slope | 0.051 | −0.0256 |
t-value | 4.165 | −1.585 |
p > |t| | 0.000 | 0.057 |
Extreme point = 7.163 | ||
t-value = 1.590 | ||
p > |t| = 0.057 |
Statistic | Value | p-Value | Statistic | Value | p-Value |
---|---|---|---|---|---|
LM-spatial lag | 75.220 | 0.000 | Wald-spatial lag | 162.79 | 0.000 |
Robust LM-spatial lag | 68.486 | 0.000 | Wald-spatial error | 146.46 | 0.000 |
LM-spatial error | 35.008 | 0.000 | LR-spatial lag | 146.50 | 0.000 |
Robust LM-spatial error | 28.274 | 0.000 | LR-spatial error | 132.90 | 0.000 |
LR test (spatial-fixed effects) | 126.66 | 0.000 | LR test (time-fixed effects) | 2730.69 | 0.000 |
Variables | lnCO2 | Variables | lnCO2 |
---|---|---|---|
lngreen | 0.042 *** (0.011) | Wx: lngreen | 0.057 *** (0.021) |
(lngreen)2 | −0.003 *** (0.001) | Wx: (lngreen)2 | −0.002 * (0.001) |
lnRD | 0.108 *** (0.015) | Wx: lnRD | −0.104 *** (0.030) |
HC | 6.702 *** (1.411) | Wx: HC | −16.918 *** (2.916) |
urb | −0.069 (0.048) | Wx: urb | 0.242 ** (0.107) |
work | 0.065 (0.093) | Wx: work | −1.052 *** (0.197) |
open | −0.051 (0.032) | Wx: open | 0.273 *** (0.050) |
0.277 *** | |||
R2 0.241 |
Variables | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
lngreen | 0.047 *** (0.011) | 0.089 *** (0.026) | 0.137 *** (0.028) |
(lngreen)2 | −0.004 *** (0.001) | −0.004 ** (0.002) | −0.008 *** (0.002) |
lnRD | 0.105 *** (0.014) | −0.098 ** (0.040) | 0.007 * (0.044) |
HC | 5.594 *** (1.333) | −19.915 *** (4.003) | −14.321 *** (4.331) |
urb | −0.052 (0.049) | 0.297 ** (0.151) | 0.245 (0.178) |
work | −0.005 (0.096) | −1.362 *** (0.269) | −1.367 *** (0.322) |
open | −0.033 (0.033) | 0.347 *** (0.066) | 0.314 *** (0.077) |
Variables | lnCO2 | Variables | lnCO2 |
---|---|---|---|
lngreen_r | 0.054 *** (0.012) | Wx: lngreen_r | 0.065 *** (0.022) |
(lngreen_r)2 | −0.003 *** (0.001) | Wx: (lngreen_r)2 | −0.002 * (0.001) |
lnRD | 0.103 *** (0.015) | Wx: lnRD | −0.115 *** (0.030) |
HC | 6.862 *** (1.405) | Wx: HC | −15.825 *** (2.911) |
urb | −0.070 (0.047) | Wx: urb | 0.228 ** (0.103) |
work | 0.085 (0.092) | Wx: work | −1.010 *** (0.195) |
open | −0.053 * (0.032) | Wx: open | 0.266 *** (0.049) |
0.273 *** | |||
R2 0.269 | |||
Variables | Direct Effect | Indirect Effect | Total Effect |
lngreen_r | 0.060 *** (0.012) | 0.137 *** (0.027) | 0.164 *** (0.029) |
(lngreen_r)2 | −0.004 *** (0.001) | −0.003 ** (0.002) | −0.007 *** (0.002) |
lnRD | 0.098 *** (0.014) | −0.114 ** (0.039) | 0.015 (0.044) |
HC | 5.847 *** (1.326) | −18.370 *** (3.940) | −12.524 *** (4.256) |
urb | −0.055 (0.048) | 0.277 * (0.146) | 0.222 (0.172) |
work | 0.020 (0.096) | −1.295 *** (0.264) | −1.275 *** (0.316) |
open | −0.036 (0.032) | 0.335 *** (0.063) | 0.299 *** (0.075) |
Year | Density | Year | Density | Year | Density | Year | Density |
---|---|---|---|---|---|---|---|
2000 | 0.203 | 2006 | 0.209 | 2012 | 0.215 | 2018 | 0.223 |
2001 | 0.200 | 2007 | 0.208 | 2013 | 0.216 | 2019 | 0.217 |
2002 | 0.204 | 2008 | 0.210 | 2014 | 0.217 | 2020 | 0.223 |
2003 | 0.200 | 2009 | 0.210 | 2015 | 0.216 | 2021 | 0.222 |
2004 | 0.204 | 2010 | 0.212 | 2016 | 0.223 | 2022 | 0.220 |
2005 | 0.202 | 2011 | 0.215 | 2017 | 0.222 |
Degree Centrality | |||||
---|---|---|---|---|---|
year | 1 | 2 | 3 | 4 | 5 |
2000 | Shaanxi | Hubei | Shandong | Beijing | Jiangsu |
2009 | Shaanxi | Hubei | Henan | Shandong | Hunan |
2015 | Shaanxi | Henan | Hubei | Hunan | Shandong |
2022 | Henan | Shaanxi | Hunan | Jiangxi | Shanxi |
Closeness Centrality | |||||
year | 1 | 2 | 3 | 4 | 5 |
2000 | Shaanxi | Hubei | Hunan | Shandong | Henan |
2009 | Shaanxi | Hubei | Henan | Hunan | Shandong |
2015 | Shaanxi | Henan | Hubei | Hunan | Anhui |
2022 | Henan | Shaanxi | Hunan | Hubei | Anhui |
Betweenness Centrality | |||||
year | 1 | 2 | 3 | 4 | 5 |
2000 | Shaanxi | Beijing | Hunan | Hubei | Liaoning |
2009 | Shaanxi | Hunan | Hubei | Shandong | Henan |
2015 | Shaanxi | Hunan | Henan | Shandong | Hubei |
2022 | Henan | Shaanxi | Hunan | Shandong | Shanxi |
Degree Centrality | |||||
---|---|---|---|---|---|
year | 1 | 2 | 3 | 4 | 5 |
2000 | Tibet | Hainan | Qinghai | Jilin | Heilongjiang |
2009 | Tibet | Hainan | Jilin | Heilongjiang | Qinghai |
2015 | Tibet | Jilin | Heilongjiang | Xinjiang | Hainan |
2022 | Heilongjiang | Jilin | Tibet | Liaoning | Hainan |
Closeness Centrality | |||||
year | 1 | 2 | 3 | 4 | 5 |
2000 | Tibet | Jilin | Heilongjiang | Qinghai | Xinjiang |
2009 | Tibet | Jilin | Heilongjiang | Liaoning | Xinjiang |
2015 | Tibet | Jilin | Heilongjiang | Liaoning | Xinjiang |
2022 | Heilongjiang | Jilin | Liaoning | Tibet | Xinjiang |
Betweenness Centrality | |||||
year | 1 | 2 | 3 | 4 | 5 |
2000 | Tibet | Hainan | Qinghai | Heilongjiang | Xinjiang |
2009 | Jilin | Hainan | Qinghai | Heilongjiang | Xinjiang |
2015 | Tibet | Jilin | Heilongjiang | Xinjiang | Qinghai |
2022 | Heilongjiang | Xinjiang | Jilin | Hainan | Tibet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, Y.-Y.; Lin, Y.-C.; Park, S.-D. A Systems Approach to Carbon Emission Networks and Spatial Spillovers in China: Evidence from 31 Provinces Using the Spatial Durbin Model and Social Network Analysis. Systems 2025, 13, 410. https://doi.org/10.3390/systems13060410
Weng Y-Y, Lin Y-C, Park S-D. A Systems Approach to Carbon Emission Networks and Spatial Spillovers in China: Evidence from 31 Provinces Using the Spatial Durbin Model and Social Network Analysis. Systems. 2025; 13(6):410. https://doi.org/10.3390/systems13060410
Chicago/Turabian StyleWeng, Yi-Yu, Yu-Cheng Lin, and Sang-Do Park. 2025. "A Systems Approach to Carbon Emission Networks and Spatial Spillovers in China: Evidence from 31 Provinces Using the Spatial Durbin Model and Social Network Analysis" Systems 13, no. 6: 410. https://doi.org/10.3390/systems13060410
APA StyleWeng, Y.-Y., Lin, Y.-C., & Park, S.-D. (2025). A Systems Approach to Carbon Emission Networks and Spatial Spillovers in China: Evidence from 31 Provinces Using the Spatial Durbin Model and Social Network Analysis. Systems, 13(6), 410. https://doi.org/10.3390/systems13060410