How Intelligent Transformation Empowers Innovation Quality Improvement in Manufacturing Enterprises: A Resource Orchestration Perspective
Abstract
:1. Introduction
2. Literature Review
2.1. Intelligent Transformation
2.2. Innovation Quality
2.3. Resource Orchestration Theory
3. Hypothesis Development
3.1. The Impact of Intelligent Transformation on Innovation Quality in Manufacturing Enterprises
3.2. The Mediating Role of Financing Constraints
3.3. The Mediating Role of Organizational Resilience
3.4. The Mediating Role of Risk-Taking Capacity
4. Research Design
4.1. Sample Selection and Data Sources
4.2. Variable Definition
4.2.1. Explained Variable
4.2.2. Core Explanatory Variables
4.2.3. Control Variables
4.3. Model Construction
5. Empirical Results and Analysis
5.1. Descriptive Statistics and Correlation Analysis
5.2. Baseline Results
5.3. Robustness Check
5.4. Endogeneity Test
5.5. Heterogeneity Test
5.6. Mechanism Test
- (1)
- Financing Constraints
- (2)
- Organizational Resilience
- (3)
- Risk Taking
6. Further Analysis
7. Discussion
Conclusions
Implication and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ST | Special Treatment |
R&D | Research and Development |
References
- Zhao, A.; Wang, J.; Sun, Z.; Guan, H. Environmental taxes, technology innovation quality and firm performance in China—A test of effects based on the Porter hypothesis. Econ. Anal. Policy 2022, 74, 309–325. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Xie, W.; Wang, P. Tax incentives for human capital accumulation and enterprise innovation quality: Evidence of a quasi-natural experiment in China. Financ. Res. Lett. 2024, 70, 106342. [Google Scholar] [CrossRef]
- Dang, J.; Motohashi, K. Patent statistics: A good indicator for innovation in China? Patent subsidy program impacts on patent quality. China Econ. Rev. 2015, 35, 137–155. [Google Scholar] [CrossRef]
- Fisch, C.; Sandner, P.; Regner, L. The value of Chinese patents: An empirical investigation of citation lags. China Econ. Rev. 2017, 45, 22–34. [Google Scholar] [CrossRef]
- Kang, Y.; Ma, X.; Xie, M.; Zhong, N. Innovation’s false spring: US export controls and Chinese patent quality. J. Int. Money Financ. 2025, 150, 103229. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, J.Z.; Cao, Y.; Kazancoglu, Y. Intelligent transformation of the manufacturing industry for Industry 4.0: Seizing financial benefits from supply chain relationship capital through enterprise green management. Technol. Forecast. Soc. Change 2021, 172, 120999. [Google Scholar] [CrossRef]
- Huergo, E.; Moreno, L. Subsidies or loans? Evaluating the impact of R&D support programmes. Res. Policy 2017, 46, 1198–1214. [Google Scholar]
- Balsmeier, B.; Fleming, L.; Manso, G. Independent boards and innovation. J. Financ. Econ. 2017, 123, 536–557. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, W. Has catch-up strategy of innovation inhibited the quality of China’s patents. Econ. Res. J. 2018, 53, 28–41. [Google Scholar]
- Zhuo, C.; Chen, J. Can digital transformation overcome the enterprise innovation dilemma: Effect, mechanism and effective boundary. Technol. Forecast. Soc. Change 2023, 190, 122378. [Google Scholar] [CrossRef]
- Chin, T.; Wang, W.; Yang, M.; Duan, Y.; Chen, Y. The moderating effect of managerial discretion on blockchain technology and the firms’ innovation quality: Evidence from Chinese manufacturing firms. Int. J. Prod. Econ. 2021, 240, 108219. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital innovation management. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Hajli, M.; Sims, J.M.; Ibragimov, V. Information technology (IT) productivity paradox in the 21st century. Int. J. Product. Perform. Manag. 2015, 64, 457–478. [Google Scholar] [CrossRef]
- Li, T. Does smart transformation in manufacturing promote enterprise value chain upgrades? Financ. Res. Lett. 2024, 69, 106124. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X. Impact of digital government construction on the intelligent transformation of enterprises: Evidence from China. Technol. Forecast. Soc. Change 2025, 210, 123787. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D. Managing firm resources in dynamic environments to create value: Looking inside the black box. Acad. Manag. Rev. 2007, 32, 273–292. [Google Scholar] [CrossRef]
- Rammer, C.; Fernández, G.P.; Czarnitzki, D. Artificial intelligence and industrial innovation: Evidence from German firm-level data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Li, B.-H.; Hou, B.-C.; Yu, W.-T.; Lu, X.-B.; Yang, C.-W. Applications of artificial intelligence in intelligent manufacturing: A review. Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, S.; Chen, J.E.; Han, X. The role of information technologies (ITs) in firms’ resource orchestration process: A case analysis of China’s “Huangshan 168”. Int. J. Inf. Manag. 2017, 37, 713–715. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Babina, T.; Fedyk, A.; He, A.; Hodson, J. Artificial intelligence, firm growth, and product innovation. J. Financ. Econ. 2024, 151, 103745. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X. Intelligent manufacturing, green technological innovation and environmental pollution. J. Innov. Knowl. 2023, 8, 100384. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Yang, S.; Wang, W.; Ding, T. Intelligent transformation and sustainable innovation capability: Evidence from China. Financ. Res. Lett. 2023, 55, 103963. [Google Scholar] [CrossRef]
- Ravichandran, T.; Han, S.; Mithas, S. Mitigating diminishing returns to R&D: The role of information technology in innovation. Inf. Syst. Res. 2017, 28, 812–827. [Google Scholar]
- Acemoglu, D.; Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Yang, S.; Zhong, Y.; Feng, D.; Li, R.Y.M.; Shao, X.-F.; Liu, W. Robot application and occupational injuries: Are robots necessarily safer? Saf. Sci. 2022, 147, 105623. [Google Scholar] [CrossRef]
- Gómez, J.; Salazar, I.; Vargas, P. Does information technology improve open innovation performance? An examination of manufacturers in Spain. Inf. Syst. Res. 2017, 28, 661–675. [Google Scholar] [CrossRef]
- Duan, Y.; Huang, L.; Luo, X.; Cheng, T.; Liu, H. The moderating effect of absorptive capacity on the technology search and innovation quality relationship in high-tech manufacturing firms. J. Eng. Technol. Manag. 2021, 62, 101656. [Google Scholar] [CrossRef]
- Lanjouw, J.O.; Schankerman, M. Patent quality and research productivity: Measuring innovation with multiple indicators. Econ. J. 2004, 114, 441–465. [Google Scholar] [CrossRef]
- Wan, Y.; Gao, Y.; Hu, Y. Blockchain application and collaborative innovation in the manufacturing industry: Based on the perspective of social trust. Technol. Forecast. Soc. Change 2022, 177, 121540. [Google Scholar] [CrossRef]
- Hall, B.H.; Harhoff, D. Recent research on the economics of patents. Annu. Rev. Econ. 2012, 4, 541–565. [Google Scholar] [CrossRef]
- Tong, T.W.; He, W.; He, Z.-L.; Lu, J. Patent Regime Shift and Firm Innovation: Evidence from the Second Amendment to China’s Patent Law; Academy of Management Proceedings; Academy of Management Briarcliff Manor: Valhalla, NY, USA, 2014; p. 14174. [Google Scholar]
- Aghion, P.; Van Reenen, J.; Zingales, L. Innovation and institutional ownership. Am. Econ. Rev. 2013, 103, 277–304. [Google Scholar] [CrossRef]
- Hsu, P.-H.; Tian, X.; Xu, Y. Financial development and innovation: Cross-country evidence. J. Financ. Econ. 2014, 112, 116–135. [Google Scholar] [CrossRef]
- Akcigit, U.; Baslandze, S.; Stantcheva, S. Taxation and the international mobility of inventors. Am. Econ. Rev. 2016, 106, 2930–2981. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D.; Gilbert, B.A. Resource orchestration to create competitive advantage: Breadth, depth, and life cycle effects. J. Manag. 2011, 37, 1390–1412. [Google Scholar] [CrossRef]
- Li, M.; Jia, S. Resource orchestration for innovation: The dual role of information technology. Technol. Anal. Strateg. Manag. 2018, 30, 1136–1147. [Google Scholar] [CrossRef]
- Liu, H.; Wei, S.; Ke, W.; Wei, K.K.; Hua, Z. The configuration between supply chain integration and information technology competency: A resource orchestration perspective. J. Oper. Manag. 2016, 44, 13–29. [Google Scholar] [CrossRef]
- Peretz-Andersson, E.; Tabares, S.; Mikalef, P.; Parida, V. Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach. Int. J. Inf. Manag. 2024, 77, 102781. [Google Scholar] [CrossRef]
- Fjeldstad, Ø.D.; Snow, C.C.; Miles, R.E.; Lettl, C. The architecture of collaboration. Strateg. Manag. J. 2012, 33, 734–750. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, X.; Sun, W.; Fan, W. How do manufacturing firms manage artificial intelligence to drive iterative product innovation? IEEE Trans. Eng. Manag. 2023, 71, 6090–6102. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, P.; Huang, L.; Kang, Y. The impact of artificial intelligence on green transformation of manufacturing enterprises: Evidence from China. Econ. Change Restruct. 2024, 57, 146. [Google Scholar] [CrossRef]
- Liu, M.; Li, C.; Wang, S.; Li, Q. Digital transformation, risk-taking, and innovation: Evidence from data on listed enterprises in China. J. Innov. Knowl. 2023, 8, 100332. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y. Digital transformation and corporate risk taking: Evidence from China. Glob. Financ. J. 2024, 62, 101012. [Google Scholar] [CrossRef]
- García-Quevedo, J.; Segarra-Blasco, A.; Teruel, M. Financial constraints and the failure of innovation projects. Technol. Forecast. Soc. Change 2018, 127, 127–140. [Google Scholar] [CrossRef]
- Kaplan, S.N.; Zingales, L. Do investment-cash flow sensitivities provide useful measures of financing constraints? Q. J. Econ. 1997, 112, 169–215. [Google Scholar] [CrossRef]
- Wang, K.-L.; Sun, T.-T.; Xu, R.-Y. The impact of artificial intelligence on total factor productivity: Empirical evidence from China’s manufacturing enterprises. Econ. Change Restruct. 2023, 56, 1113–1146. [Google Scholar] [CrossRef]
- Ortiz-de-Mandojana, N.; Bansal, P. The long-term benefits of organizational resilience through sustainable business practices. Strateg. Manag. J. 2016, 37, 1615–1631. [Google Scholar] [CrossRef]
- Xi, M.; Liu, Y.; Fang, W.; Feng, T. Intelligent manufacturing for strengthening operational resilience during the COVID-19 pandemic: A dynamic capability theory perspective. Int. J. Prod. Econ. 2024, 267, 109078. [Google Scholar] [CrossRef]
- Kahn, W.A.; Barton, M.A.; Fisher, C.M.; Heaphy, E.D.; Reid, E.M.; Rouse, E.D. The geography of strain: Organizational resilience as a function of intergroup relations. Acad. Manag. Rev. 2018, 43, 509–529. [Google Scholar] [CrossRef]
- Marsh, S.J.; Stock, G.N. Creating dynamic capability: The role of intertemporal integration, knowledge retention, and interpretation. J. Prod. Innov. Manag. 2006, 23, 422–436. [Google Scholar] [CrossRef]
- Boubakri, N.; Cosset, J.-C.; Saffar, W. The role of state and foreign owners in corporate risk-taking: Evidence from privatization. J. Financ. Econ. 2013, 108, 641–658. [Google Scholar] [CrossRef]
- Mariani, M.M.; Machado, I.; Magrelli, V.; Dwivedi, Y.K. Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation 2023, 122, 102623. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Wang, X. Regional carbon efficiency and corporate risk-taking. Econ. Change Restruct. 2024, 57, 99. [Google Scholar] [CrossRef]
- Bundy, J.; Pfarrer, M.D.; Short, C.E.; Coombs, W.T. Crises and crisis management: Integration, interpretation, and research development. J. Manag. 2017, 43, 1661–1692. [Google Scholar] [CrossRef]
- Helfat, C.E.; Peteraf, M.A. Managerial cognitive capabilities and the microfoundations of dynamic capabilities. Strateg. Manag. J. 2015, 36, 831–850. [Google Scholar] [CrossRef]
- Porter, M.E.; Heppelmann, J.E. How smart, connected products are transforming competition. Harv. Bus. Rev. 2014, 92, 64–88. [Google Scholar]
- Buchanan, D.A.; Bryman, A. Contextualizing methods choice in organizational research. Organ. Res. Methods 2007, 10, 483–501. [Google Scholar] [CrossRef]
- Yu, F.; Wang, L.; Li, X. The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation. Energy Policy 2020, 141, 111463. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H. Digital technology innovation and corporate ESG performance: Evidence from China. Econ. Change Restruct. 2024, 57, 207. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, H.; Deng, Q. Quantity or quality: Novel insights into the impact of digital finance on innovation. Financ. Res. Lett. 2024, 65, 105603. [Google Scholar] [CrossRef]
- Pan, A.; Xu, L.; Li, B.; Ling, R. The impact of supply chain finance on firm cash holdings: Evidence from China. Pac.-Basin Financ. J. 2020, 63, 101402. [Google Scholar] [CrossRef]
- Ang, J.; Yan, Z.; Xiao, T.; Yuan, C.; Wang, J. Impact of Fintech on labor allocation efficiency in firms: Empirical evidence from China. Glob. Financ. J. 2024, 62, 101011. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US food aid and civil conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Dell, M. The persistent effects of Peru’s mining mita. Econometrica 2010, 78, 1863–1903. [Google Scholar] [CrossRef]
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- John, K.; Litov, L.; Yeung, B. Corporate governance and risk-taking. J. Financ. 2008, 63, 1679–1728. [Google Scholar] [CrossRef]
- Faccio, M.; Marchica, M.-T.; Mura, R. Large shareholder diversification and corporate risk-taking. Rev. Financ. Stud. 2011, 24, 3601–3641. [Google Scholar] [CrossRef]
- Qiu, J.; Deng, X.; Liang, R. Can the enterprise intelligent transformation promote accounting information transparency? Pressure from media attention. Financ. Res. Lett. 2024, 66, 105605. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McElheran, K. The rapid adoption of data-driven decision-making. Am. Econ. Rev. 2016, 106, 133–139. [Google Scholar] [CrossRef]
Variable Type | Variable Name | Variable Symbol | Variable Definition |
---|---|---|---|
Explained Variable | Innovation Quality | INQ | Measured using knowledge breadth index. |
Explanatory Variable | Intelligent Transformation | InTra | The frequency of intelligent transformation-related terms in annual reports plus 1, then taking the natural logarithm. |
Control Variables | Firm Size | Size | Natural logarithm of total assets at the end of the period. |
Asset–Liability Ratio | Lev | Total liabilities divided by total assets. | |
TobinQ | TobinQ | The ratio of the market value of a firm’s assets to the replacement cost of those assets. | |
Listing Age | ListAge | ln (the year of observation minus the year of establishment). | |
Board Size | Board | Number of board members. | |
Return on Assets | ROA | Net profit divided by average total assets. | |
Market Competition Intensity | HHI | , Xi is the main business revenue of industry i. | |
Fixed Asset Ratio | Fixed | Net fixed assets divided by total assets. |
Variable | N | Mean | SD | Min | p50 | Max |
---|---|---|---|---|---|---|
INQ | 17,552 | 0.402 | 0.300 | 0 | 0.472 | 0.943 |
InTra | 17,552 | 2.339 | 1.238 | 0 | 2.398 | 5.313 |
Size | 17,552 | 22.09 | 1.184 | 17.954 | 21.924 | 27.621 |
Lev | 17,552 | 0.385 | 0.186 | 0.008 | 0.381 | 0.995 |
TobinQ | 17,552 | 2.044 | 1.310 | 0.681 | 1.651 | 28.641 |
ROA | 17,552 | 0.047 | 0.066 | −0.613 | 0.042 | 0.969 |
Fixed | 17,552 | 0.215 | 0.127 | 0.016 | 0.193 | 0.587 |
Board | 17,552 | 2.117 | 0.193 | 1.386 | 2.197 | 2.890 |
ListAge | 17,552 | 1.855 | 0.933 | 0 | 1.946 | 3.434 |
HHI | 17,552 | 0.164 | 0.120 | 0.041 | 0.130 | 0.706 |
INQ | InTra | Size | Lev | TobinQ | ROA | Fixed | |
---|---|---|---|---|---|---|---|
INQ | 1 | ||||||
InTra | 0.061 *** | 1 | |||||
Size | 0.053 *** | 0.071 *** | 1 | ||||
Lev | −0.003 | −0.006 | 0.507 *** | 1 | |||
TobinQ | −0.018 ** | −0.039 *** | −0.212 *** | −0.239 *** | 1 | ||
ROA | 0.010 | −0.017 ** | 0.050 *** | −0.283 *** | 0.289 *** | 1 | |
Fixed | 0.048 *** | −0.273 *** | 0.124 *** | 0.214 *** | −0.109 *** | −0.082 *** | 1 |
Board | −0.033 *** | −0.135 *** | 0.221 *** | 0.134 *** | −0.072 *** | 0.013 * | 0.125 *** |
ListAge | 0.053 *** | −0.069 *** | 0.494 *** | 0.392 *** | 0.016 ** | −0.025 *** | 0.187 *** |
HHI | −0.112 *** | −0.038 *** | 0.025 *** | 0.070 *** | −0.047 *** | −0.039 *** | 0.064 *** |
Board | ListAge | HHI | |||||
Board | 1 | ||||||
ListAge | 0.140 *** | 1 | |||||
HHI | 0.021 *** | −0.003 | 1 |
Variables | (1) | (2) | (3) |
---|---|---|---|
INQ | INQ | INQ | |
InTra | 0.012 *** | 0.013 *** | |
(3.78) | (3.94) | ||
Size | 0.004 | 0.002 | |
(0.76) | (0.42) | ||
Lev | −0.046 ** | −0.043 * | |
(−2.12) | (−1.95) | ||
TobinQ | 0.005 *** | 0.006 *** | |
(2.60) | (2.68) | ||
ROA | −0.085 ** | −0.090 ** | |
(−2.30) | (−2.44) | ||
Fixed | 0.043 | 0.045 | |
(1.45) | (1.51) | ||
Board | −0.025 | −0.027 | |
(−1.37) | (−1.49) | ||
ListAge | −0.006 | −0.005 | |
(−0.90) | (−0.85) | ||
HHI | −0.093 *** | −0.092 *** | |
(−3.55) | (−3.51) | ||
Firm FE | YES | YES | YES |
Year FE | YES | YES | YES |
Constant | 0.365 *** | 0.361 *** | 0.390 *** |
(26.12) | (3.01) | (3.26) | |
Observations | 17,552 | 17,552 | 17,552 |
R-squared | 0.339 | 0.340 | 0.340 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
INQ | INQ | INQ1 | INQ | |
InTra | 0.036 *** | 0.011 *** | ||
(3.36) | (3.32) | |||
InTra1 | 0.251 *** | |||
(2.96) | ||||
idummy | 0.020 ** | |||
(2.41) | ||||
Controls | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Constant | 0.365 *** | 0.347 *** | −9.311 *** | 0.466 *** |
(3.05) | (2.89) | (−22.45) | (3.51) | |
Observations | 17,552 | 17,552 | 13,491 | 16,262 |
R-squared | 0.340 | 0.340 | 0.624 | 0.345 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
INQ | INQ | INQ | INQ | INQ | INQ | |
InTra | 0.014 *** | 0.012 *** | 0.009** | 0.012 *** | 0.010*** | 0.013 *** |
(4.18) | (3.57) | (2.21) | (3.21) | (2.71) | (3.30) | |
L.INQ | 0.023 ** | |||||
(2.29) | ||||||
Controls | YES | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Constant | 0.413 *** | 0.388 *** | 0.681 *** | 0.495 *** | 0.332 ** | 0.383 ** |
(3.35) | (3.05) | (4.53) | (3.66) | (2.56) | (2.43) | |
Observations | 16559 | 15844 | 12295 | 13641 | 16254 | 12216 |
R-squared | 0.345 | 0.358 | 0.364 | 0.340 | 0.351 | 0.359 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
INQ | INQ | InTra | INQ | InTra | INQ | INQ | INQ | |
l. InTra | 0.007 * | |||||||
(1.68) | ||||||||
InTra | 0.013 *** | 1.964 *** | 2.677 *** | 0.013 *** | 0.020 ** | |||
(3.98) | (4.40) | (6.33) | (4.12) | (2.07) | ||||
Fixed telephones × last year’s Internet users | 0.001 *** | |||||||
(4.40) | ||||||||
Intra_Industry | 0.011 *** | |||||||
(14.92) | ||||||||
IMR | −0.420 *** | |||||||
(−9.50) | ||||||||
Controls | YES | YES | YES | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES | YES | YES |
Industry FE | NO | YES | NO | NO | NO | NO | NO | NO |
Constant | 0.692 *** | 0.476 ** | −3.697 *** | 6.147 *** | −3.622 *** | 9.393 *** | 0.400 *** | 1.130 *** |
(4.62) | (2.48) | (−11.07) | (3.37) | (−12.06) | (5.22) | (3.39) | (2.69) | |
Observations | 12,295 | 17,552 | 15,025 | 15,025 | 17,552 | 17,552 | 17,552 | 2426 |
R-squared | 0.363 | 0.341 | 0.394 | / | 0.454 | / | 0.344 | 0.152 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Eastern | Non-Eastern | High-Tech | Non-High-Tech | State-Owned | Non-State-Owned | |
InTra | 0.016 *** | 0.004 | 0.007 | 0.016 *** | 0.006 | 0.015 *** |
(4.10) | (0.72) | (1.46) | (3.42) | (1.04) | (3.80) | |
Controls | YES | YES | YES | YES | YES | YES |
Firm FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Constant | 0.343 ** | 0.425 * | 0.297 * | 0.361 * | 0.620 *** | 0.205 |
(2.41) | (1.88) | (1.81) | (1.93) | (2.78) | (1.35) | |
Observations | 12,768 | 4773 | 9035 | 8517 | 4852 | 12,258 |
R-squared | 0.337 | 0.354 | 0.350 | 0.339 | 0.389 | 0.317 |
Variables | (1) | (2) | (3) |
---|---|---|---|
SA | Resilience | Risk | |
InTra | −0.003 *** | 0.242 *** | 0.001 ** |
(−4.31) | (3.87) | (2.28) | |
Controls | YES | YES | YES |
Firm FE | YES | YES | YES |
Year FE | YES | YES | YES |
Constant | −3.502 *** | −18.609 *** | 0.186 *** |
(−128.63) | (−8.09) | (12.36) | |
Observations | 15,136 | 15,933 | 16,216 |
R-squared | 0.914 | 0.153 | 0.110 |
Variables | (1) | (2) | (3) |
---|---|---|---|
INQ | INQ | INQ | |
IP | 0.010 *** | ||
(2.97) | |||
IS | 0.016*** | ||
(2.91) | |||
IPS | 0.013 *** | ||
(4.15) | |||
Controls | YES | YES | YES |
Firm FE | YES | YES | YES |
Year FE | YES | YES | YES |
Constant | 0.377 *** | 0.382 *** | 0.397 *** |
(3.15) | (3.18) | (3.31) | |
Observations | 17,552 | 17,552 | 17,552 |
R-squared | 0.340 | 0.340 | 0.340 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zheng, Q.; Deng, Y.; Wang, Z. How Intelligent Transformation Empowers Innovation Quality Improvement in Manufacturing Enterprises: A Resource Orchestration Perspective. Systems 2025, 13, 116. https://doi.org/10.3390/systems13020116
Liu X, Zheng Q, Deng Y, Wang Z. How Intelligent Transformation Empowers Innovation Quality Improvement in Manufacturing Enterprises: A Resource Orchestration Perspective. Systems. 2025; 13(2):116. https://doi.org/10.3390/systems13020116
Chicago/Turabian StyleLiu, Xinyi, Qinghao Zheng, Yang Deng, and Zongjun Wang. 2025. "How Intelligent Transformation Empowers Innovation Quality Improvement in Manufacturing Enterprises: A Resource Orchestration Perspective" Systems 13, no. 2: 116. https://doi.org/10.3390/systems13020116
APA StyleLiu, X., Zheng, Q., Deng, Y., & Wang, Z. (2025). How Intelligent Transformation Empowers Innovation Quality Improvement in Manufacturing Enterprises: A Resource Orchestration Perspective. Systems, 13(2), 116. https://doi.org/10.3390/systems13020116