Research on the Impact of the Development of China’s Digital Trade on the International Competitiveness of the Manufacturing Industry
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Digital Trade
2.2. Research on the International Competitiveness of the Manufacturing Industry
2.3. Research on the Relationship Between Digital Trade and the International Competitiveness of the Manufacturing Industry
3. Theoretical Analysis of the Impact of Digital Trade on the International Competitiveness of the Manufacturing Industry
3.1. The Direct Impact of Digital Trade on the International Competitiveness of the Manufacturing Industry
3.1.1. Model Specification
3.1.2. Mechanism Analysis
3.2. The Impact Mechanism of Digital Trade on the International Competitiveness of the Manufacturing Industry
3.2.1. Capital-Driven Effect
3.2.2. The Driving Effect of Digital Technology
3.2.3. Spatial Spillover Effect
4. Analysis of China’s Digital Trade and Manufacturing Industry’s International Competitiveness
4.1. Measurement of China’s Digital Trade Development Level
4.1.1. Empowerment Based on the Entropy Weight Method
4.1.2. Comprehensive Evaluation Measurement
4.2. Analysis of the Current Situation of the International Competitiveness of China’s Manufacturing Industry
4.2.1. Measurement of China’s Manufacturing Industry’s International Competitiveness
4.2.2. Weighting Based on the Coefficient of Variation
4.2.3. Overall Evaluation
5. Empirical Analysis of the Impact of Digital Trade on the International Competitiveness of China’s Manufacturing Industry
5.1. Model Specification
5.2. Variable Selection and Explanation
5.3. Data Source and Processing
5.4. Empirical Tests and Analysis of Results
5.4.1. Descriptive Statistics
5.4.2. Basic Regression Analysis
5.4.3. Robustness Test
5.4.4. Heterogeneity Test
5.4.5. Mediating Effect Test
5.5. Spatial Econometric Modeling
5.5.1. Research Method
5.5.2. Model Construction
5.5.3. Empirical Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; He, F. Construction of an indicator system for high-quality development of the Chinese economy and an international comparative study. Explor. Econ. Issues 2023, 9, 15–33. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAWpEpHq8YYbH5gVrV033sdiCHVRr264PSF9ewKIUX-JkyLxIS4LoTcZwaxL8DufE6uzMXlWtdeyy6n02WnEixfQIcwb4Xu9TxnjXRPfa8qFIYsqyAkKa1OVhAjYuWaL5uSMC5p5ljjKobVuaw55r_kBUf4irddTF0rydl3q-e9edbQwip21yJt_&uniplatform=NZKPT (accessed on 15 November 2024).
- Liu, H. Economic effects and promotion strategies for developing digital trade. Reform 2020, 3, 40–52. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAWcvglGcHUI0kw_KYjyP-VGji9-fiFVw7Tp85Zi9anBj4R9CG4Kfj75DlKtBi-gJBDHUVo74o5aZhbz5utC5OnIp0AJQdNny-zEoKBdPrJTpTWBDCzdXpDZQHuQpeUBEaVU-Fyn4nvKBi7dnThCBsZ4B9czSMWmlzzGZwoQqNy1uTVxQ_FYSGqM&uniplatform=NZKPT (accessed on 15 November 2024).
- Weber, R.H. Digital Trade in WTO-Law-Taking Stock and Looking ahead. SSRN Electron. J. 2010, 5, 1–24. Available online: https://heinonline.org/HOL/LandingPage?handle=hein.journals/aihlp5&div=4&id=&page= (accessed on 15 November 2024). [CrossRef]
- Xiong, L.; Liu, H.; Liu, H. Digital and Commerce; Shanghai Academy of Social Sciences Press: Shanghai, China, 2011; pp. 3–5. [Google Scholar]
- United States International Trade Commission. Digital Trade in the U.S. and Global Economies, Part 1; USITC Publication: Washington, DC, USA, 2013; Volume 4415, pp. 332–531. Available online: https://www.usitc.gov/publications/332/pub4415.pdf (accessed on 16 November 2024).
- United States International Trade Commission. Digital Trade in the U.S. and Global Economies, Part 2; USITC Publication: Washington, DC, USA, 2014; Volume 4485, pp. 332–540. Available online: https://www.usitc.gov/publications/332/pub4485.pdf (accessed on 16 November 2024).
- United States International Trade Commission. Global Digital Trade: Market Opportunities and Foreign Trade Restrictions-Part 1; United States International Trade Commission: Washington, DC, USA, 2017. Available online: https://www.usitc.gov/publications/332/pub4716.pdf (accessed on 17 November 2024).
- OECD, WTO & IMF. Handbook on Measuring Digital Trade; OECD, WTO & IMF: Paris, France, 2019; Available online: https://one.oecd.org/document/SDD/CSSP/WPTGS(2019)4/en/pdf (accessed on 17 November 2024).
- China Academy of Information and Communications Technology. White Paper on the Development and Impact of Digital Trade; Academy of Information and Communications Technology: Beijing, China, 2020; p. 12. Available online: http://www.caict.ac.cn/kxyj/qwfb/bps/202012/P020201216506475945126.pdf (accessed on 17 November 2024).
- Ciuriak, D.; Ptashkina, M. The Digital Transformation and the Transformation of International Trade. RTA Exchange. 2018. Available online: https://www.zbw.eu/econis-archiv/bitstream/11159/1651/1/the-digital-transformation-and-trade-ciuriak-and-ptashkina.pdf (accessed on 17 November 2024).
- Sheng, B.; Gao, J. Beyond traditional trade: The connotation, characteristics, and impact of digital trade. Foreign Soc. Sci. 2020, 4, 18–32. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAVofNtgpr6AgICpZAuv7piYMVUHwoekZQDSn5EIMTEn80Jdzh9wPmbMWoxy4Y6BRxnPQRPUStnN9yqO-HTSMhufkYI5meEai2OuoHef6d-M0fHO11Xc2wEeqPer7OAop0gQ2mkLQiEJ0iMQsiUeWv_hdilm2llJ1JYKxcbASzP5VOWkvcNcd3rR&uniplatform=NZKPT (accessed on 20 November 2024).
- López González, J.; Ferencz, J. Digital Rade and Market Openness, OECD Trade Policy Papers, No.217; OECD Publishing: Paris, Franch, 2018; p. 10. Available online: https://read.oecd-ilibrary.org/content/dam/oecd/en/publications/reports/2018/10/digital-trade-and-market-openness_60f04c17/1bd89c9a-en.pdf (accessed on 20 November 2024).
- Xiong, L.; Ma, S. From traditional to digital trade costs: Connotation, characteristics, and impact. J. Shanghai Univ. Commer. 2021, 22, 3–13. Available online: https://link.oversea.cnki.net/doi/10.19941/j.cnki.CN31-1957/F.2021.05.001 (accessed on 4 January 2025).
- Melitz, M. The Impact of Trade on Intraindustry Reallocations and Aggregate Industry Productivity. Econometrica 2003, 71, 1695–1725. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00467 (accessed on 20 November 2024). [CrossRef]
- Xia, J. The Origin, International Experience and Development Strategy of Digital Trade. J. Beijing Technol. Bus. Univ. (Soc. Sci. Ed.) 2018, 33, 1–10. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAUsEiVdimw3zl-oIEiVur4JYBFp2RHkW04qG_9wpKdMg2C6-AizMd5aswgAvxrrHPgUzuiPqcvAdq5ccYet_5XCcmjXBB3eZuxmHZ1qwjdg0YLN1dwb7O-Uhf3hcj1jGSFJd_P1TPnPL8-otaxXMYDJW1UaFMr6J-00ju6geNKQCR7igCPle-Sh&uniplatform=NZKPT (accessed on 1 December 2024).
- Sun, J. From digital economy to digital trade: Connotation, characteristics, rules and impact. Int. Trade Econ. Explor. 2020, 36, 87–98. Available online: https://link.oversea.cnki.net/doi/10.13687/j.cnki.gjjmts.2020.05.006 (accessed on 1 December 2024).
- Wu, Q.; Bi, M.; Siddiqui, F.; Tang, Y. Assessing the Impact of Digital Trade on Enterprise Competitiveness: Evidence from Chinese A-Share Listed Companies. J. Ind. Compet. Trade 2023, 23, 329–362. [Google Scholar] [CrossRef]
- Grimm, A.N. Trends in U. S. Trade in Information and Communications Technology (ICT) Services and in ICT-enabled Services. Surv. Curr. Bus. 2016, 96, 1–19. Available online: https://apps.bea.gov/scb/pdf/2016/05%20May/0516_trends_%20in_us_trade_in_ict_serivces2.pdf (accessed on 1 December 2024).
- Jia, H.; Gao, X.; Xu, X.; Fang, Y. A preliminary study on the conceptual framework, index system, and measurement methods of digital trade measurement. Stat. Res. 2021, 38, 30–41. Available online: http://www.qdatis.com/files/20220903/8c7400587372d35440525075e91bbef8.pdf (accessed on 1 December 2024).
- Ma, S.; Liu, J.; He, G. Digital trade power: Conceptual understanding, index construction, and potential judgment. Int. Bus. Res. 2022, 13, 1–13. Available online: http://www.qdatis.com/files/20240218/8bd4878196fa72e37a9ff67d173772ac.pdf (accessed on 1 December 2024).
- Feng, Z.; Duan, D. Evaluation of the Digital Trade Development Index and Analysis of Influencing Factors: Based on Panel Data from 49 Countries. J. Beijing Univ. Technol. (Soc. Sci. Ed.) 2022, 22, 100–117. Available online: https://journal.bjut.edu.cn/bjgydxxbskb/cn/article/pdf/preview/10.12120/bjutskxb202204100.pdf (accessed on 2 December 2024).
- Ye, L.; Xue, X. Digital trade promotes the high-quality development of the manufacturing industry: Effect measurement and practical path. Econ. Syst. Reform 2024, 2, 121–129. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAViRhGZx0eMw3i17oJDWcLfIBqW_Q3TAh-6MUlbobDfh4BAnhtVxJOAWs5dnFea6BOO-0eX2Wzh--aZmmKyutUwyNOvxs1gja_vecb1ZcwT4KyCX1MVrwX7KkY6445o3wCdG2YekTD4nqEsgyAeU2eaDB_a-8Lgn1DBdMMKQ138tFFLsMVHCRY0&uniplatform=NZKPT (accessed on 2 December 2024).
- Porter, M. The Competitive Advantage of Nations; Free Press: New York, NY, USA, 1990; p. 855. [Google Scholar]
- Olczyk, M.; Kordalska, A. International competitiveness of Czech manufacturing-a sectoral approach with error correction model. Prague Econ. Pap. 2017, 2017, 213–226. [Google Scholar] [CrossRef]
- Rusu, V.D.; Roman, A. Entrepreneurial motivations in the European Union countries: An empirical approach. Manag. Dyn. Knowl. Econ. 2018, 6, 9–31. Available online: https://www.ceeol.com/search/article-detail?id=636337 (accessed on 2 December 2024).
- Jin, B.; Li, G.; Chen, Z. Analysis of the current situation and countermeasures for improving the international competitiveness of China’s manufacturing industry. Financ. Trade Econ. 2007, 3, 3–10+128. Available online: https://link.oversea.cnki.net/doi/10.19795/j.cnki.cn11-1166/f.2007.03.001 (accessed on 2 December 2024).
- Tang, H.; Zhang, X.; Wu, Y.; He, Z. Research on China’s manufacturing industry’s development quality and international competitiveness. China Soft Sci. 2019, 2, 128–142. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAWcjcvD_gd7pI6TWT2Pohv8aZlRyHFVqITNEWqNFn6vAUYiMo1qdFPjMogpyu1sguIOpHedd1pgFN0I9xohy58lSwweGQkRziJGJntVaa4mwROAhW_a0GlHAuCGqyphLJrBXyJb3Th8gZF_t52rP2DZsIbfbX-Ze4vTqUhNbbcg5dX2phBaEzDw&uniplatform=NZKPT (accessed on 5 December 2024).
- Yu, M.; Fan, A. Empirical analysis of China’s manufacturing industry international competitiveness: A comprehensive evaluation based on principal component analysis. Guangdong Soc. Sci. 2014, 6, 24–32. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAWZOyHs0DGncjU5uqY8g7dXTXfVbvvxst4FlJwhWJfJQzJaQQXnOUbyqZnwFrGgrHLutYHFPmDsEZvRqHmRo38e1DJYywHwiTBz9GnmuinBgb939IuH8Ma4BmFlDRnR1WV9C3Bl8w_3RBwFtFcplFWqnoWetW-NGT-kVlBV_Nwe29wb_iD_0dgH&uniplatform=NZKPT (accessed on 5 December 2024).
- Dou, Z.; Wu, B.; Sun, Y.; Wang, T. The competitiveness of manufacturing and its driving factors: A case study of g20 participating countries. Sustainability 2021, 13, 1143. [Google Scholar] [CrossRef]
- Frishammar, J.; Hörte, S.Å. Managing external information in manufacturing firms: The impact on innovation performance. J. Prod. Innov. Manag. 2005, 22, 251–266. [Google Scholar] [CrossRef]
- Fan, L.; Hao, A.; Wu, Y. FDI quality characteristics and breakthrough innovation of high-tech manufacturing enterprises. Int. Trade Econ. Explor. 2024, 40, 72–89. Available online: https://link.oversea.cnki.net/doi/10.13687/j.cnki.gjjmts.20240705.001 (accessed on 4 January 2025).
- Yu, C.; Tang, D.; Tenkorang, A.P.; Bethel, B.J. The impact of the opening of producer services on the international competitiveness of the manufacturing industry. Sustainability 2021, 13, 11224. [Google Scholar] [CrossRef]
- Lee, Z.; Chu, M.; Chen, S.; Tsai, C. Identifying comprehensive key criteria of sustainable development for traditional manufacturing in Taiwan. Sustainability 2018, 10, 3275. [Google Scholar] [CrossRef]
- He, Y.; Zeng, Y. The impact of open independent innovation on the international competitiveness of industries: Based on panel data from China’s manufacturing industry from 2000 to 2010. Sci. Sci. Manag. Sci. Technol. 2013, 34, 13–22. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAWw1q0izm6U_zt4VFXadoHgXA551dK9zCVS4eqzKTZo-6y3u2mg2KNbBLmvg8E4fnYyGNQ3346yyt2O0VTRnLsBqaVlsl9upwEZLabKvj8T36jkWS3sUWhnp4UolhFCDdLU-gO9z84pg6Hi-wz7tmWknoaVuX9Or9Y9xJW2TCNxfdxJlf2nBVnw&uniplatform=NZKPT (accessed on 5 December 2024).
- Liu, L.; Wang, X. The relationship between innovation paths, technology intensity and international competitiveness in the manufacturing industry: An empirical study based on 17 industries. China Sci. Technol. Forum 2020, 10, 114–121+141. Available online: https://link.oversea.cnki.net/doi/10.13580/j.cnki.fstc.2020.10.019 (accessed on 4 January 2025).
- Cheng, X.; Yang, B. The spatial effect of China’s free trade zones and improving international competitiveness in the manufacturing industry: An analysis based on spatial econometric models. Int. Trade Issues 2021, 10, 54–72. Available online: https://link.oversea.cnki.net/doi/10.13510/j.cnki.jit.2021.10.004 (accessed on 4 January 2025).
- Liu, L.; Guan, Q. A comparison of the international competitiveness of the manufacturing industries of China, Japan, and South Korea: A perspective based on domestic technological content. Mod. Jpn. Econ. 2019, 5, 55–69. Available online: https://link.oversea.cnki.net/doi/10.16123/j.cnki.issn.1000-355x.2019.05.006 (accessed on 4 January 2025).
- Yu, Z.; Tian, L. Factor endowments, industrial environment, and the development quality of China’s manufacturing industry. Res. Manag. 2020, 41, 103–111. Available online: https://link.oversea.cnki.net/doi/10.19571/j.cnki.1000-2995.2020.12.009 (accessed on 4 January 2025).
- Pei, C.; Liu, B.; Yang, Z. Comprehensive competitive and cooperative advantages: A theoretical explanation for the enduring international competitiveness of China’s manufacturing industry. Financ. Trade Econ. 2021, 42, 14–30. Available online: https://link.oversea.cnki.net/doi/10.19795/j.cnki.cn111166/f.20210506.010 (accessed on 4 January 2025).
- Li, A.; Li, S.; Yin, X. Technological innovation, digital investment, and the international competitiveness of China’s manufacturing industry. J. Beijing Technol. Bus. Univ. (Soc. Sci. Ed.) 2023, 38, 60–72. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAV_LBwbT-y9KVJWx0Q9DgDP5lcfcbtRu2ZInVJCuKrCEmSlDvFxC0c8cwck7ZDqRp74DeoPsCJZS959i6nr9FdbMmFpNeKevswOA8DQoK6BzAQJ2pfBtpmteUa39XaKPJMM460MPyKwWO-Khv-C3PBPGeHSIf0NEaCnBLLHY5_qIqMlgfi0NoVH&uniplatform=NZKPT (accessed on 5 December 2024).
- Carlsson, R.; Otto, A.; Hall, J.W. The role of infrastructure in macroeconomic growth theories. Civ. Eng. Environ. Syst. 2013, 30, 263–273. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhou, Q.; Zhao, T. Who will lead the ’Internet Plus’ of China’s manufacturing industry? Ind. Rev. 2015, 6, 5–14. Available online: https://link.oversea.cnki.net/doi/10.14007/j.cnki.cjpl.2015.04.001 (accessed on 4 January 2025).
- Li, J.; Zhou, M. Can the Internet enhance the complexity of a country’s manufacturing exports? Int. Trade Econ. Explor. 2017, 33, 24–38. Available online: https://link.oversea.cnki.net/doi/10.13687/j.cnki.gjjmts.2017.04.003 (accessed on 4 January 2025).
- Guo, R.; Yuan, Y.; Zhang, Y. Internet development, technological innovation and international competitiveness of manufacturing industry: An empirical analysis based on cross-country data. Explor. Econ. Probl. 2021, 1, 171–180. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAXEz9sbp9MbQEjw2NDM6z8yOBmymcCQixx4Vp8sKDW7wBbIGlJtC0QUi4AUahdqV8wBaVAYzMEIDKLfISnb_q884eqlVrOViNSuBQbE1MWXUJdS3H0whmhWH-AhU2S5ctF3vN_Ai1aQUy5V94_4RewRdeYxuw1lGvVO-dsgo2b3oeKK8ssthmBl&uniplatform=NZKPT (accessed on 8 December 2024).
- Yin, Z.H.; Choi, C.H. The effects of China’s cross-border e-commerce on its exports: A comparative analysis of goods and services trade. Electron. Commer. Res. 2023, 23, 443–474. [Google Scholar] [CrossRef]
- Szalavetz, A. Digital transformation–enabling factory economy actors’ entrepreneurial integration in global value chains? Post-Communist Econ. 2020, 32, 771–792. [Google Scholar] [CrossRef]
- Tu, Y.; Shangguan, J.Z. Cross-border E-commerce: A new driver of global trade. Emerg. Issues Glob. Mark. 2018, 3, 93–117. [Google Scholar] [CrossRef]
- Khan, A.A.; Laghari, A.A.; Li, P.; Dootio, M.A.; Karim, S. The collaborative role of blockchain, artificial intelligence, and industrial internet of things in digitalization of small and medium-size enterprises. Sci. Rep. 2023, 13, 1656. [Google Scholar] [CrossRef]
- Mourtzis, D.; Panopoulos, N. Digital Transformation Process Towards Resilient Production Systems and Networks. Supply Netw. Dyn. Control. 2022, 10, 11–42. [Google Scholar]
- Stachová, K.; Stacho, Z.; Cagáňová, D.; Starecek, A. Use of digital technologies for intensifying knowledge sharing. Appl. Sci. 2020, 10, 4281. Available online: https://www.mdpi.com/2076-3417/10/12/4281 (accessed on 4 January 2025). [CrossRef]
- Añón Higón, D.; Bonvin, D. Digitalization and trade participation of SMEs. Small Bus. Econ. 2024, 62, 857–877. [Google Scholar] [CrossRef]
- Rietveld, J.; Nieborg, D.; Ploog, J.N. Platform Ecosystem Evolution: Implications for Complementors [C]//Academy of Management Proceedings. Briarcliff Manor, NY 10510. Acad. Manag. 2019, 2019, 11669. Available online: https://journals.aom.org/doi/abs/10.5465/AMBPP.2019.11669abstract (accessed on 4 January 2025).
- Svahn, F.; Mathiassen, L.; Lindgren, R. Embracing digital innovation in incumbent firms: How Volvo cars managed competing concerns. MIS Q. 2017, 41, 239–253. Available online: https://www.jstor.org/stable/26629645 (accessed on 4 January 2025). [CrossRef]
- Lobo, S.; Whyte, J. Aligning and reconciling: Building project capabilities for digital delivery. Res. Policy 2017, 46, 93–107. Available online: https://www.sciencedirect.com/science/article/pii/S0048733316301688 (accessed on 20 December 2024). [CrossRef]
- Bohnsack, R.; Kurtz, H.; Hanelt, A. Re-examining path dependence in the digital age: The evolution of connected car business models. Res. Policy 2021, 50, 104328. Available online: https://www.sciencedirect.com/science/article/pii/S0048733321001281 (accessed on 20 December 2024). [CrossRef]
- Krugman, P. The Age of Diminishing Expectations: US Economic Policy in the 1990s; MIT Press: Cambridge, MA, USA, 1994; Available online: https://mitpress.mit.edu/9780262611343/the-age-of-diminishedexpectations/ (accessed on 20 December 2024).
- Prüfer, J.; Schottmüller, C. Competing with big data. J. Ind. Econ. 2021, 69, 967–1008. [Google Scholar] [CrossRef]
- Fan, H.; Li, Y.A.; Xu, S.; Yeaple, S.R. Quality, variable markups, and welfare: A quantitative general equilibrium analysis of export prices. J. Int. Econ. 2020, 125, 103327. [Google Scholar] [CrossRef]
- Feenstra, R.C.; Romalis, J. International prices and endogenous quality. Q. J. Econ. 2014, 129, 477–527. [Google Scholar] [CrossRef]
- Mayer, T.; Melitz, M.J.; Ottaviano, G.I.P. Market size, competition, and the product mix of exporters. Am. Econ. Rev. 2014, 104, 495–536. [Google Scholar] [CrossRef]
- Xie, K.; Xia, Z.; Xiao, J. The mechanism by which big data becomes a real productive factor for enterprises: A product innovation perspective. China Ind. Econ. 2020, 5, 42–60. Available online: https://link.oversea.cnki.net/doi/10.19581/j.cnki.ciejournal.2020.05.014 (accessed on 4 January 2025).
- Tang, Y.; Wang, Y.; Tang, C. Digital economy, market structure, and innovation performance. China Ind. Econ. 2022, 10, 62–80. Available online: https://link.oversea.cnki.net/doi/10.19581/j.cnki.ciejournal.2022.10.004 (accessed on 4 January 2025).
- Chen, J.; Huang, S.; Liu, Y. From empowerment to enablement—Enterprise operation management in the digital environment. Manag. World 2020, 36, 117–128+222. Available online: https://link.cnki.net/doi/10.19744/j.cnki.11-1235/f.2020.0025 (accessed on 4 January 2025).
- Lendle, A.; Olarreaga, M.; Schropp, S.; Vézina, P.-L. There goes gravity: eBay and the death of distance. Econ. J. 2016, 126, 406–441. [Google Scholar] [CrossRef]
- Cai, G.; Yang, H. Can foreign direct investment improve factor market distortions in China? China Ind. Econ. 2019, 10, 42–60. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAUjQ-JoRjfxxahj6xJHQ2fxLmnYhpc508UkonF8ncko3z1rnOScSwxyjYwYaiJ8XiqT0fvVxtGU9xLRmRDEp3U4d_aUsxiliPKgMaSr37xIa-Obf67APOM-TpG8VPl0ViUuTS1A7gvpOjCEqWjA_UlH78KOlpBfivuttXFRY_KBmCSfQWpKRrzL&uniplatform=NZKPT (accessed on 25 December 2024).
- Gong, Y.; Xiao, Y.; Xiao, W. The impact of digital trade on attracting foreign direct investment. Price Mon. 2023, 8, 57–62. Available online: https://link.oversea.cnki.net/doi/10.14076/j.issn.1006-2025.2023.08.08 (accessed on 4 January 2025).
- Xue, D. Research on the classification system and standards of digital talent for intelligent manufacturing: Insights from the digital talent framework of the US DMDII. Jiangsu High. Educ. 2021, 3, 68–75. Available online: https://link.oversea.cnki.net/doi/10.13236/j.cnki.jshe.2021.03.010 (accessed on 4 January 2025).
- Cohen, W.M.; Levinthal, D.A. Absorptive capacity: A new perspective on learning and innovation. Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar] [CrossRef]
- Stacks, D.W.; Salwen, M.B. (Eds.) An Integrated Approach to Communication Theory and Research, 2nd ed.; Routledge: London, UK, 2008. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. Available online: https://www.aeaweb.org/article?id=10.1257/jep.33.2.3 (accessed on 25 December 2024). [CrossRef]
- Shen, G.; Yuan, Z. Internetisation, innovation protection, and improving the quality of Chinese enterprises’ export products. World Econ. 2020, 43, 127–151. Available online: https://link.oversea.cnki.net/doi/10.19985/j.cnki.cassjwe.2020.11.007 (accessed on 4 January 2025).
- Chen, Y.; Li, F.; Qian, Y. The role of transnational technology mergers and acquisitions in promoting the digital upgrading of manufacturing enterprises: A case study based on the perspective of the new smile curve of the value chain. Mod. Manag. Sci. 2024, 1, 139–147. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAX8x16HskbA5INf3cWcLGTKciHpCyy_rwkLFM15OYOULe6CcMGaEG_oBxgklanrvnz0_OHfqHoqmT5LGALUZNZpi0MUIBfXs7zWBwA_k_a2VLzxX0HoK7TKfoPefkccfSUsD4_lZRPJhy93l-K04okmLLFkCiQ-LnGj2YM5nXxywoIGOolx-1ur&uniplatform=NZKPT (accessed on 25 December 2024).
- Yao, Z. The impact of human capital and collaborative agglomeration on the technological complexity of exports: Based on the perspective of moderated mediating effects. J. Xi’an Jiaotong Univ. (Soc. Sci. Ed.) 2020, 40, 80–90. Available online: https://link.oversea.cnki.net/doi/10.15896/j.xjtuskxb.202004009 (accessed on 4 January 2025).
- Ji, P.; Yuan, L. The spatial-temporal evolution characteristics and economic effects of Beijing-Tianjin-Hebei’s digital product manufacturing industry. Econ. Geogr. 2024, 44, 33–42. Available online: https://link.oversea.cnki.net/doi/10.15957/j.cnki.jjdl.2024.04.004 (accessed on 4 January 2025).
- Yao, Z. Digital trade, industrial structure upgrading and export technology complexity: Multiple mediation effects based on structural equation models. Reform 2021, 1, 50–64. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAUzA-7SexQYGCAHfE7zWoJLlZuCDIr9pv8cDFOo9ZTkGNxoVm2rpZrhpKzZMsUCrgIQznX7rd2o5f7VGfWFcyB1HKRhmCQDBd761qBOuDkv4bxRYJwwsY1w6AEl3Y9lJgbpdBMx7jaYrTZ261vMOApYj-AcqxnocsXPVNENQUY564e8PWHvUIHV&uniplatform=NZKPT (accessed on 25 December 2024).
- Huang, L.; Wang, Y.; Wu, Z. High-quality development of manufacturing industry and digital trade: An examination from provincial panel data from 2012 to 2020. Mod. Manag. Sci. 2023, 4, 136–145. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAW11IT6T6G6bsTJauB3wakr-W6bbNjG5C6AaB3Ao-uy2CpHouQB0b9PHPH90lOxO-Stkzjb4ChLNDXvNyqrW-rKtnNhid3Ajkl-BXLdIklcDwTSRhNaoPSfF75j9Hg6NQXxUL5JMhdO7FfQ2heZvp-Tq5nI0_lwOy_FoOAYa-0rZYkWueEsSg4q&uniplatform=NZKPT (accessed on 4 January 2025).
- Jiang, T. Mediating and moderating effects in empirical research on causal inference. China Ind. Econ. 2022, 5, 100–120. Available online: https://link.oversea.cnki.net/doi/10.19581/j.cnki.ciejour (accessed on 4 January 2025).
- Zhu, Z.; Yuan, Y.; Jiao, J. Industrial automation and manufacturing innovation behavior. China Ind. Econ. 2022, 7, 84–102. Available online: https://link.oversea.cnki.net/doi/10.19581/j.cnki.ciejournal.2022.07.019 (accessed on 4 January 2025).
- Dell, M. The persistent effects of Peru’s mining mita. Econometrica 2010, 78, 1863–1903. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, K. The impact of digital trade on China’s high-quality full employment. Technol. Econ. 2024, 43, 10–21. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAX5ETFyIaStGcozrTc9vhWNi_WSZBdnZP-YSD55aeTI790zBI5vZCj1qQ9HTBu9fwT2QDHtK-emPV7iYVZzrzc9C2ynNIfRCX_NnSAZqS9bidNgWipOkQx2asg6kgl3xrV1pXgUN2AawK-bMZMmSUV1Fp_KzprLDkSFVfOA2b5MwglRknmGIA7A&uniplatform=NZKPT (accessed on 4 January 2025).
- Huang, Q.; Yu, Y.; Zhang, S. Internet development and manufacturing productivity improvement: Internal mechanism and China’s experience. China Ind. Econ. 2019, 8, 5–23. Available online: https://link.oversea.cnki.net/doi/10.19581/j.cnki.ciejournal.2019.08.001 (accessed on 4 January 2025).
- Xiong, Y.; Hu, J. Research on the Changing Trend and Influencing Factors of the Terms of International Trade in Emerging Industries—A Comparison Based on High-end and Traditional Equipment Manufacturing Industries. J. Nanjing Audit. Univ. 2017, 14, 11–21. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAVDII9W6yJxRburpQpWvWCIl9xBLfGIiALyufVbNoObAzRvp8BKdf7cew_P0MgX_1oES0Q_eEINc-38FVNA2R9yUZ4Z30neCanY74XTgdyCtM-0GQsiR3YkkjmYKiGPaUbc4NEvipQvxHsQKNS2UBMoqALyn7-VYX5K1f6uGEosz_FYYY5UgIrS&uniplatform=NZKPT (accessed on 4 January 2025).
- Yan, D.; Wang, Y.; Sun, W.; Li, P. A Comparative Study on the Driving Factors and Spatial Spillover Effects of Regional Economic Growth. Geogr. Res. 2021, 40, 3137–3153. Available online: https://kns.cnki.net/kcms2/article/abstract?v=tOz5m-jLbAUvxOFwEZbtRfEyYGYcxUHCY9JAKdl1nYOD8ZHjZJFyZqvpU70Ig6rHHP9e3UaiqSqJNMky23oc0Cm9B4SRVILKPJCRetKzsah4Peh7pZubUFIGO_V34FR4KLu32jIEZdij91M-AWdCvZhD6Io226tgKNMUtyBgFtCiL0Xu0KvD3HtZ-v9MpF39&uniplatform=NZKPT (accessed on 4 January 2025).
Level 1 Indicators | Level 2 Indicators | Level 2 Indicator Symbols |
---|---|---|
Digital trade foundation | Number of domain names (unit: 10,000) | X1 |
Number of web pages (unit: 10,000) | X2 | |
Internet broadband access ports (unit: 10,000) | X3 | |
Mobile telephone exchange capacity (unit: 10,000 households) | X4 | |
Mobile phone base stations (unit: 10,000) | X5 | |
Length of long-distance fiber-optic cable (unit: kilometers) | X6 | |
Mobile internet access traffic (unit: 10,000 GB) | X7 | |
Digital technology environment | Number of patent applications | X8 |
Number of patents granted | X9 | |
R&D expenditure of industrial enterprises above the designated size (unit: RMB 10,000) | X10 | |
Number of people employed in information transmission, software, and information technology services (unit: RMB 10,000) | X11 | |
Digital trade potential | Gross regional product (unit: RMB 100 million) | X12 |
Proportion of science and technology expenditure within regional fiscal expenditure (%) | X13 | |
Regional import and export volume (unit: RMB 100 million) | X14 | |
Digital trade capacity | E-commerce sales (unit: RMB 100 million) | X15 |
Software business revenue (unit: RMB 10,000) | X16 | |
Total telecommunications business volume (unit: RMB 100 million) | X17 | |
Digital trade industry | Number of listed companies in the digital trade industry | X18 |
Fixed asset investment in the information transmission, software, and information technology services industry (unit: RMB 100 million) | X19 |
Indicators | Weights | Indicators | Weights | Indicators | Weights | Indicators | Weights | Indicators | Weights |
---|---|---|---|---|---|---|---|---|---|
X1 | 0.07 | X5 | 0.03 | X9 | 0.06 | X13 | 0.03 | X17 | 0.03 |
X2 | 0.11 | X6 | 0.03 | X10 | 0.06 | X14 | 0.08 | X18 | 0.10 |
X3 | 0.03 | X7 | 0.03 | X11 | 0.05 | X15 | 0.06 | X19 | 0.03 |
X4 | 0.02 | X8 | 0.06 | X12 | 0.03 | X16 | 0.09 |
Region | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Average Index | Sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guangdong | 0.82 | 0.85 | 0.88 | 0.81 | 0.89 | 0.85 | 0.88 | 0.88 | 0.88 | 0.86 | 0.86 | 0.86 | 1 |
Jiangsu | 0.59 | 0.62 | 0.62 | 0.56 | 0.59 | 0.55 | 0.55 | 0.55 | 0.56 | 0.54 | 0.54 | 0.57 | 2 |
Beijing | 0.51 | 0.54 | 0.57 | 0.54 | 0.58 | 0.56 | 0.56 | 0.58 | 0.57 | 0.60 | 0.61 | 0.57 | 3 |
Zhejiang | 0.50 | 0.46 | 0.47 | 0.45 | 0.49 | 0.45 | 0.45 | 0.46 | 0.46 | 0.44 | 0.45 | 0.46 | 4 |
Shandong | 0.33 | 0.42 | 0.40 | 0.35 | 0.38 | 0.36 | 0.35 | 0.34 | 0.35 | 0.36 | 0.37 | 0.36 | 5 |
Shanghai | 0.33 | 0.32 | 0.35 | 0.32 | 0.36 | 0.33 | 0.32 | 0.33 | 0.34 | 0.34 | 0.33 | 0.33 | 6 |
Sichuan | 0.19 | 0.20 | 0.22 | 0.22 | 0.24 | 0.23 | 0.24 | 0.26 | 0.27 | 0.26 | 0.25 | 0.24 | 7 |
Fujian | 0.21 | 0.19 | 0.20 | 0.22 | 0.26 | 0.28 | 0.27 | 0.25 | 0.23 | 0.23 | 0.23 | 0.23 | 8 |
Henan | 0.17 | 0.17 | 0.19 | 0.19 | 0.21 | 0.21 | 0.22 | 0.22 | 0.25 | 0.24 | 0.23 | 0.21 | 9 |
Hubei | 0.15 | 0.15 | 0.17 | 0.18 | 0.18 | 0.18 | 0.18 | 0.20 | 0.19 | 0.18 | 0.19 | 0.18 | 10 |
Anhui | 0.13 | 0.14 | 0.15 | 0.15 | 0.18 | 0.17 | 0.18 | 0.18 | 0.20 | 0.20 | 0.20 | 0.17 | 11 |
Hebei | 0.15 | 0.15 | 0.15 | 0.13 | 0.16 | 0.16 | 0.16 | 0.17 | 0.18 | 0.18 | 0.18 | 0.16 | 12 |
Hunan | 0.14 | 0.13 | 0.14 | 0.14 | 0.15 | 0.15 | 0.16 | 0.18 | 0.18 | 0.17 | 0.18 | 0.16 | 13 |
Liaoning | 0.18 | 0.19 | 0.19 | 0.17 | 0.15 | 0.13 | 0.12 | 0.12 | 0.12 | 0.11 | 0.11 | 0.15 | 14 |
Shaanxi | 0.10 | 0.11 | 0.12 | 0.12 | 0.13 | 0.12 | 0.13 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 15 |
Tianjin | 0.11 | 0.13 | 0.13 | 0.12 | 0.12 | 0.11 | 0.11 | 0.10 | 0.11 | 0.10 | 0.09 | 0.11 | 16 |
Jiangxi | 0.08 | 0.07 | 0.09 | 0.09 | 0.10 | 0.11 | 0.11 | 0.12 | 0.13 | 0.13 | 0.12 | 0.10 | 17 |
Chongqing | 0.08 | 0.08 | 0.10 | 0.10 | 0.11 | 0.10 | 0.10 | 0.10 | 0.11 | 0.11 | 0.11 | 0.10 | 18 |
Guangxi | 0.08 | 0.08 | 0.12 | 0.08 | 0.09 | 0.10 | 0.10 | 0.11 | 0.12 | 0.11 | 0.11 | 0.10 | 19 |
Yunnan | 0.08 | 0.09 | 0.09 | 0.08 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 20 |
Heilongjiang | 0.09 | 0.11 | 0.10 | 0.08 | 0.09 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 21 |
Inner Mongolia | 0.07 | 0.07 | 0.08 | 0.15 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.07 | 0.08 | 22 |
Guizhou | 0.05 | 0.06 | 0.06 | 0.06 | 0.07 | 0.08 | 0.08 | 0.09 | 0.09 | 0.10 | 0.10 | 0.08 | 23 |
Shanxi | 0.07 | 0.08 | 0.08 | 0.06 | 0.07 | 0.07 | 0.08 | 0.07 | 0.08 | 0.08 | 0.08 | 0.07 | 24 |
Jilin | 0.06 | 0.06 | 0.07 | 0.06 | 0.08 | 0.08 | 0.07 | 0.06 | 0.07 | 0.05 | 0.06 | 0.06 | 25 |
Xinjiang | 0.05 | 0.05 | 0.06 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 26 |
Gansu | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 | 0.05 | 0.04 | 0.05 | 0.04 | 27 |
Hainan | 0.02 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 28 |
Ningxia | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 29 |
Qinghai | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 30 |
Tibet | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 31 |
Region | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Maximum Sequence Difference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
Tianjin | 15 | 15 | 15 | 16 | 16 | 16 | 17 | 19 | 19 | 19 | 21 | 6 |
Hebei | 12 | 12 | 12 | 15 | 12 | 12 | 13 | 13 | 13 | 12 | 13 | 3 |
Shanxi | 23 | 21 | 21 | 24 | 25 | 25 | 23 | 23 | 22 | 22 | 22 | 4 |
Inner Mongolia | 22 | 23 | 23 | 13 | 22 | 24 | 25 | 24 | 25 | 24 | 23 | 12 |
Liaoning | 9 | 8 | 8 | 11 | 14 | 14 | 15 | 15 | 15 | 16 | 18 | 10 |
Jilin | 24 | 24 | 24 | 23 | 23 | 23 | 24 | 25 | 24 | 26 | 26 | 3 |
Heilongjiang | 17 | 16 | 16 | 22 | 21 | 21 | 22 | 22 | 23 | 23 | 24 | 8 |
Shanghai | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 0 |
Jiangsu | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 1 |
Zhejiang | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 |
Anhui | 14 | 13 | 13 | 12 | 11 | 11 | 11 | 11 | 10 | 10 | 10 | 4 |
Fujian | 7 | 9 | 9 | 8 | 7 | 7 | 7 | 8 | 9 | 9 | 9 | 2 |
Jiangxi | 21 | 22 | 22 | 19 | 18 | 17 | 16 | 16 | 14 | 14 | 14 | 8 |
Shandong | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 0 |
Henan | 10 | 10 | 10 | 9 | 9 | 9 | 9 | 9 | 8 | 8 | 8 | 2 |
Hubei | 11 | 11 | 11 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 1 |
Hunan | 13 | 14 | 14 | 14 | 13 | 13 | 12 | 12 | 12 | 13 | 12 | 2 |
Guangdong | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Guangxi | 19 | 19 | 19 | 21 | 19 | 19 | 18 | 17 | 17 | 17 | 17 | 4 |
Hainan | 28 | 28 | 28 | 28 | 28 | 28 | 29 | 28 | 28 | 28 | 28 | 1 |
Chongqing | 18 | 20 | 20 | 18 | 17 | 18 | 19 | 18 | 18 | 18 | 16 | 4 |
Sichuan | 8 | 7 | 7 | 7 | 8 | 8 | 8 | 7 | 7 | 7 | 7 | 1 |
Guizhou | 25 | 25 | 25 | 25 | 24 | 22 | 21 | 21 | 21 | 20 | 19 | 6 |
Yunnan | 20 | 18 | 18 | 20 | 20 | 20 | 20 | 20 | 20 | 21 | 20 | 3 |
Tibet | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 30 | 31 | 31 | 1 |
Shaanxi | 16 | 17 | 17 | 17 | 15 | 15 | 14 | 14 | 16 | 15 | 15 | 3 |
Gansu | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 0 |
Qinghai | 29 | 29 | 29 | 29 | 29 | 30 | 30 | 30 | 31 | 30 | 30 | 2 |
Ningxia | 30 | 30 | 30 | 30 | 30 | 29 | 28 | 29 | 29 | 29 | 29 | 2 |
Xinjiang | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 25 | 25 | 1 |
Categorization | Region |
---|---|
Stable development | Beijing, Shanghai, Jiangsu, Zhejiang, Shandong, Hubei, Guangdong, Hainan, Sichuan, Tibet, Gansu, Xinjiang |
Fluctuating development | Hebei, Jilin, Fujian, Henan, Hunan, Yunnan, Shaanxi, Qinghai, Ningxia |
Jumping development | Tianjin, Shanxi, Inner Mongolia, Liaoning, Heilongjiang, Anhui, Jiangxi, Guangxi, Chongqing, Guizhou |
Year | MS Index | TC Index | RCA Index | MI Index |
---|---|---|---|---|
2012 | 0.57 | 0.13 | 0.16 | 0.14 |
2013 | 0.59 | 0.12 | 0.15 | 0.13 |
2014 | 0.57 | 0.12 | 0.16 | 0.15 |
2015 | 0.60 | 0.13 | 0.09 | 0.18 |
2016 | 0.63 | 0.15 | 0.09 | 0.14 |
2017 | 0.59 | 0.14 | 0.08 | 0.19 |
2018 | 0.55 | 0.14 | 0.08 | 0.24 |
2019 | 0.57 | 0.15 | 0.08 | 0.19 |
2020 | 0.59 | 0.17 | 0.09 | 0.14 |
2021 | 0.58 | 0.17 | 0.11 | 0.14 |
2022 | 0.60 | 0.17 | 0.12 | 0.11 |
Average | 0.58 | 0.15 | 0.11 | 0.16 |
Year | Ranking and Composite Index | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
2012 | Guangdong 0.85 | Jiangsu 0.64 | Zhejiang 0.55 | Hebei 0.44 | Shanghai 0.44 | Shandong 0.39 | Ningxia 0.34 | Inner Mongolia 0.34 | Henan 0.34 | Tianjin 0.33 |
2013 | Guangdong 0.87 | Jiangsu 0.58 | Zhejiang 0.51 | Hebei 0.42 | Shanghai 0.40 | Shandong 0.37 | Henan 0.32 | Fujian 0.31 | Shanxi 0.30 | Tianjin 0.29 |
2014 | Guangdong 0.85 | Jiangsu 0.59 | Zhejiang 0.51 | Hebei 0.45 | Shandong 0.39 | Shanghai 0.39 | Henan 0.33 | Tibet 0.33 | Shanxi 0.32 | Fujian 0.30 |
2015 | Guangdong 0.82 | Jiangsu 0.54 | Zhejiang 0.51 | Shanghai 0.38 | Guangxi 0.36 | Shandong 0.34 | Fujian 0.32 | Chongqing 0.31 | Xinjiang 0.30 | Jiangxi 0.27 |
2016 | Guangdong 0.86 | Jiangsu 0.57 | Zhejiang 0.55 | Shanghai 0.39 | Shandong 0.35 | Fujian 0.33 | Xinjiang 0.32 | Guangxi 0.31 | Hebei 0.28 | Chongqing 0.28 |
2017 | Guangdong 0.82 | Jiangsu 0.58 | Zhejiang 0.53 | Shanghai 0.37 | Guangxi 0.37 | Shandong 0.34 | Fujian 0.32 | Xinjiang 0.31 | Hebei 0.30 | Chongqing 0.27 |
2018 | Guangdong 0.77 | Jiangsu 0.58 | Zhejiang 0.52 | Guangxi 0.43 | Shanghai 0.37 | Shandong 0.33 | Fujian 0.31 | Hebei 0.30 | Xinjiang 0.30 | Chongqing 0.28 |
2019 | Guangdong 0.83 | Jiangsu 0.64 | Zhejiang 0.60 | Guangxi 0.41 | Shanghai 0.40 | Shandong 0.37 | Fujian 0.37 | Hunan 0.34 | Tibet 0.33 | Xinjiang 0.33 |
2020 | Guangdong 0.88 | Jiangsu 0.68 | Zhejiang 0.68 | Shandong 0.45 | Shanghai 0.42 | Fujian 0.40 | Guangxi 0.38 | Hunan 0.36 | Chongqing 0.36 | Anhui 0.36 |
2021 | Guangdong 0.86 | Jiangsu 0.69 | Zhejiang 0.69 | Shandong 0.47 | Shanghai 0.41 | Fujian 0.41 | Chongqing 0.38 | Jiangxi 0.37 | Guangxi 0.37 | Xinjiang 0.37 |
2022 | Guangdong 0.86 | Jiangsu 0.70 | Zhejiang 0.70 | Shandong 0.47 | Shanghai 0.42 | Fujian 0.39 | Xinjiang 0.38 | Hunan 0.36 | Jiangxi 0.36 | Anhui 0.35 |
Variable Category | Symbol | Variable Name | Description of Variable |
---|---|---|---|
Explained variables | MIC | International competitiveness of the manufacturing industry | Comprehensive evaluation by assigning weights to four commonly used international competitiveness evaluation indicators using the coefficient of variation method |
Core explanatory variables | DT | Level of development of digital trade | Entropy weight TOPSIS combined measures |
Control variables | HC | Human capital stock | Years of schooling per capita |
INF | Logistics infrastructure | Ratio of the sum of the number of railway and motorway miles operated in each province to the land area of the region | |
GOV | Level of government regulation | The ratio of general budget expenditure to GDP | |
Mediating variables | FDI | Level of foreign investment | Total foreign investment |
RD | Scientific and technological research and development capacity | Full-time equivalent R&D personnel |
Variable | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
MIC | 341 | 0.29 | 0.16 | 0.00 | 0.88 |
DT | 341 | 0.19 | 0.19 | 0.00 | 0.89 |
HC | 341 | 8.98 | 1.10 | 4.22 | 12.59 |
INF | 341 | 0.07 | 0.05 | 0.01 | 0.22 |
GOV | 341 | 0.28 | 0.21 | 0.11 | 1.38 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | MIC | MIC | MIC | MIC |
DT | 0.45 *** | 0.45 *** | 0.44 *** | 0.44 *** |
(0.12) | (0.13) | (0.12) | (0.12) | |
HC | −0.01 | −0.00 | −0.01 | |
(0.02) | (0.02) | (0.02) | ||
INF | −0.15 * | −0.16 ** | ||
(0.07) | (0.08) | |||
GOV | −0.01 | |||
(0.02) | ||||
Constant | −0.07 | 0.02 | −0.00 | 0.01 |
(0.07) | (0.19) | (0.19) | (0.19) | |
Observations | 341 | 341 | 341 | 341 |
R-squared | 0.93 | 0.93 | 0.93 | 0.93 |
ID FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | DT | MIC | DT | MIC |
iv1 | 0.00 *** | |||
(0.00) | ||||
iv2 | 0.00 *** | |||
(0.00) | ||||
DT | 0.80 *** | 1.15 *** | ||
(0.04) | (0.09) | |||
Constant | −0.19 | 0.62 *** | −0.73 *** | 0.94 *** |
(0.15) | (0.14) | (0.21) | (0.23) | |
ID FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Control | Yes | Yes | Yes | Yes |
Observations | 341 | 341 | 341 | 341 |
R-squared | 0.50 | 0.61 | 0.34 | 0.40 |
KP rk LM | 64.16 | 37.06 | ||
[0.00] | [0.00] | |||
KP rk Wald F | 59.89 | 27.09 | ||
{16.38} | {16.38} |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | Substitution of Explanatory Variables | Reduced Sample | One-Period Lag | Elimination of Special Years | GMM |
DT | 0.35 *** | 0.41 *** | 0.49 *** | 0.43 *** | |
(0.11) | (0.12) | (0.16) | (0.16) | ||
L.dt | 0.22 * | ||||
(0.13) | |||||
L.mic | 1.03 *** | ||||
(0.12) | |||||
Constant | −0.01 | −0.07 | 0.12 | 1.03 *** | 0.43 ** |
(0.22) | (0.37) | (0.28) | (0.38) | (0.18) | |
ID FE | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
Control | Yes | Yes | Yes | Yes | Yes |
Observations | 341 | 319 | 310 | 248 | 310 |
R-squared | 0.96 | 0.94 | 0.94 | 0.93 | |
AR (1) | 0.02 | ||||
AR (2) | 0.11 | ||||
Sargan | 0.62 | ||||
Hansen | 0.59 |
Cronbach’s Alpha | Cronbach’s Alpha Based on Standardized Terms | |
---|---|---|
Average interitem correlation | 0.51 | 0.59 |
Number of items in the scale | 18 | 18 |
Scale reliability coefficient | 0.95 | 0.96 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Nationwide | Eastern Region | Central Region | Western Region |
DT | 0.42 *** | 0.72 *** | 0.60 *** | 0.44 *** |
(0.12) | (0.04) | (0.18) | (0.09) | |
Constant | 0.06 | 1.98 *** | 1.68 *** | 0.15 |
(0.29) | (0.33) | (0.58) | (0.12) | |
Observations | 341 | 121 | 88 | 132 |
R-squared | 0.93 | 0.78 | 0.47 | 0.16 |
ID FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Control | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable | MIC | lfdi | MIC | lrd | MIC |
DT | 0.42 *** | 4.80 *** | 0.36 *** | 2.98 *** | 0.27 ** |
(0.12) | (1.27) | (0.12) | (0.58) | (0.13) | |
lfdi | 0.01 ** | ||||
(0.01) | |||||
lrd | 0.05 ** | ||||
(0.02) | |||||
Constant | 0.06 | −2.42 | 0.09 | 9.33 *** | −0.42 |
(0.29) | (2.19) | (0.28) | (0.61) | (0.36) | |
Observations | 341 | 341 | 341 | 341 | 341 |
R-squared | 0.93 | 0.95 | 0.93 | 0.99 | 0.93 |
ID FE | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
Control | Yes | Yes | Yes | Yes | Yes |
Year | MIC | DT | ||||
---|---|---|---|---|---|---|
Moran’s I | Z Value | p Value | Moran’s I | Z Value | p Value | |
2012 | 0.15 | 1.92 | 0.06 | 0.21 | 2.27 | 0.02 |
2013 | 0.18 | 2.26 | 0.02 | 0.19 | 2.12 | 0.03 |
2014 | 0.16 | 2.05 | 0.04 | 0.19 | 2.09 | 0.04 |
2015 | 0.23 | 2.88 | 0.00 | 0.18 | 1.99 | 0.05 |
2016 | 0.24 | 3.00 | 0.00 | 0.20 | 2.25 | 0.02 |
2017 | 0.27 | 3.29 | 0.00 | 0.20 | 2.26 | 0.02 |
2018 | 0.26 | 3.06 | 0.00 | 0.19 | 2.17 | 0.03 |
2019 | 0.30 | 3.50 | 0.00 | 0.19 | 2.12 | 0.03 |
2020 | 0.35 | 3.95 | 0.00 | 0.20 | 2.21 | 0.03 |
2021 | 0.35 | 3.96 | 0.00 | 0.20 | 2.21 | 0.03 |
2022 | 0.33 | 3.81 | 0.00 | 0.19 | 2.12 | 0.03 |
Test | Result | p Value |
---|---|---|
LM-Error test | 2.97 | 0.09 |
Robust LM-Error test | 1.42 | 0.23 |
LM-Lag test | 31.56 | 0.00 |
Robust LM-Lag test | 30.02 | 0.00 |
LR_spatial_lag | 19.36 | 0.00 |
LR_spatial_error | 9.01 | 0.03 |
Wald_spatial_lag | 21.70 | 0.00 |
Wald_spatial_error | 11.28 | 0.02 |
(1) | (2) | |
---|---|---|
Variable | SDM Main | SDM Wx |
DT | 0.73 *** | 0.37 *** |
(0.03) | (0.08) | |
HC | −0.30 *** | −0.12 |
(0.05) | (0.09) | |
GOV | −0.04 * | 0.00 |
(0.02) | (0.03) | |
inf | −0.01 | −0.00 |
(0.01) | (0.02) | |
rho | −0.34 *** | |
(0.09) | ||
Sigma2_e | 0.01 *** | |
(0.00) | ||
Observations | 341 | |
R-squared | 0.71 | |
N | 31 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | SDM Direct | SDM Indirect | SDM Total |
DT | 0.73 *** | 0.09 *** | 0.82 *** |
(0.03) | (0.03) | (0.03) | |
HC | −0.31 *** | −0.01 | −0.32 *** |
(0.05) | (0.07) | (0.06) | |
GOV | −0.03 * | 0.01 | −0.02 |
(0.02) | (0.03) | (0.02) | |
inf | −0.01 | 0.00 | −0.01 |
(0.01) | (0.02) | (0.01) | |
rho | −0.34 *** | ||
(0.09) | |||
Sigma2_e | 0.01 *** | ||
(0.00) | |||
Observations | 341 | ||
R-squared | 0.71 | ||
N | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Kang, C. Research on the Impact of the Development of China’s Digital Trade on the International Competitiveness of the Manufacturing Industry. Systems 2025, 13, 283. https://doi.org/10.3390/systems13040283
Ma H, Kang C. Research on the Impact of the Development of China’s Digital Trade on the International Competitiveness of the Manufacturing Industry. Systems. 2025; 13(4):283. https://doi.org/10.3390/systems13040283
Chicago/Turabian StyleMa, Huilian, and Chengwen Kang. 2025. "Research on the Impact of the Development of China’s Digital Trade on the International Competitiveness of the Manufacturing Industry" Systems 13, no. 4: 283. https://doi.org/10.3390/systems13040283
APA StyleMa, H., & Kang, C. (2025). Research on the Impact of the Development of China’s Digital Trade on the International Competitiveness of the Manufacturing Industry. Systems, 13(4), 283. https://doi.org/10.3390/systems13040283