A Text Data Mining-Based Digital Transformation Opinion Thematic System for Online Social Media Platforms
Abstract
:1. Introduction
2. Related Work
2.1. Social Media Policy Opinion
2.2. Social Media Text Mining
2.3. Use of Social Media
3. Methodology and Research Design of Themes
3.1. Text Mining and the SNA Method
3.2. Research Process Design
4. Experiments and Results of Themes
4.1. Data Collection and Processing
4.2. Degree Distribution of Theme Hot Words
4.3. Theme Hot Words Mining and Explanation
4.3.1. Hot Words in Huawei Forum
4.3.2. Hot Words in Sohu News
4.3.3. Hot Words on Zhihu Forum
4.3.4. Commonality of Themes on the Three Social Media Platforms
5. Discussions and Conclusions
5.1. Discussions
5.2. Conclusions
5.3. Future Work and Research Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hess, T.; Matt, C.; Benlian, A.; Wiesböck, F. Options for Formulating a Digital Transformation Strategy. MIS Q. Exec. 2016, 15, 123–139. [Google Scholar]
- Nadkarni, S.; Prügl, R. Digital transformation: A review, synthesis and opportunities for future research. Manag. Rev. Q. 2020, 10, 539. [Google Scholar] [CrossRef]
- Ebert, C.; Duarte, C.H.C. Digital transformation. IEEE Softw. 2018, 35, 16–21. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S.K. Digital economy, entrepreneurship, and high-quality economic development: Empirical evidence from Urban China. J. Manag. World 2020, 36, 65–76. [Google Scholar]
- Lobo, S.; Whyte, J. Aligning and Reconciling: Building project capabilities for digital delivery. Res. Policy 2017, 46, 93–107. [Google Scholar] [CrossRef]
- Laor, T. Breaking the silence: The role of social media in fostering community and challenging the spiral of silence. Online Inf. Rev. 2024, 48, 710–724. [Google Scholar] [CrossRef]
- Hou, Y.; Meng, F.; Wang, J.; Li, Y. Research on two-stage public opinion evolution configuration path based on fuzzy-set qualitative comparative analysis. Aslib J. Inf. Manag. 2024, 76, 677–693. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y. Research on the propagation and governance of public opinion information under the joint action of internal and external factors. Aslib J. Inf. Manag. 2023, 75, 193–214. [Google Scholar] [CrossRef]
- Xing, Y.F.; Li, Y.; Wang, F.K. How privacy concerns and cultural differences affect public opinion during the COVID-19 pandemic: A case study. Aslib J. Inf. Manag. 2021, 73, 517–542. [Google Scholar] [CrossRef]
- Wang, S.; Song, Y. Chinese online public opinions on the two-child policy. Online Inf. Rev. 2018, 43, 387–403. [Google Scholar] [CrossRef]
- Yu, W.; Chen, N.; Chen, J. Characterizing Chinese online public opinions towards the COVID-19 recovery policy. Electron. Libr. 2022, 40, 140–159. [Google Scholar] [CrossRef]
- Calnan, M. Health policy and controlling COVID-19 in England: Sociological insights. Emerald Open Res. 2023, 1, 1–16. [Google Scholar] [CrossRef]
- Kosko, B. Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 1986, 24, 65–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Lu, Z. Research on policy diffusion mechanism of Government Procurement of Public Services based on an MFCM. Kybernetes 2023, 52, 3986–4013. [Google Scholar] [CrossRef]
- Lawlor, A.; Girard, T.; Wodnicki, P.; Goode, M. Crisis management: Personal financial well-being and public attitudes toward government intervention. Int. J. Sociol. Soc. Social Policy 2023, 43, 777–794. [Google Scholar] [CrossRef]
- Núnez-Barriopedro, E.; Penelas-Leguía, A.; López-Sanz, J.M.; Loranca-Valle, M.C. A public service management model as an antecedent for citizen satisfaction and fiscal policy. Manag. Decis. 2024, 62, 725–739. [Google Scholar] [CrossRef]
- Garbarino, E.; Henry, P.; Kerfoot, S. Using attribution to foster public support for alternative policies to combat obesity. Eur. J. Mark. 2018, 52, 418–438. [Google Scholar] [CrossRef]
- Viet, N.T.; Banlasan, D.; Sy, D.T. Public Opinion Analysis for Management of Urban Infrastructure Systems: Social Media Data Mining Approach. In Sustainability Management Strategies and Impact in Developing Countries; Emerald: Leeds, UK, 2022; pp. 233–242. [Google Scholar]
- Sun, J.; Zeng, Z.; Li, T.; Sun, S. Analyzing the spatiotemporal coupling relationship between public opinion and the epidemic during COVID-19. Libr. Hi Tech 2024, 42, 1880–1904. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Zhang, B.; Xiao, P.; Yu, X. The Influence of Prosocial and Antisocial Emotions on the Spread of Weibo Posts: A Study of the COVID-19 Pandemic. Discret. Dyn. Nat. Soc. 2021, 2021, 8462264. [Google Scholar] [CrossRef]
- Zhou, Q.; Jing, M. Multidimensional mining of public opinion in emergency events. Electron. Libr. 2020, 38, 545–560. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, Z.; Sun, S.; Cheng, C.; Zeng, Y. Constructing a spatiotemporal situational awareness framework to sense the dynamic evolution of online public opinion on social media. Electron. Libr. 2023, 41, 722–749. [Google Scholar] [CrossRef]
- De Carvalho, V.D.H.; Costa, A.P.C.S. Towards corpora creation from social web in Brazilian Portuguese to support public security analyses and decisions. Libr. Hi Tech 2024, 42, 1080–1115. [Google Scholar] [CrossRef]
- Yadav, H.; Sagar, M. Exploring COVID-19 vaccine hesitancy and behavioral topics using social media big-data: A text mining approach. Kybernetes 2023, 52, 2616–2648. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Zhang, S.; Hu, J.; Hu, J. A Review of Text Corpus-Based Tourism Big Data Mining. Appl. Sci. 2019, 9, 3300. [Google Scholar] [CrossRef]
- Kumar, S.; Kar, A.K.; Ilavarasan, P.V. Applications of text mining in services management: A systematic literature review. Int. J. Inf. Manag. Data Insights 2021, 1, 100008. [Google Scholar] [CrossRef]
- Aloini, D.; Benevento, E.; Stefanini, A.; Zerbino, P. Process fragmentation and port performance: Merging SNA and text mining. Int. J. Inf. Manag. 2020, 51, 101925. [Google Scholar] [CrossRef]
- Wu, I.C.; Lin, Y.S. WNavis: Navigating Wikipedia semantically with an SNA-based summarization technique. Decis. Support Syst. 2012, 54, 46–62. [Google Scholar] [CrossRef]
- D’agostini, E. The dynamics of value propositions through social media engagement in maritime transport networks: Maersk vs Mediterranean Shipping Company. Marit. Bus. Rev. 2022, 8, 209–224. [Google Scholar] [CrossRef]
- Bhat, S.Y.; Abulaish, M. Analysis and mining of online social networks: Emerging trends and challenges. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2013, 3, 408–444. [Google Scholar] [CrossRef]
- Himelboim, I.; Smith, M.A.; Rainie, L.; Shneiderman, B.; Espina, C. Classifying Twitter topic-networks using social network analysis. Soc. Media+ Soc. 2017, 3, 2056305117691545. [Google Scholar] [CrossRef]
- Jackson, L.A.; Wang, J.L. Cultural differences in social networking site use: A comparative study of China and the United States. Comput. Hum. Behav. 2013, 29, 910–921. [Google Scholar] [CrossRef]
- Keller, F.B.; Schoch, D.; Stier, S.; Yang, J. Political astroturfing on twitter: How to coordinate a disinformation campaign. Political Commun. 2020, 37, 256–280. [Google Scholar] [CrossRef]
- Robson, S.; Banerjee, S. Brand post popularity on Facebook, Twitter, Instagram and LinkedIn: The case of start-ups. Online Inf. Rev. 2022, 47, 486–504. [Google Scholar] [CrossRef]
- Amin, M.H.; Mohamed EK, A.; Elragal, A. Corporate disclosure via social media: A data science approach. Online Inf. Rev. 2020, 44, 278–298. [Google Scholar] [CrossRef]
- Jordan, L.; Kalin, J.; Dabrowski, C. Characteristics of gun advertisements on social media: Systematic search and content analysis of Twitter and YouTube posts. J. Med. Internet Res. 2020, 22, e15736. [Google Scholar] [CrossRef]
- Deng, N.; Liu, J.; Dai, Y.; Li, H. Different cultures, different photos: A comparison of Shanghai’s pictorial destination image between East and West. Tour. Manag. Perspect. 2019, 30, 182–192. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Research Review of Foreign Studies on Group Polarization in Social Media. Inf. Sci. 2022, 40, 176–184. [Google Scholar]
- Anne, K.; Poteet, S.R. (Eds.) Natural Language Processing and Text Mining; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Gulo, C.A.S.J.; Rúbio, T.R.P.M. Text Mining Scientific Articles using the R. In Doctoral Symposium in Informatics Engineering; University of Porto: Porto, Portugal, 2015; pp. 60–69. [Google Scholar]
- Al Hattab, M. The dynamic evolution of synergies between BIM and sustainability: A text mining and network theory approach. J. Build. Eng. 2021, 37, 102159. [Google Scholar] [CrossRef]
- Gaikwad, S.V.; Chaugule, A.; Patil, P. Text mining methods and techniques. Int. J. Comput. Appl. 2014, 85, 42–45. [Google Scholar]
- Bavelas, A. Communication Patterns in Task-Oriented Groups. Acoust. Soc. Am. J. 1950, 22, 725–730. [Google Scholar] [CrossRef]
- Freeman, L. Centrality in social networks: Conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Granovetter, M. The strength of weak ties. Am. J. Sociol. 1973, 78, 1360–1380. [Google Scholar] [CrossRef]
Categories | Words |
---|---|
Huawei positive words | support, consistent, must, normative, important, simple, gain, normal, proper, right, etc. |
Sohu positive words | distinguished, trusted, leading, prestigious, elevated, awarded, well-known, reputation, etc. |
Zhihu positive words | featured, endorsement, strengths, innovative, efficient, stand out, helpful, etc. |
Huawei negative words | disappear, lose, worry, misunderstand, rupture, worse, etc. |
Sohu negative words | impact, block, risk, outburst, difficulty, narrow-viewed, etc. |
Zhihu negative words | inadequate, ephemeral, pandering, subversive, backstage, complex, impractical, etc. |
Number | Word | Centrality Degree | Percentage |
---|---|---|---|
1 | Operating Systems | 1581 | 0.153 |
2 | Initialization | 1196 | 0.115 |
3 | Software Development | 713 | 0.069 |
4 | Constructors | 688 | 0.066 |
5 | Static Methods | 661 | 0.064 |
6 | Hardware and Software | 506 | 0.049 |
7 | Data Analysis | 467 | 0.045 |
8 | Operations | 346 | 0.033 |
9 | Development Tools | 327 | 0.032 |
10 | Technology Innovation | 323 | 0.031 |
Number | Word | Centrality Degree | Percentage |
---|---|---|---|
1 | Enterprise | 100,354 | 0.201 |
2 | Digitalization | 49,003 | 0.098 |
3 | Digital Transformation | 46,580 | 0.093 |
4 | Software | 37,465 | 0.075 |
5 | Data | 37,290 | 0.075 |
6 | Technology | 35,363 | 0.071 |
7 | Organizations | 28,617 | 0.057 |
8 | Product | 27,082 | 0.054 |
9 | Systems | 25,497 | 0.051 |
10 | Business | 23,978 | 0.048 |
Number | Word | Centrality Degree | Percentage |
---|---|---|---|
1 | Digitalization | 12,060 | 0.347 |
2 | Informatization | 3355 | 0.096 |
3 | Artificial Intelligence | 2360 | 0.068 |
4 | Big Data | 2151 | 0.062 |
5 | Intelligent | 1948 | 0.056 |
6 | Automation | 1859 | 0.053 |
7 | Digital Technology | 1310 | 0.038 |
8 | Cloud Computing | 920 | 0.026 |
9 | Online and Offline | 872 | 0.025 |
10 | Internet of Things | 838 | 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.; Wang, C.; Gu, Y.; Liu, R. A Text Data Mining-Based Digital Transformation Opinion Thematic System for Online Social Media Platforms. Systems 2025, 13, 159. https://doi.org/10.3390/systems13030159
Liao H, Wang C, Gu Y, Liu R. A Text Data Mining-Based Digital Transformation Opinion Thematic System for Online Social Media Platforms. Systems. 2025; 13(3):159. https://doi.org/10.3390/systems13030159
Chicago/Turabian StyleLiao, Haihan, Chengmin Wang, Yanzhang Gu, and Renhuai Liu. 2025. "A Text Data Mining-Based Digital Transformation Opinion Thematic System for Online Social Media Platforms" Systems 13, no. 3: 159. https://doi.org/10.3390/systems13030159
APA StyleLiao, H., Wang, C., Gu, Y., & Liu, R. (2025). A Text Data Mining-Based Digital Transformation Opinion Thematic System for Online Social Media Platforms. Systems, 13(3), 159. https://doi.org/10.3390/systems13030159