Digital Transformation and Corporate Carbon Emissions: The Moderating Role of Corporate Governance
Abstract
:1. Introduction
2. Theoretical Background and Hypotheses
3. Research Design
3.1. Sample Selection and Data Sources
3.2. Variable Definition
3.2.1. Dependent Variable: Corporate Carbon Emissions
3.2.2. Independent Variable: Digital Transformation
3.2.3. Moderating Variables
3.2.4. Control Variables
3.3. Model Construction
4. Empirical Analysis Results
4.1. Descriptive Statistics
4.2. Correlation Analysis
4.3. Regression Results and Analysis
4.4. Robustness Test
4.4.1. Removing Samples for the 2020 Pandemic Year for Robustness Testing
4.4.2. Robustness Test: Taking a Single Industry from the Total Sample as a Mechanism Sample
4.4.3. Robustness Test Based on the Two-Stage Least Squares Method
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Implications
5.4. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, P.; Nie, J. Robust Expansion of Extreme Midlatitude Storms under Global Warming. Geophys. Res. Lett. 2022, 49, e2022GL099007. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, F. Design of Energy Use Rights Trading Policy from the Perspective of Energy Vulnerability. Energy Pol. 2022, 160, 112668. [Google Scholar] [CrossRef]
- Woolway, R.I.; Albergel, C.; Frölicher, T.L.; Perroud, M. Severe Lake Heatwaves Attributable to Human-Induced Global Warming. Geophys. Res. Lett. 2022, 49, e2021GL097031. [Google Scholar] [CrossRef]
- Xu, G.; Dong, H.; Xu, Z.; Bhattarai, N. China Can Reach Carbon Neutrality before 2050 by Improving Economic Development Quality. Energy 2022, 243, 123087. [Google Scholar] [CrossRef]
- Pan, D.; Hong, W. Benefits and Costs of Campaign-Style Environmental Implementation: Evidence from China’s Central Environmental Protection Inspection System. Environ. Sci. Pollut. Res. 2022, 29, 45230–45247. [Google Scholar] [CrossRef]
- Zhou, Y. The Application Trend of Digital Finance and Technological Innovation in the Development of Green Economy. J. Environ. Public Health 2022, 2022, 1064558. [Google Scholar] [CrossRef]
- Su, J.; Su, K.; Wang, S. Does the Digital Economy Promote Industrial Structural Upgrading?: A Test of Mediating Effects Based on Heterogeneous Technological Innovation. Sustainability 2021, 13, 10105. [Google Scholar] [CrossRef]
- The Xinhua News Agency. The State Council issues the “14th five year Plan for the Development of Digital Economy”. 2022. Available online: https://www.gov.cn/xinwen/2022-01/12/content_5667840.htm (accessed on 19 March 2025).
- Zahoor, Z.; Khan, I.; Hou, F. Clean Energy Investment and Financial Development As Determinants of Environment and Sustainable Economic Growth: Evidence from China. Environ. Sci. Pollut. Res. Int. 2022, 29, 16006–16016. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.; Sheng, M.S.; Wen, L. Effects of Digital Economy on Carbon Emission Reduction: New Evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Sorooshian, S.; Adeleke, A.Q. Green and Low Carbon Matters: A Systematic Review of the Past, Today, and Future on Sustainability Supply Chain Management Practices Among Manufacturing Industry. Clean. Eng. Technol. 2021, 4, 100144. [Google Scholar] [CrossRef]
- Liang, S.; Yang, J.; Ding, T. Performance Evaluation of AI Driven Low Carbon Manufacturing Industry in China: An Interactive Network DEA Approach. Comput. Ind. Eng. 2022, 170, 108248. [Google Scholar] [CrossRef]
- Yuan, B.; Cao, X. Do Corporate Social Responsibility Practices Contribute to Green Innovation? The Mediating Role of Green Dynamic Capability. Technol. Soc. 2022, 68, 101868. [Google Scholar] [CrossRef]
- Dettling, L.J. Broadband in the labor market. ILR Rev. 2017, 70, 451–482. [Google Scholar] [CrossRef]
- Hu, L.; Chen, J. Analysis on the Framework and Mechanism of Integrated Innovation. Sci. Manag. Res. 2020, 38, 2–9. [Google Scholar]
- Dauvergne, P. Is Artificial Intelligence Greening Global Supply Chains? Exposing the Political Economy of Environmental Costs. Rev. Int. Pol. Econ. 2022, 29, 696–718. [Google Scholar] [CrossRef]
- Cao, Y.; Ding, J.; Liu, C.; Wang, S. CNOOC: Green and Low-Carbon Development of Offshore Oil and Gas Resources. Bus. Manag. 2023, 5, 59–63. [Google Scholar]
- Xu, J.; Hao, Y. National Audits to Enable the “Double Carbon” Goal: Internal Logic and Operational Mechanisms. Audit Watch 2022, 9, 24–27. [Google Scholar]
- Germany’s Energy Transition Goals, Status and Outlook, and Its Implications for China’s Peak Carbon Neutrality Action Program (PCNAP); Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ): Bonn, Germany, 2023.
- Zhang, H.; Feng, F. Can Informal Environmental Regulation Reduce Carbon Emissions?: Quasi-Natural Experiments from Environmental Information Disclosure. Res. Econ. Manag. 2020, 41, 62–80. [Google Scholar]
- Guangqin, X.; Daqian, S.; Meina, L.I. The Effect of Low-Carbon Pilot Cities on the Green Technology Innovation of Enterprises. Sci. Res. Manag. 2020, 41, 93–102. [Google Scholar]
- Shi, D.; Bu, C.; Xue, H. Deterrence Effects of Disclosure: The Impact of Environmental Information Disclosure on Emission Reduction of Firms. Energy Econ. 2021, 104, 105680. [Google Scholar] [CrossRef]
- China Government Network. Implementing “Dual-Carbon” Actions to Build a Beautiful China. 2024. Available online: http://www.gov.cn/yaowen/liebiao/202404/content_6948005.htm (accessed on 19 March 2025).
- Business Wire. Digital China Development Report (2022) Released, China’s Digital Economy Ranks Second in the World. 2023. Available online: https://www.businesswire.com/news/home/20230429005017/en/Digital-ChinaDevelopment-Report-2022-Released-Chinas-Digital-Economy-Ranks-Second-in-the-World (accessed on 19 March 2025).
- Zhao, J. The Digital Economy and the Economic Methodology of Science. Theor. Mon. 2022, 2, 68–78. [Google Scholar]
- Ai, Y.; Song, P.; Li, L. A Study of the Structural Transformation Effect of Digital Industrialisation: Theoretical Models and Empirical Tests. Econ. Manag. Stud. 2023, 44, 3–23. [Google Scholar]
- Zhu, Q.; Sarkis, J.; Lai, K.H. Green Supply Chain Management Innovation Diffusion and Its Relationship to Organizational Improvement: An Ecological Modernization Perspective. J. Eng. Technol. Manag. 2012, 29, 168–185. [Google Scholar] [CrossRef]
- Kulkov, I. The Role of Artificial Intelligence in Business Transformation: A Case of Pharmaceutical Companies. Technol. Soc. 2021, 66, 101629. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Zeng, Q.; Ao, J.; Chen, X.; Zhang, S. Can Artificial Intelligence Achieve Carbon Neutrality? Evidence from a Quasi-Natural Experiment. Front. Ecol. Evol. 2023, 11, 1151017. [Google Scholar] [CrossRef]
- Li, L. Digital Transformation and Sustainable Performance: The Moderating Role of Market Turbulence. Ind. Mark. Manag. 2022, 104, 28–37. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.L.; Yang, Z. Can Artificial Intelligence Improve Green Economic Growth? Evidence from China. Environ. Sci. Pollut. Res. Int. 2023, 30, 16418–16437. [Google Scholar] [CrossRef]
- Jose, R.; Panigrahi, S.K.; Patil, R.A.; Fernando, Y.; Ramakrishna, S. Artificial Intelligence-Driven Circular Economy As a Key Enabler for Sustainable Energy Management. Mater. Circ. Econ. 2000, 2, 8. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K. A Review on Emerging Artificial Intelligence (AI) Techniques for Air Pollution Forecasting: Fundamentals, Application and Performance. J. Clean. Prod. 2021, 322, 129072. [Google Scholar] [CrossRef]
- Pournader, M.; Ghaderi, H.; Hassanzadegan, A.; Fahimnia, B. Artificial Intelligence Applications in Supply Chain Management. Int. J. Prod. Econ. 2021, 241, 108250. [Google Scholar] [CrossRef]
- Sumarliah, E.; Al-hakeem, B. The Effects of Digital Innovations and Sustainable Supply Chain Management on Business Competitive Performance Post-COVID-19. Kybernetes 2023, 52, 2568–2596. [Google Scholar] [CrossRef]
- Ritter, T.; Pedersen, C.L. Digitization Capability and the Digitalization of Business Models in Business-To-Business Firms: Past, Present and Future. Ind. Mark. Manag. 2020, 86, 180–190. [Google Scholar] [CrossRef]
- Yang, X.; Peng, C.; Yao, A. Management Competence, Internal Control and Corporate Sustainability. Audit Res. 2018, 121–128. [Google Scholar]
- Chen, Z.; Fang, H. Can Internal Controls Tighten the Fence on Opportunistic Hedge Reductions by Directors and Supervisors. Acc. Res. 2019, 56–63. [Google Scholar]
- Dong, X.; Sun, W. Corporate Financialization, Internal Control and Audit Quality. Audit Econ. Res. 2021, 36, 26–36. [Google Scholar]
- Chai, Y.; Sun, W. Internal Control Innovation and Corporate Value Creation. Financ. Acc. Res. 2020, 6, 28–32. [Google Scholar]
- Li, Y.; Xue, Y. Digital Transformation and Corporate Sustainability. Bus. Econ. 2022, 41, 61–68. [Google Scholar]
- Guenther, E.; Guenther, T.; Schiemann, F.; Weber, G. Stakeholder Relevance For Reporting: Explanatory Factors Of Carbon Disclosure. Bus. Soc. 2016, 55, 361–397. [Google Scholar]
- Lv, J.; Jiao, S. An Empirical Study of the Relationship Between Environmental Disclosure, Environmental Performance and Financial Performance. J. Shanxi Univ. Fin. Econ. 2011, 33, 109–116. [Google Scholar]
- Wang, X.; Ning, J. Can Mandatory Social Responsibility Disclosure Drive Corporate Green Transformation?: Evidence Based on Green Patent Data of Listed Companies in China. Audit Econ. Res. 2020, 35, 69–77. [Google Scholar]
- Guo, Z.; Lu, C. Corporate Environmental Performance in China: The Moderating Effects of the Media versus the Approach of Local Governments. Int. J Environ. Res. Public Health. 2021, 18, 150. [Google Scholar]
- Guo, X.; Song, X.; Dou, B.; Wang, A.; Hu, H. Can Digital Transformation of the Enterprise Break The Monopoly? Pers. Ubiquitous Comput 2022, 26, 1–14. [Google Scholar]
- Shang, L.; Tan, D.; Feng, S.; Zhou, W. Environmental Regulation, Import Trade, and Green Technology Innovation. Environ. Sci. Pollut. Res. Int. 2022, 29, 12864–12874. [Google Scholar] [CrossRef]
- Sun, Q.; Nie, W. The Impact of Environmental Information Disclosure on Green Innovation Capacity under Carbon Neutral Targets. Res. World. 2022, 8, 22–32. [Google Scholar]
- Kleinknecht, R.; Haq, H.U.; Muller, A.R.; Kraan, K.O. An Attention-Based View of Short-Termism: The Effects of Organizational Structure. Eur. Manag. J. 2020, 38, 244–254. [Google Scholar]
- Liu, J. Research on Auditing Theory of Socialism with Chinese Characteristics; Times Publishing House: Beijing, China, 2013. [Google Scholar]
- Jung, J.; Herbohn, K.; Clarkson, P. Carbon Risk, Carbon Risk Awareness and the Cost of Debt Financing. J. Bus. Ethics. 2018, 150, 1151–1171. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L. Can The Audit of Natural Resource Assets of Leading Cadres Promote Energy Conservation and Emission Reduction. J. Nanjing Audit Univ. 2022, 19, 31–39. [Google Scholar]
- Zhu, J.; Li, Y. Do Government Audits Have a Governance Role in Carbon Emissions. Contemp. Fin. 2022, 136–148. [Google Scholar]
- Pan, J.; Sun, T. Analysis and Reflections on Several Basic Issues on Carbon Neutrality. J. China Univ. Geosci. (Soc. Sci. Ed.). 2022, 45–59. [Google Scholar]
- Zhuang, S.; Wang, L.; Wang, Y. Can State Audit Deterrence Contribute to Carbon Reduction. Ecol. Econ. 2021, 37, 25–30. [Google Scholar]
- Li, Z.; Li, L.; Cai, Z. Empirical Test of Carbon Emission Reduction Effect of Government Audit. Fin. Acc. Mon. 2023, 4, 79–86. [Google Scholar]
- Wei, P.; Li, Y.; Ren, X.; Duan, K. Crude Oil Price Uncertainty and Corporate Carbon Emissions. Environ. Sci. Pollut. Res. Int. 2022, 29, 2385–2400. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.; Jiang, P.; Meng, F.; Sun, Q. Can Digital Transformation Improve the Information Environment of the Capital Market? Evidence from the Analysts’ Prediction Behaviour. Acc. Financ. 2022, 62, 2543–2578. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of Digital Transformation on the Automotive Industry. Technol. Forecast. Soc. Chang. 2021, 162, 120343. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, X.; Zhao, L.; Xing, Y. Can the Digital Transformation of Manufacturing Enterprises Promote Enterprise Innovation? Bus. Process Manag. J. 2022, 28, 960–982. [Google Scholar] [CrossRef]
- Wu, K.; Fu, Y.; Kong, D. Does the Digital Transformation of Enterprises Affect Stock Price Crash Risk? Finan. Res. Lett. 2022, 48, 102888. [Google Scholar] [CrossRef]
- Guo, X.; Li, M.; Wang, Y.; Mardani, A. Does Digital Transformation Improve the Firm’s Performance? From the Perspective of Digitalization Paradox and Managerial Myopia. J. Bus. Res. 2023, 163, 113868. [Google Scholar] [CrossRef]
- De Franco, G.; Fogel-Yaari, H.; Li, H. MD&A Textual Similarity and Auditors. Auditing A J. Pract. Theory 2020, 39, 105–131. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Li, X.; Tian, G. MD&A Readability, Auditor Characteristics, and Audit Fees. Account Financ. 2021, 61, 5025–5050. [Google Scholar]
- Ji, H.; Miao, Z.; Wan, J.; Lin, L. Digital Transformation and Financial Performance: The Moderating Role of Entrepreneurs’ Social Capital. Technol. Anal. Strateg. Manag. 2022, 1–18. [Google Scholar] [CrossRef]
- Wu, G.F.A.; Yang, D.Z. Do Individual Auditor Affect Audit Qulity? Evidence from Archival Data. Acc. Rev. 2013, 88, 1993–2023. [Google Scholar] [CrossRef]
- Gallego-Álvarez, I.; Segura, L.; Martínez-Ferrero, J. Carbon Emission Reduction: The Impact on the Financial and Operational Performance of International Companies. J. Clean. Prod. 2015, 103, 149–159. [Google Scholar] [CrossRef]
- Chen, S.; Mao, H.; Sun, J. Low-Carbon City Construction and Corporate Carbon Reduction Performance: Evidence from a Quasi-Natural Experiment in China. J. Bus. Ethics. 2022, 180, 125–143. [Google Scholar] [CrossRef]
- Zheng, S.; Jin, S. Can enterprises in China Achieve Sustainable Development Through Green Investment? Int. J. Environ. Res. Public Health. 2023, 20, 1787. [Google Scholar] [CrossRef]
- Chong, C.T.; Fan, Y.V.; Lee, C.T.; Klemeš, J.J. Post COVID-19 ENERGY Sustainability and Carbon Emissions Neutrality. Energy 2022, 241, 122801. [Google Scholar] [CrossRef]
- Borowski, P.F.; Karlikowska, B. Clean Hydrogen Is a Challenge for Enterprises in the Era of Low-Emission and Zero-Emission Economy. Energies 2023, 16, 1171. [Google Scholar] [CrossRef]
- Gao, Y.; Jin, S. Corporate Nature, Financial Technology, and Corporate Innovation in China. Sustainability 2022, 14, 7162. [Google Scholar] [CrossRef]
- Xu, L.; Fan, M.; Yang, L.; Shao, S. Heterogeneous Green Innovations and Carbon Emission Performance: Evidence at China’s City Level. Energy Econ. 2021, 99, 105269. [Google Scholar] [CrossRef]
- Yisa, J.; Taiwen, F. A Literature Review and Prospects of Green Supply Chain Integration. Foreign Econ. Manag. 2022, 44, 135–151. [Google Scholar]
- Xu, Q.; Li, X.; Guo, F. Digital Transformation and Environmental Performance: Evidence from Chinese Resource-Based Enterprises. Corp. Soc. Responsib. Env. 2023, 30, 1816–1840. [Google Scholar] [CrossRef]
- Hussain, J.; Lee, C.C.; Chen, Y. Optimal Green Technology Investment and Emission Reduction in Emissions Generating Companies uunder the Support of Green Bond and Subsidy. Technol. Forecast. Soc. Chang. 2022, 183, 121952. [Google Scholar] [CrossRef]
- Peng, R.; Xu, M.; Guo, Y.; Li, X.; Tang, D. A Study on the Impact of Corporate Low Carbon Awareness on the Quality of Carbon Information Disclosure: Based on the Mediating Effects of Green Technology Innovation. Highlights Sci. Eng. Technol. 2022, 25, 334–347. [Google Scholar]
- Paolone, F.; Cucari, N.; Wu, J.; Tiscini, R. How Do ESG Pillars Impact Firms’ Marketing Performance? A Configurational Analysis in the Pharmaceutical Sector. J. Bus. Ind. Mark. 2022, 37, 1594–1606. [Google Scholar] [CrossRef]
- Shang, Y.; Raza, S.A.; Huo, Z.; Shahzad, U.; Zhao, X. Does Enterprise Digital Transformation Contribute to the Carbon Emission Reduction? Micro-Level Evidence from China. Int. Rev. Econ. Finan. 2023, 86, 1–13. [Google Scholar] [CrossRef]
- Shin, J.; Mollah, M.A.; Choi, J. Sustainability and Organizational Performance in South Korea: The Effect of Digital Leadership on Digital Culture and Employees’ Digital Capabilities. Sustainability 2023, 15, 2027. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Code | Variable Definitions |
---|---|---|---|
Dependent Variable | Carbon Emission Intensity | CEI | Ln (total annual corporate carbon emissions) |
Independent Variable | Digital Transformation | DT | (Sum of the related word frequency in the annual report/text length of the annual report MD&A) × 100 |
Moderating Variables | Internal Control Quality | ICQ | Internal control index/100, internal control index of listed companies from Dibbo database |
Environmental Information Disclosure Quality | EIDQ | Score 25 indicators in seven areas, including environmental management, environmental regulation and certification, and environmental performance and governance, and take the natural logarithm by adding 1 to the total score | |
Audit Quality | AQ | The negative absolute value of the difference between the actual auditor’s opinion and the expected probability of an unqualified opinion is taken. | |
Control Variables | Enterprise Size | Size | Total assets are taken as the logarithm. |
Revenue Growth Rate | Growth | Business liabilities/business assets | |
Asset and Liability Ratio | Lev | Total liabilities/total assets | |
Return on Assets | Roa | Net profit after tax/total assets | |
Quick Ratio | Quick | Quick assets/current liabilities | |
Ratio of Independent Directors | Indep | Number of independent directors/number of board of directors | |
Shareholding Concentration | Top10 | Shareholding ratio of top ten shareholders |
Variable | N | Mean | Median | SD | Max | Min |
---|---|---|---|---|---|---|
CEI | 13,866 | 11.48 | 11.34 | 1.289 | 16.50 | 8.057 |
DT | 13,866 | 2.981 | 2.813 | 0.993 | 5.920 | 0 |
ICQ | 13,866 | 6.485 | 6.502 | 0.117 | 6.849 | 5.291 |
EIDQ | 13,866 | 8.429 | 7.895 | 4.981 | 52.48 | 0 |
AQ | 13,866 | −0.0225 | −0.0115 | 0.0573 | −0.00230 | −0.970 |
Size | 13,866 | 22.27 | 22.07 | 1.266 | 26.61 | 19.93 |
Lev | 13,866 | 0.406 | 0.399 | 0.193 | 0.901 | 0.0338 |
Roa | 13,866 | 0.0495 | 0.0432 | 0.0542 | 0.250 | −0.250 |
Quick | 13,866 | 1.941 | 1.271 | 2.053 | 21.11 | 0.149 |
Growth | 13,866 | 0.175 | 0.119 | 0.333 | 2.591 | −0.542 |
Indep | 13,866 | 37.58 | 33.33 | 5.386 | 60 | 30 |
Top10 | 13,866 | 59.36 | 60.26 | 14.57 | 91.70 | 21.77 |
CEI | DT | ICQ | EIDQ | AQ | Size | Lev | Roa | Quick | Growth | Indep | Top 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CEI | 1 | |||||||||||
DT | −0.026 *** | 1 | ||||||||||
ICQ | 0.164 *** | −0.017 ** | 1 | |||||||||
EIDQ | 0.219 *** | −0.150 *** | 0.035 *** | 1 | ||||||||
AQ | 0.016 * | 0 | 0.229 *** | 0.026 *** | 1 | |||||||
Size | 0.936 *** | −0.00800 | 0.144 *** | 0.234 *** | 0.00600 | 1 | ||||||
Lev | 0.584 *** | −0.056 *** | −0.00100 | 0.087 *** | −0.212 *** | 0.557 *** | 1 | |||||
Roa | 0.009 | 0.027 *** | 0.285 *** | 0.017 ** | 0.357 *** | −0.070 *** | −0.397 *** | 1 | ||||
Quick | −0.426 *** | 0.038 *** | 0.00200 | −0.102 *** | 0.119 *** | −0.356 *** | −0.661 *** | 0.276 *** | 1 | |||
Growth | 0.099 *** | 0.051 *** | 0.173 *** | −0.063 *** | 0.091 *** | 0.022 *** | 0.042 *** | 0.256 *** | −0.044 *** | 1 | ||
Indep | 0 | 0.079 *** | 0.014 * | −0.054 *** | −0.00300 | 0 | 0.00100 | −0.019 ** | 0.014 * | −0.00100 | 1 | |
Top 10 | 0.117 *** | 0.042 *** | 0.140 *** | 0.008 | 0.130 *** | 0.115 *** | −0.081 *** | 0.207 *** | 0.111 *** | 0.055 *** | 0.066 *** | 1 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CEI | CEI | CEI | CEI | |
DT | −0.0269 *** | −0.0334 *** | −0.0259 *** | −0.0297 *** |
(−4.99) | (−3.83) | (−3.31) | (−5.38) | |
ICQ | −0.00561 | |||
(−1.05) | ||||
DT × ICQ | −0.0563 ** | |||
(−2.20) | ||||
EIDQ | −0.00109 | |||
(−0.08) | ||||
DT × EIDQ | −0.0190 ** | |||
(−2.43) | ||||
AQ | 0.252 | |||
(1.48) | ||||
DT × AQ | −0.126 ** | |||
(−2.34) | ||||
Size | 0.820 *** | 0.820 *** | 0.822 *** | 0.823 *** |
(87.20) | (86.21) | (86.23) | (87.13) | |
Lev | 0.326 *** | 0.326 *** | 0.325 *** | 0.317 *** |
(8.38) | (8.32) | (8.30) | (8.09) | |
Roa | 1.995 *** | 2.013 *** | 1.983 *** | 2.047 *** |
(26.29) | (25.96) | (26.02) | (25.82) | |
Quick | −0.0375 *** | −0.0375 *** | −0.0373 *** | −0.0378 *** |
(−14.92) | (−14.89) | (−14.82) | (−15.02) | |
Growth | 0.292 *** | 0.296 *** | 0.292 *** | 0.291 *** |
(32.39) | (32.47) | (32.23) | (32.31) | |
Indep | −0.000145 | −0.000128 | −0.0000841 | −0.000159 |
(−0.18) | (−0.16) | (−0.10) | (−0.20) | |
Top 10 | −0.000901 ** | −0.000871 ** | −0.000921 ** | −0.000910 ** |
(−2.14) | (−2.05) | (−2.16) | (−2.16) | |
_cons | −6.834 *** | −6.432 *** | −6.845 *** | −6.886 *** |
(−26.72) | (−21.21) | (−26.61) | (−26.85) | |
Industry FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 13,866 | 13,866 | 13,866 | 13,866 |
R2 | 0.698 | 0.697 | 0.697 | 0.699 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CEI | CEI | CEI | CEI | |
DT | −0.026 *** | −0.027 ** | −0.026 ** | −0.037 *** |
(−3.23) | (−2.02) | (−2.11) | (−3.91) | |
ICQ | −0.002 | |||
(−0.25) | ||||
DT × ICQ | −0.072 ** | |||
(−1.98) | ||||
EIDQ | −0.006 | |||
(−0.29) | ||||
DT × EIDQ | −0.029 ** | |||
(−2.45) | ||||
AQ | 0.597 | |||
(0.73) | ||||
DT × AQ | −0.684 ** | |||
(−2.19) | ||||
Size | 0.752 *** | 0.755 *** | 0.759 *** | 0.756 *** |
(45.72) | (45.52) | (45.78) | (45.60) | |
Lev | 0.393 *** | 0.395 *** | 0.397 *** | 0.380 *** |
(6.24) | (6.25) | (6.29) | (5.95) | |
Roa | 2.040 *** | 2.072 *** | 2.027 *** | 2.128 *** |
(16.30) | (16.29) | (16.15) | (14.99) | |
Quick | −0.035 *** | −0.035 *** | −0.035 *** | −0.036 *** |
(−8.29) | (−8.21) | (−8.26) | (−8.38) | |
Growth | 0.263 *** | 0.267 *** | 0.262 *** | 0.262 *** |
(21.51) | (21.55) | (21.32) | (21.37) | |
Indep | 0.002 * | 0.002 | 0.002 * | 0.002 * |
(1.67) | (1.64) | (1.75) | (1.71) | |
Top10 | −0.001 | −0.001 | −0.001 | −0.001 |
(−1.32) | (−1.35) | (−1.57) | (−1.46) | |
_cons | −5.407 *** | −4.994 *** | −5.493*** | −5.463 *** |
(−15.35) | (−11.87) | (−15.56) | (−15.40) | |
Industry FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 8199 | 8199 | 8199 | 8199 |
R2 | 0.583 | 0.584 | 0.585 | 0.583 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
CEI | CEI | CEI | CEI | |
DT | −0.024 *** | −0.030 *** | −0.025 *** | −0.027 *** |
(−4.09) | (−2.02) | (−2.11) | (−4.51) | |
ICQ | −0.005 | |||
(−0.91) | ||||
DT × ICQ | −0.068 ** | |||
(−2.53) | ||||
EIDQ | −0.005 | |||
(−0.34) | ||||
DT × EIDQ | −0.019 ** | |||
(−2.27) | ||||
AQ | 0.133 | |||
(0.71) | ||||
DT × AQ | −0.190 ** | |||
(−2.09) | ||||
Size | 0.820 *** | 0.820 *** | 0.823 *** | 0.822 *** |
(81.36) | (80.61) | (80.74) | (81.21) | |
Lev | 0.361 *** | 0.363 *** | 0.362 *** | 0.360 *** |
(8.69) | (8.67) | (8.66) | (8.62) | |
Roa | 1.969 *** | 1.993 *** | 1.955 *** | 1.982 *** |
(24.56) | (24.36) | (24.28) | (23.33) | |
Quick | −0.035 *** | −0.035 *** | −0.034 *** | −0.036 *** |
(−14.06) | (−14.03) | (−13.97) | (−14.11) | |
Growth | 0.286 *** | 0.289 *** | 0.285 *** | 0.285 *** |
(28.46) | (28.58) | (28.29) | (28.41) | |
Indep | −0.0003 | −0.0002 | −0.0002 | −0.0003 |
(−0.31) | (−0.28) | (−0.26) | (−0.30) | |
Top 10 | −0.001 ** | −0.001 ** | −0.001 ** | −0.001 ** |
(−2.09) | (−1.99) | (−2.16) | (−2.11) | |
_cons | −6.830 *** | −6.359 *** | −6.843 *** | −6.848 *** |
(−31.71) | (−31.67) | (−31.55) | (−31.70) | |
Year FE | Yes | Yes | Yes | Yes |
N | 5766 | 5766 | 5766 | 5766 |
R2 | 0.713 | 0.715 | 0.713 | 0.711 |
First Stage DT | Second Stage CEI | |
---|---|---|
LDT | 0.338 *** | |
(33.06) | ||
DT | −0.0598 *** | |
(−3.05) | ||
Size | 0.076 *** | 0.800 *** |
(3.88) | (62.39) | |
Lev | −0.092 | 0.316 *** |
(−1.16) | (6.14) | |
Roa | 0.491 *** | 1.906 *** |
(3.43) | (20.41) | |
Quick | −0.0002 | −0.0346 *** |
(−0.03) | (−9.27) | |
Growth | 0.054 *** | 0.311 *** |
(2.89) | (25.59) | |
Indep | −0.002 | −0.00115 |
(−1.53) | (−1.16) | |
Top10 | 0.003 *** | −0.000737 |
(3.75) | (−1.31) | |
Constant | −0.423 | −6.212 *** |
(−0.88) | (−19.85) | |
Industry FE | Yes | Yes |
Year FE | Yes | Yes |
N | 10280 | 9940 |
R2 | 0.442 | 0.654 |
Underidentification test p-value | 0.000 | |
Cragg–Donald Wald F statistic | 1093.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Kong, C.; Jin, S. Digital Transformation and Corporate Carbon Emissions: The Moderating Role of Corporate Governance. Systems 2025, 13, 217. https://doi.org/10.3390/systems13040217
Yang Q, Kong C, Jin S. Digital Transformation and Corporate Carbon Emissions: The Moderating Role of Corporate Governance. Systems. 2025; 13(4):217. https://doi.org/10.3390/systems13040217
Chicago/Turabian StyleYang, Qin, Can Kong, and Shanyue Jin. 2025. "Digital Transformation and Corporate Carbon Emissions: The Moderating Role of Corporate Governance" Systems 13, no. 4: 217. https://doi.org/10.3390/systems13040217
APA StyleYang, Q., Kong, C., & Jin, S. (2025). Digital Transformation and Corporate Carbon Emissions: The Moderating Role of Corporate Governance. Systems, 13(4), 217. https://doi.org/10.3390/systems13040217