Coupled Water–Energy–Carbon Study of the Agricultural Sector in the Great River Basin: Empirical Evidence from the Yellow River Basin, China
Abstract
:1. Introduction
2. The Mechanism of Coupling Mechanism of WEC in the Agricultural Sector
3. Research Models and Methods
3.1. Study Area
3.2. WEC-MRIO Modeling
3.3. Ecological Network Analysis of the WEC System
3.4. Data Sources and Data Processing
4. Results and Analysis
4.1. Analysis of WEC Dynamic Coupling in the Yellow River Basin
4.1.1. Evolution of WEC Footprint of the Agricultural Sector
4.1.2. Intersectoral Analysis of Coupled WEC Elements
4.2. MRIO-Based WEC Virtual Transfer Analysis
4.2.1. Virtual WEC Balance Analysis
4.2.2. Spatial Characterization of Virtual WEC Transfer
4.3. Analysis of WEC Ecological Network Control in the Agricultural Sector in the Yellow River Basin
5. Conclusions
6. Discussion and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Duan, W.; Zou, S.; Chen, Y.; De Maeyer, P.; Van de Voorde, T.; Takara, K.; Kayumba, P.M.; Kurban, A.; Goethals, P.L. Coupling coordination analysis of the water–food–energy–carbon nexus for crop production in Central Asia. Appl. Energy 2024, 369, 123584. [Google Scholar] [CrossRef]
- Chowdhury, A.F.M.K.; Wild, T.; Zhang, Y.; Binsted, M.; Iyer, G.; Kim, S.H.; Lamontagne, J. Hydropower expansion in eco-sensitive river basins under global energy–economic change. Nat. Sustain. 2024, 7, 213–222. [Google Scholar] [CrossRef]
- Ristić, V.; Trišić, I.; Štetić, S.; Maksin, M.; Nechita, F.; Candrea, A.N.; Pavlović, M.; Hertanu, A. Institutional, Ecological, Economic, and Socio–Cultural Sustainability–Evidence from Ponjavica Nature Park. Land 2024, 13, 669. [Google Scholar] [CrossRef]
- Manta, A.G.; Doran, N.M.; Bădîrcea, R.M.; Badareu, G.; Gherțescu, C.; Lăpădat, C.V.M. Does Common Agricultural Policy Influence Regional Disparities and Environmental Sustainability in European Union Countries? Agriculture 2024, 14, 2242. [Google Scholar] [CrossRef]
- Zhu, K.; Cheng, Y.; Zhou, Q.; Azadi, H. Understanding future water-carbon-land coupled systems in the era of COP 27: The case of the Hanjiang river Basin, China. J. Clean. Prod. 2024, 11, 479. [Google Scholar] [CrossRef]
- Szinai, J.K.; Yates, D.; Sánchez-Pérez, P.A.; Staadecker, M.; Kammen, D.M.; Jones, A.D.; Hidalgo-Gonzalez, P. Climate change and its influence on water systems increases the cost of electricity system decarbonization. Nat. Commun. 2024, 15, 10050. [Google Scholar] [CrossRef]
- Rondhi, M.; Pratiwi, P.A.; Handini, V.T.; Sunartomo, A.F.; Budiman, S.A. Agricultural Land Conversion, Land Economic Value, and Sustainable Agriculture: A Case Study in East Java, Indonesia. Land 2018, 7, 148. [Google Scholar] [CrossRef]
- Leila, S.G.; Fatemeh, J.; Mohammad, A. A techno-economic assessment for the water-energy-carbon nexus based on the development of a mathematical model: In the iron and steel industry. Sustain. Energy Technol. Assess. 2024, 63, 103653. [Google Scholar] [CrossRef]
- Vanham, D.; Bruckner, M.; Schwarzmueller, F.; Schyns, J.; Kastner, T. Multi-model assessment identifies livestock grazing as a major contributor to variation in European Union land and water footprints. Nat. Food 2023, 4, 575–584. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, Q.; Li, H.; Qian, Z.; Zheng, L.; Wang, S.; He, Y. Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China. Energy 2023, 238, 121783. [Google Scholar] [CrossRef]
- Frank, S.; Frank, S.; Lessa, D.A.; Havlík, P.; Boere, E.; Ermolieva, T.; Fricko, O.; Fulvio, F.D.; Gusti, M.; Krisztin, T.; et al. Enhanced agricultural carbon sinks provide benefits for farmers and the climate. Nat. Food 2024, 5, 742–753. [Google Scholar] [CrossRef]
- Zhang, F.; Xuan, X.; He, Q. A water-energy nexus analysis to a sustainable transition path for Ji-shaped bend of the Yellow River, China. Ecol. Inform. 2022, 68, 101578. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Q.; Guo, J.; Xu, X.; Zhao, Q.; Guo, J.; Li, C.; Li, J.; Niu, K.; Jin, S.; et al. Inequality in agricultural greenhouse gas emissions intensity has risen in rural China from 1993 to 2020. Nat. Food 2024, 5, 916–928. [Google Scholar] [CrossRef]
- Yue, Q.; Guo, P. Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty. Agric. Water Manag. 2021, 252, 106899. [Google Scholar] [CrossRef]
- Siyal, A.W.; Gerbens-Leenes, P.W.; Nonhebel, S. Energy and carbon footprints for irrigation water in the lower Indus basin in Pakistan, comparing water supply by gravity fed canal networks and groundwater pumping. J. Clean. Prod. 2021, 286, 125489. [Google Scholar] [CrossRef]
- Akbar, H.; Nilsalab, P.; Silalertruksa, T.; Gheewala, S.H. An inclusive approach for integrated systems: Incorporation of climate in the water-food-energy-land nexus index. Sustain. Prod. Consum. 2023, 39, 42–52. [Google Scholar] [CrossRef]
- Garlock, T.M.; Asche, F.; Anderson, J.L.; Eggert, H.; Anderson, T.M.; Che, B.; Chávez, C.A.; Chu, J.; Chukwuone, N.; Dey, M.M.; et al. Environmental, economic, and social sustainability in aquaculture: The aquaculture performance indicators. Nat. Commun. 2024, 15, 5274. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, T.Y.; Li, S.Q.; Li, X.L.; Gao, D.C. Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: An input-output perspective. J. Clean. Prod. 2020, 276, 124169. [Google Scholar] [CrossRef]
- Qin, J.; Duan, W.; Zou, S.; Chen, Y.; Huang, W.; Rosa, L. Global energy use and carbon emissions from irrigated agriculture. Nat. Commun. 2024, 15, 3084. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, A.; Wang, J.; Xia, K.; Liu, Z. Study on the low-carbon development under a resources-dependent framework of water-land-energy utilization: Evidence from the Yellow River Basin, China. Energy 2023, 280, 128207. [Google Scholar] [CrossRef]
- Su, Q.; Dai, H.; Lin, Y.; Chen, H.; Karthikeyan, R. Modeling the carbon-energy-water nexus in a rapidly urbanizing catchment: A general equilibrium assessment. J. Environ. Manag. 2018, 225, 93–103. [Google Scholar] [CrossRef]
- Maziotis, A.; Sala-Garrido, R.; Mocholi-Arce, M.; Molinos-Senante, M. Understanding water-energy-carbon nexus in English and Welsh water industry by assessing eco-productivity of water companies. npj Clean Water 2024, 7, 121. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Haran, S.; Banerjee, R.; Rao, A.B. Life cycle energy–carbon–water footprints of sugar, ethanol and electricity from sugarcane. Bioresour. Technol. 2021, 330, 125012. [Google Scholar] [CrossRef]
- Meng, F.; Liu, G.; Chang, Y.; Su, M.; Hu, Y.; Yang, Z. Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China). Energy 2019, 171, 403–418. [Google Scholar] [CrossRef]
- White, D.J.; Hubacek, K.; Feng, K.S.; Sun, L.X.; Meng, B. The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis. Appl. Energy 2018, 210, 550–567. [Google Scholar] [CrossRef]
- Gómez-Gardars, E.B.; Rodríguez-Macias, A.; Tena-García, J.L.; Fuentes-Cortés, L.F. Assessment of the water–energy–carbon nexus in energy systems: A multi-objective approach. Appl. Energy 2022, 305, 117872. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Kang, J.; Wang, S.; Liu, Y.; Wang, H. Identifying sectoral energy-carbon-water nexus characteristics of China. J. Clean. Prod. 2020, 249, 119436. [Google Scholar] [CrossRef]
- Zhang, Q.; Nakatani, J.; Wang, T.; Chai, C.; Moriguchi, Y. Hidden greenhouse gas emissions for water utilities in China’s cities. J. Clean. Prod. 2017, 162, 665–677. [Google Scholar] [CrossRef]
- Zheng, X.G.; Huang, G.H.; Liu, L.R.; Zheng, B.Y.; Zhang, X.Y. A multi-source virtual water metabolism model for urban systems. J. Clean. Prod. 2020, 275, 124107. [Google Scholar] [CrossRef]
- Pérez-Sánchez, L.; Giampietro, M.; Velasco-Fernández, R.; Ripa, M. Characterizing the metabolic pattern of urban systems using MuSIASEM: The case of Barcelona. Energy Policy 2019, 124, 13–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.M.; Fath, B.D.; Liu, H.; Yang, Z.F.; Liu, G.Y.; Su, M.R. Ecological network analysis of an urban metabolic system based on input-output tables: Model development and case study for Beijing. Sci. Total Environ. 2014, 468–469, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-C.; Klemes, J.J.; Ouyang, X.; Xu, Z.; Fan, W.; Wei, H.; Song, W. Regional embodied Water-Energy-Carbon efficiency of China. Energy 2021, 224, 120159. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y. Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective. Appl. Energy 2021, 298, 117275. [Google Scholar] [CrossRef]
- Jin, X.; Fang, D.; Jiang, W. Evaluation and driving force analysis of the water-energy-carbon nexus in agricultural trade for RCEP countries. Appl. Energy 2023, 343, 121478. [Google Scholar] [CrossRef]
- Cheng, L.; Tian, J.P.; Xu, H.G. Unveiling the nexus profile of embodied water-energy-carbon-value flows of the Yellow River Basin in China. Environ. Sci. Technol. 2023, 57, 8568–8577. [Google Scholar] [CrossRef]
- Yue, Q.; Wu, H.; Wang, Y.; Guo, P. Achieving sustainable development goals in agricultural energy-water-food nexus system: An integrated inexact multi-objective optimization approach. Resour. Conserv. Recycl. 2021, 174, 105877. [Google Scholar] [CrossRef]
- Galli, A.; Antonelli, M.; Wambersie, L.; Bach-Faig, A.; Bartolini, F.; Caro, D.; Iha, K.; Lin, D.; Mancini, M.S.; Sonnino, R.; et al. EU-27 ecological footprint was primarily driven by food consumption and exceeded regional biocapacity from 2004 to 2014. Nat. Food 2023, 4, 810–822. [Google Scholar] [CrossRef]
- Xu, C.; Feng, K.; Guan, D.; Hubacek, K. China carbon emission accounts 2020–2021. Appl. Energy 2024, 360, 122837. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s Future 2021, 9, 2241. [Google Scholar] [CrossRef]
- Shan, Y.; Feng, K.; Guan, D.; Hubacek, K. China CO2 emission accounts 2016–2017. Sci. Data 2020, 2, 13. [Google Scholar] [CrossRef]
- Lei, Y.T.; Huang, L.P. Regional Differences in Industrial Water Consumption Efficiency and Its Influencing Factors for China’s Major Industrial Provinces: A Study of Provincial Panel Data Based on SFA. China Soft Sci. 2015, 167, 105239. [Google Scholar]
Data Type | Data Name | Data Processing Method | Data Source |
---|---|---|---|
Water resource data | Production and supply of water | Water intake of tap water | China Environmental Statistics Yearbook |
Water use in the service industry | Proportional distribution according to the proportion of added value in service industries | China Environmental Statistics Yearbook; China Statistical Yearbook | |
Water use in agriculture | Water resource consumption | China Water Resources Bulletin | |
Water use in industry | Lei and Huang (2015) [41] | China Water Resources Bulletin; China Water Resources and Hydropower Statistics Yearbook | |
Energy data | Energy consumption | Xu et al. (2024) [38], Guan et al. (2021) [39], Shan et al. (2020) [40] | ceads.net (20 December 2024) |
Carbon emission data | Carbon dioxide emissions | Xu et al. (2024) [38], Guan et al. (2021) [39], Shan et al. (2020) [40] | ceads.net (20 December 2024) |
Economic development data | GDP | - | China Statistical Yearbook |
Value added of industries | - | China Statistical Yearbook |
Serial Number | 14 Departments | 42 Departments |
---|---|---|
S1 | agriculture | agricultural, forestry, and fishery products and services |
S2 | extraction industry | coal mining products |
oil and gas extraction products | ||
metal ore mining products | ||
non-metallic and other mineral extraction products | ||
S3 | light industry | food and tobacco |
fabrics | ||
textile, clothing, shoes, hats, leather, down, and their products | ||
woodwork and furniture | ||
paper, printing, and educational and sporting goods | ||
S4 | petroleum, coking products, and processed nuclear fuels | petroleum, coking products, and processed nuclear fuels |
S5 | chemical products | chemical products |
S6 | non-metallic industry | non-metallic mineral products |
S7 | metal industry | metal smelting and rolling products |
metalwork | ||
S8 | machinery and equipment manufacturing | general equipment |
specialized equipment | ||
transportation equipment | ||
electrical machinery and equipment | ||
communications equipment, computers, and other electronic equipment | ||
instrumentation | ||
S9 | other industries | other manufacturing products |
scrap | ||
metalwork, machinery, and equipment repair services | ||
S10 | energy supply | production and supply of electricity and heat |
gas production and supply | ||
water production and supply | ||
S11 | construction | construction |
S12 | transportation, storage, and postal services | transportation, storage, and postal services |
S13 | services sector | wholesale and retail |
information transmission, software, and information technology services | ||
financial | ||
real estates | ||
leasing and business services | ||
scientific research and technical services | ||
water, environment, and utilities management | ||
residential services, repairs, and other services | ||
teaching | ||
health and social work | ||
culture, sports, and recreation | ||
public administration, social security, and social organizations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Cong, J.; Liu, Y.; Zhang, W.; Liang, R.; Yang, J. Coupled Water–Energy–Carbon Study of the Agricultural Sector in the Great River Basin: Empirical Evidence from the Yellow River Basin, China. Systems 2025, 13, 160. https://doi.org/10.3390/systems13030160
Song J, Cong J, Liu Y, Zhang W, Liang R, Yang J. Coupled Water–Energy–Carbon Study of the Agricultural Sector in the Great River Basin: Empirical Evidence from the Yellow River Basin, China. Systems. 2025; 13(3):160. https://doi.org/10.3390/systems13030160
Chicago/Turabian StyleSong, Jingwei, Jianhui Cong, Yuqing Liu, Weiqiang Zhang, Ran Liang, and Jun Yang. 2025. "Coupled Water–Energy–Carbon Study of the Agricultural Sector in the Great River Basin: Empirical Evidence from the Yellow River Basin, China" Systems 13, no. 3: 160. https://doi.org/10.3390/systems13030160
APA StyleSong, J., Cong, J., Liu, Y., Zhang, W., Liang, R., & Yang, J. (2025). Coupled Water–Energy–Carbon Study of the Agricultural Sector in the Great River Basin: Empirical Evidence from the Yellow River Basin, China. Systems, 13(3), 160. https://doi.org/10.3390/systems13030160