Integrated Subject–Action–Object and Bayesian Models of Intelligent Word Semantic Similarity Measures
Abstract
1. Introduction
2. Related Works
2.1. Knowledge-Based Semantic Similarity Calculation
2.2. Semantic Similarity Calculation Method Based on the Corpus
2.3. Semantic Similarity Calculation Method Based on Word Vectors
2.4. Hybrid Method Based on Multi-Method Fusion
2.5. Drawbacks and Research Focus
3. Methodology
3.1. Overview
3.2. Computing Model Design
3.3. Similarity Calculation Based on SAO Statistics
3.4. WordNet-Based Semantic Similarity Calculations
3.4.1. Semantic Similarity Calculation Based on Path Distance
3.4.2. Semantic Similarity Calculation Based on IC
3.4.3. Total Experience Similarity Calculation
3.5. Semantic Similarity Calculation Based on BM
3.5.1. LS Adjustment
3.5.2. BM for Word Similarity Calculation
- where Ssim(w1,w2) is the similarity score of attribute Subject (the calculated words as subject) of words, Asim(w1,w2) is the similarity score of attribute Action (the calculated words as action) of words, and Osim(w1,w2) is the similarity score of attribute Object (the calculated words as object) of words. Class U represents the judgment result, range within {T, F}, T means “similar”, and F means “dissimilar”. Assuming that marginal distribution is P(Y), then P(Ssim|Y), P(Asim|Y), and P(Osim|Y) represent the probability distribution of semantic similarity between word pairs. In the study of [43], the prior probability P(Y = T) and P(Y = F) were set to 0.5, and then the posterior probability of judging similar words based on SAO similarity was P(Y = T|Ssim), P(Y = T|Ssim), and P(Y = T|Ssim). The posterior probability of judging that the words are not similar was P(Y = T|Ssim), P(Y = T|Ssim), and P(Y = T|Ssim). Assuming that and are subjects, the semantic similarity under the joint constraints of attribute Asim() and attribute Osim() is sim(). The calculation is shown in Formula (13):where Z represents the joint probability that and are not similar, and the calculation is shown in Formula (14):
4. Experimental Results and Analysis
4.1. Extraction and Statistics of SAO Structure
4.2. Algorithm Comparison and Evaluation
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
| 1 | https://dumps.wikimedia.org/enwiki/latest/ (accessed on 22 March 2025) |
References
- Chandrasekaran, D.; Mago, V. Evolution of Semantic Similarity—A Survey. ACM Comput. Surv. 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Yan, F.; Fan, Q.; Lu, M. Improving Semantic Similarity Retrieval with Word Embeddings. Concurr. Comput. Pract. Exp. 2018, 30, e4489. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, D.; Yang, C. SAO Semantic Information Identification for Text Mining. Int. J. Comput. Intell. Syst. 2017, 10, 593–604. [Google Scholar] [CrossRef]
- Liu, A.; Pan, L.; Lu, Y.; Li, J.; Hu, X.; Zhang, X.; Wen, L.; King, I.; Xiong, H.; Yu, P. A Survey of Text Watermarking in the Era of Large Language Models. ACM Comput. Surv. 2024, 57, 1–36. [Google Scholar] [CrossRef]
- Manakul, P.; Liusie, A.; Gales, M.J.F. Selfcheckgpt: Zero-resource Black-box Hallucination Detection for Generative Large Language Models. arXiv 2023, arXiv:2303.08896. [Google Scholar]
- Özçelik, Ö. Interface Hypothesis and the L2 Acquisition of Quantificational Scope at the Syntax-semantics-pragmatics Interface. Lang. Acquis. 2017, 25, 213–223. [Google Scholar] [CrossRef]
- Gao, J.-B.; Zhang, B.-W.; Chen, X.-H. A WordNet-based Semantic Similarity Measurement Combining Edge-counting and Information Content Theory. Eng. Appl. Artif. Intell. 2015, 39, 80–88. [Google Scholar] [CrossRef]
- Chergui, O.; Ahlame, B.; Dominique, G.-L. Integrating a Bayesian Semantic Similarity Approach into CBR for Knowledge Reuse in Community Question Answering. Knowl.-Based Syst. 2019, 185, 104919. [Google Scholar] [CrossRef]
- Lopez-Arevalo, I.; Sosa-Sosa, V.J.; Rojas-Lopez, F.; Tello-Leal, E. Improving Selection of Synsets from WordNet for Domain-Specific Word Sense Disambiguation. Comput. Speech Lang. 2017, 41, 128–145. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Q.; Lu, W.; Che, X. A Hybrid Approach for Measuring Semantic Similarity Based on IC-weighted Path Distance in WordNet. J. Intell. Inf. Syst. 2017, 51, 23–47. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, S.; Zhang, K. An Information Content-Based Approach for Measuring Concept Semantic Similarity in WordNet. Wirel. Pers. Commun. 2018, 103, 117–132. [Google Scholar] [CrossRef]
- Ensor, T.M.; MacMillan, M.B.; Neath, I.; Surprenant, A.M. Calculating Semantic Relatedness of Lists of Nouns Using WordNet Path Length. Behav. Res. Methods 2021, 53, 2430–2438. [Google Scholar] [CrossRef]
- Azad, H.-K.; Akshay, D. A New Approach for Query Expansion Using Wikipedia and WordNet. Inf. Sci. 2019, 492, 147–163. [Google Scholar] [CrossRef]
- Nakamura, T.; Shirakawa, M.; Hara, T.; Nishio, S. Wikipedia-Based Relatedness Measurements for Multilingual Short Text Clustering. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2018, 18, 1–25. [Google Scholar] [CrossRef]
- Jiang, Y.; Bai, W.; Zhang, X.; Hu, J. Wikipedia-based Information Content and Semantic Similarity Computation. Inf. Process. Manag. 2017, 53, 248–265. [Google Scholar] [CrossRef]
- Qu, R.; Fang, Y.; Bai, W.; Jiang, Y. Computing Semantic Similarity Based on Novel Models of Semantic Representation using Wikipedia. Inf. Process. Manag. 2018, 54, 1002–1021. [Google Scholar] [CrossRef]
- Wasti, S.H.; Hussain, M.J.; Huang, G.; Akram, A.; Jiang, Y.; Tang, Y. Assessing Semantic Similarity between Concepts: A Weighted-feature-based Approach. Concurr. Comput. Pract. Exp. 2020, 32, e5594. [Google Scholar] [CrossRef]
- Li, D.; Summers-Stay, D. Dual Embeddings and Metrics for Relational Similarity. Ann. Math. Artif. Intell. 2019, 88, 533–547. [Google Scholar] [CrossRef]
- Wang, T.; Shi, H.; Liu, W.; Yan, X. A joint FrameNet and element focusing Sentence-BERT method of sentence similarity computation. Expert Syst. Appl. 2022, 200, 117084. [Google Scholar] [CrossRef]
- Fu, X.; Liu, W.; Xu, Y.; Cui, L. Combine HowNet Lexicon to Train Phrase Recursive Autoencoder for Sentence-Level Sentiment Analysis. Neurocomputing 2017, 241, 18–27. [Google Scholar] [CrossRef]
- Chen, Z.; Song, J.; Yang, Y. An Approach to Measuring Semantic Relatedness of Geographic Terminologies Using a Thesaurus and Lexical Database Sources. ISPRS Int. J. Geo-Inf. 2018, 7, 98. [Google Scholar] [CrossRef]
- Pang, S.; Yao, J.; Liu, T.; Zhao, H.; Chen, H. A Text Similarity Measurement Based on Semantic Fingerprint of Characteristic Phrases. Chin. J. Electron. 2020, 29, 233–241. [Google Scholar] [CrossRef]
- Araque, O.; Zhu, G.; Iglesias, C.A. A Semantic Similarity-Based Perspective of Affect Lexicons for Sentiment Analysis. Knowl.-Based Syst. 2019, 165, 346–359. [Google Scholar] [CrossRef]
- Coelho, J.; Mano, D.; Paula, B.; Coutinho, C.; Oliveira, J.; Ribeiro, R.; Batista, F. Semantic Similarity for Mobile Application Recommendation under Scarce User Data. Eng. Appl. Artif. Intell. 2023, 121, 105974. [Google Scholar] [CrossRef]
- Huang, D.; Pei, J.; Zhang, C.; Huang, K.; Ma, J. Incorporating Prior Knowledge into Word Embedding for Chinese Word Similarity Measurement. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, X.; Huang, Y.; Guo, Q.; Zhang, B. Measuring Similarity and Relatedness Using Multiple Semantic Relations in WordNet. Knowl. Inf. Syst. 2019, 62, 1539–1569. [Google Scholar] [CrossRef]
- Kwon, S.; Oh, D.; Ko, Y. Word Sense Disambiguation based on Context Selection using Knowledge-based Word Similarity. Inf. Process. Manag. 2021, 58, 102551. [Google Scholar] [CrossRef]
- An, X.; Li, J.; Xu, S.; Chen, L.; Sun, W. An Improved Patent Similarity Measurement based on Entities and Semantic Relations. J. Informetr. 2021, 15, 101135. [Google Scholar] [CrossRef]
- Hussain, M.J.; Bai, H.; Jiang, Y. Wikipedia bi-linear link (WBLM) model: A New Approach for Measuring Semantic Similarity and Relatedness between Linguistic Concepts using Wikipedia Link Structure. Inf. Process. Manag. 2023, 60, 103202. [Google Scholar] [CrossRef]
- Lastra-Díaz, J.J.; Goikoetxea, J.; Hadj Taieb, M.A.; García-Serrano, A.; Ben Aouicha, M.; Agirre, E. A Reproducible Survey on Word Embeddings and Ontology-based Methods for WordSimilarity: Linear Combinations Outperform the State of the Art. Eng. Appl. Artif. Intell. 2019, 85, 645–665. [Google Scholar] [CrossRef]
- Chen, D.-Z.; Chou, C.-H. Exploring Technology Evolution in the Solar Cell Field: An Aspect from Patent Analysis. Data Inf. Manag. 2017, 1, 124–134. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Li, T.; Sun, G.; Raymond Choo, K.-K. An Optimized Approach for Massive Web Page Classification using Entity Similarity based on Semantic Network. Future Gener. Comput. Syst. 2017, 76, 510–518. [Google Scholar] [CrossRef]
- Spasic, I.; Corcoran, P.; Gagarin, A.; Buerki, A. Head to Head: Semantic Similarity of Multi–word Terms. IEEE Access 2018, 6, 20545–20557. [Google Scholar] [CrossRef]
- Henry, S.; Cuffy, C.; McInnes, B.T. Vector Representations of Multi-word Terms for Semantic Relatedness. J. Biomed. Inform. 2018, 77, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhu, Z.; Han, P. A Novel Model for Semantic Similarity Measurement based on Wordnet and Word Embedding. J. Intell. Fuzzy Syst. 2021, 40, 9831–9842. [Google Scholar] [CrossRef]
- Biloshchytska, S.; Arailym, T.; Oleksandr, K.; Andrii, B.; Yurii, A.; Sapar, T.; Aidos, M.; Saltanat, S. Text Similarity Detection in Agglutinative Languages: A Case Study of Kazakh Using Hybrid N-Gram and Semantic Models. Appl. Sci. 2025, 15, 6707. [Google Scholar] [CrossRef]
- Kun, Z.; Hu, B.; Zhang, H.-T.; Li, Z.; Mao, Z.-D. Enhanced Semantic Similarity Learning Framework for Image-Text Matching. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 2973–2988. [Google Scholar]
- Muralikrishna, S.N.; Raghurama, H.; Harivinod, N.; Raghavendra, G. Cross-Lingual Short-Text Semantic Similarity for Kannada-English Language Pair. Computers 2024, 13, 9. [Google Scholar]
- Ismail, S.; Tarek, E.L.-S.; Abdelwahab, K.-A. A New Alignment Word-Space Approach for Measuring Semantic Similarity for Arabic Text. Int. J. Semant. Web Inf. Syst. 2022, 18, 1–18. [Google Scholar] [CrossRef]
- Biggers, F.B.; Mohanty, S.D.; Manda, P. A Deep Semantic Matching Approach for Identifying Relevant Messages for Social Media Analysis. Sci. Rep. 2023, 13, 12005. [Google Scholar] [CrossRef]
- Hussain, S.F.; Suryani, A. On Retrieving Intelligently Plagiarized Documents using Semantic Similarity. Eng. Appl. Artif. Intell. 2015, 45, 246–258. [Google Scholar] [CrossRef]
- Lastra-Diaz, J.J.; Lara-Clares, A.; Garcia-Serrano, A. HESML: A real-time Semantic Measures Library for the Biomedical Domain with A Reproducible Survey. BMC Bioinform. 2022, 23, 23. [Google Scholar] [CrossRef]
- Batet, M.; Sánchez, D. Leveraging Synonymy and Polysemy to Improve semantic Similarity Assessments based on Intrinsic Information content. Artif. Intell. Rev. 2019, 53, 2023–2041. [Google Scholar] [CrossRef]
- Orkphol, K.; Yang, W. Word Sense Disambiguation Using Cosine Similarity Collaborates with Word2vec and WordNet. Future Internet 2019, 11, 114. [Google Scholar] [CrossRef]
- Yin, F.; Wang, Y.; Liu, J.; Ji, M. Enhancing Embedding-Based Chinese Word Similarity Evaluation with Concepts and Synonyms Knowledge. Comput. Model. Eng. Sci. 2020, 124, 747–764. [Google Scholar] [CrossRef]
- AlMousa, M.; Benlamri, R.; Khoury, R. Exploiting Non-taxonomic Relations for Measuring Semantic Similarity and Relatedness in WordNet. Knowl.-Based Syst. 2021, 212, 106565. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Zhu, L.; Zhang, J.; Yang, G.; Xu, H. A Deep Learning based Method Benefiting from Characteristics of Patents for Semantic Relation Classification. J. Informetr. 2022, 16, 101312. [Google Scholar] [CrossRef]
- Teng, H.; Wang, N.; Zhao, H.; Hu, Y.; Jin, H. Enhancing Semantic Text Similarity with Functional Semantic Knowledge (FOP) in Patents. J. Informetr. 2024, 18, 101467. [Google Scholar] [CrossRef]
- Shirakawa, M.; Kotaro, N.; Takahiro, H.; Shojiro, N. Wikipedia-Based Semantic Similarity Measurements for Noisy Short Texts Using Extended Naive Bayes. IEEE Trans. Emerg. Top. Comput. 2015, 3, 205–219. [Google Scholar] [CrossRef]
- Rahutomo, F.; Aritsugi, M. Econo-ESA in Semantic Text Similarity. Springerplus 2014, 3, 149. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Zuo, W.L.; Yan, Z. Word Semantic Similarity Measurement based on Naive Bayes Model. J. Comput. Res. 2015, 52, 1499–1509. [Google Scholar]
- Resnik, P. Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In Proceedings of the IJCAI’95: Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; pp. 448–453. [Google Scholar]
- Lin, D. An Information-theoretic Definition of Similarity. In Proceedings of the ICML ‘98: Proceedings of the Fifteenth International Conference on Machine Learning, Madison, WI, USA, 24–27 July 1998; Volume 98, pp. 296–304. [Google Scholar]
- Rubenstein, H.; Goodenough, J.B. Contextual correlates of synonymy. Commun. ACM 1965, 8, 627–633. [Google Scholar] [CrossRef]
- Du, J.; Park, Y.T.; Theera-Ampornpunt, N.; McCullough, J.S.; Speedie, S.M. The Use of Count Data Models in Biomedical Informatics Evaluation Research. J. Am. Med. Inform. Assoc. 2012, 19, 39–44. [Google Scholar] [CrossRef] [PubMed]





| 01. // Variable: PT——provided text 02. // Variable: ST——sentence 03. // Variable: WD——word 04. // Variable: WDPOS——word with POS tagging 05. // Function: SAO——subject-action-object 06. // Function: POST——POS tagging 07. // Function: DEP_GRAM——dependency grammar 08. // Variable: DataFrame——distributed data set 09. Begin: 10. import nlp package 11. import CSV to DataFrame 12.Subject_POS_list = [“Subj”, “nsubj”, “nsubjpass”] 13. Action_POS_list = [“aux”, “auxpass”, “complm”, “prt”, “cordmod”, “mmod”] 14. Object_POS_list = [“obj”,”dobj”, “pobj”] 15. def getSubject (ST): 16. for word in ST: 17. WD = word 18. WDPOS = POST(word) 19. If WDPOS in Subject_POS_list: 20. Subject = WD 21. Return Action 22. def getAction (ST): 23. for word in ST: 24. WD = word 25. WDPOS = POST(word) 26. If WDPOS in Action_POS_list: 27. Action = WD 28. Return Action 29. def getObjection (ST): 30. for word in ST: 31. WD = word 32. WDPOS = POST(word) 33. If WDPOS in Object_POS_list: 34. Object = WD 35. Return Object 36. data = pd. DataFrame() 37. for i in range(len(csv)): 38. ST = split (PT, Regular expression clause) 39. for j in range (len (ST)): 40. Subject = getSubject (WD) 41. Action = getAction (WD) 42. Object = getObject (WD) 43. SAO = (Subject,Action,Object) 44. end 45. data = data.append(SAO) 46. end for. 47. output(data) |
| Subject | Action | Object |
|---|---|---|
| technique | be | diffusion |
| technique | be | society |
| technique | be | automobile |
| firm | call | name |
| firm | call | dispute |
| …… | …… | …… |
| state | emerge | company |
| state | emerge | Leyland |
| state | emerge | district |
| he | announce | average |
| he | announce | automobile |
| cord | smile | 0.452857 | 0.13441 | 0.051275 | 0.006898 |
| rooster | voyage | 0.628738 | 0.190753 | 0.083333 * | 0.035019 |
| noon | string | 0.889726 | 0.487714 | 0.060029 | 0.329107 |
| fruit | furnace | 0.802228 | 0.275732 | 0.217836 | 0.300741 |
| autograph | shore | 0.108461 | 0.721767 | 0.083333 | 0.02789 |
| forest | graveyard | 0.877965 | 0.299686 | 0.128814 | 0.312819 |
| food | rooster | 0.678134 | 0.33227 | 0.089671 | 0.093606 |
| cemetery | woodland | 0.836161 | 0.388748 | 0.118864 | 0.304518 |
| shore | voyage | 0.701818 | 0.322306 | 0.083333 * | 0.092363 |
| bird | woodland | 0.844491 | 0.551971 | 0.139818 | 0.520956 |
| crane | implement | 0.683133 | 0.260719 | 0.306226 | 0.25127 |
| brother | lad | 0.896143 | 0.458434 | 0.250188 | 0.709062 |
| sage | wizard | 0.669027 | 0.273837 | 0.190021 | 0.1517 |
| oracle | sage | 0.67659 | 0.272945 | 0.5117 | 0.451457 |
| bird | crane | 0.882723 | 0.453146 | 0.762029 | 0.952318 |
| cushion | pillow | 0.601014 | 0.089431 | 0.988341 | 0.926149 |
| cemetery | graveyard | 0.896422 | 0.539231 | 0.916667 * | 0.991104 |
| automobile | car | 0.872531 | 0.558889 | 0.916667 * | 0.989627 |
| midday | noon | 0.846892 | 0.475569 | 0.916667 * | 0.982199 |
| gem | jewel | 0.663112 | 0.184116 | 0.916667 * | 0.830107 |
| WordSim-353 | ||||||
|---|---|---|---|---|---|---|
| cord | smile | 0.452857 | 0.13441 | 0.051275 | 0.006898 | 0.08125 |
| rooster | voyage | 0.628738 | 0.190753 | 0.083333 * | 0.035019 | 0.09375 |
| noon | string | 0.889726 | 0.487714 | 0.060029 | 0.329107 | 0.06875 |
| tiger | zoo | 0.325918 | 0.561597 | 0.125942 | 0.300741 | 0.4.9375 |
| tiger | carnivore | 0.413865 | 0.786143 | 0.788223 | 0.02789 | 0.6 |
| forest | graveyard | 0.877965 | 0.299686 | 0.128814 | 0.312819 | 0.1394 |
| food | rooster | 0.678134 | 0.33227 | 0.089671 | 0.093606 | 0.25625 |
| cemetery | woodland | 0.836161 | 0.388748 | 0.118864 | 0.304518 | 0.23125 |
| crane | implement | 0.683133 | 0.260719 | 0.306226 | 0.25127 | 0.2125 |
| brother | lad | 0.896143 | 0.458434 | 0.250188 | 0.709062 | 0.49375 |
| seafood | lobster | 0.471582 | 0.728424 | 0.809234 | 0.451457 | 0.69375 |
| bird | crane | 0.882723 | 0.453146 | 0.762029 | 0.952318 | 0.48125 |
| money | currency | 0.68243 | 0.812571 | 0.863502 | 0.991104 | 0.79375 |
| automobile | car | 0.872531 | 0.558889 | 0.916667 * | 0.989627 | 0.9369 |
| midday | noon | 0.846892 | 0.475569 | 0.916667 * | 0.982199 | 0.89375 |
| gem | jewel | 0.663112 | 0.184116 | 0.916667 * | 0.830107 | 0.8375 |
| Word2Vec | BERT-Base | Sentence BERT | GPT-4o | Sentence Transformer | ESimCSE | R&G 65 | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| cord | smile | 0.051275 | 0.006898 | 0.2094 | 0.0134 | 0.2812 | 0.3903 | 0.18 | 0.7688 | 0.005 |
| rooster | voyage | 0.083333 * | 0.035019 | 0.0324 | 0.1711 | 0.6917 | 0.3604 | 0.161 | 0.5536 | 0.01 |
| noon | string | 0.060029 | 0.329107 | 0.0485 | 0.1656 | 0.6283 | 0.0448 | 0.24 | 0.6767 | 0.01 |
| fruit | furnace | 0.217836 | 0.300741 | 0.2184 | 0.1794 | 0.7350 | 0.1771 | 0.261 | 0.5415 | 0.0125 |
| autograph | shore | 0.083333 | 0.02789 | 0.1452 | 0.0784 | 0.4136 | 0.1567 | 0.183 | 0.5580 | 0.015 |
| forest | graveyard | 0.128814 | 0.312819 | 0.1316 | 0.2057 | 0.4616 | 0.1202 | 0.32 | 0.5585 | 0.25 |
| food | rooster | 0.089671 | 0.093606 | 0.0770 | 0.2225 | 0.6904 | 0.9702 | 0.324 | 0.7085 | 0.2725 |
| cemetery | woodland | 0.118864 | 0.304518 | 0.3355 | 0.2971 | 0.3921 | 0.1103 | 0.761 | 0.6295 | 0.295 |
| shore | voyage | 0.083333 * | 0.092363 | 0.3525 | 0.3431 | 0.6920 | 0.9978 | 0.393 | 0.6346 | 0.305 |
| bird | woodland | 0.139818 | 0.520956 | 0.3726 | 0.6901 | 0.6558 | 0.7305 | 0.289 | 0.6277 | 0.31 |
| crane | implement | 0.306226 | 0.25127 | 0.1239 | 0.5324 | 0.2793 | 0.9046 | 0.208 | 0.6460 | 0.5925 |
| brother | lad | 0.250188 | 0.709062 | 0.2395 | 0.6634 | 0.5579 | 0.9996 | 0.524 | 0.8659 | 0.6025 |
| sage | wizard | 0.190021 | 0.1517 | 0.3087 | 0.9087 | 0.7114 | 0.9984 | 0.317 | 0.6071 | 0.615 |
| oracle | sage | 0.5117 | 0.451457 | 0.4334 | 0.8811 | 0.6731 | 0.9996 | 0.271 | 0.6373 | 0.6525 |
| bird | crane | 0.762029 | 0.952318 | 0.4770 | 0.8912 | 0.4617 | 0.9846 | 0.436 | 0.6850 | 0.6575 |
| cushion | pillow | 0.988341 | 0.926149 | 0.4355 | 0.7802 | 0.6318 | 0.9993 | 0.608 | 0.7876 | 0.96 |
| cemetery | graveyard | 0.916667 * | 0.991104 | 0.5928 | 0.7704 | 0.4617 | 0.9993 | 0.848 | 0.9383 | 0.97 |
| automobile | car | 0.916667 * | 0.989627 | 0.6300 | 0.8441 | 0.6860 | 0.9838 | 0.865 | 0.9492 | 0.98 |
| midday | noon | 0.916667 * | 0.982199 | 0.7986 | 0.9143 | 0.7825 | 0.9997 | 0.809 | 0.9065 | 0.985 |
| gem | jewel | 0.916667 * | 0.830107 | 0.7570 | 0.9049 | 0.4584 | 0.9998 | 0.66 | 0.8160 | 0.985 |
| Module | P_Asim | P_Osim | WordNet | BERT-Base | SentenceBERT | ESimCSE | GPT-4o | BM | R&G 65 | |
|---|---|---|---|---|---|---|---|---|---|---|
| Index | ||||||||||
| Spearman | 0.327028 | 0.00366 | 0.72753 | 0.90254 | −0.02958 | 0.81400 | 0.78390 | 0.845241 | 1 | |
| Pearson | 0.234011 | 0.10083 | 0.79676 | 0.69473 | 0.00264 | 0.76119 | 0.83216 | 0.80286 | 1 | |
| Kendall | 0.137568 | 0.09524 | 0.63618 | 0.80424 | −0.00180 | 0.60589 | 0.62130 | 0.603183 | 1 | |
| Algorithm | Pearson | Spearman | Kendall |
|---|---|---|---|
| path-lin | 0.752761 | 0.738902 | 0.560854 |
| path-wup | 0.646398 | 0.646351 | 0.455033 |
| path-res | 0.752834 | 0.735892 | 0.550272 |
| path-lch | 0.625761 | 0.671182 | 0.507944 |
| lin-wup | 0.756309 | 0.741911 | 0.560854 |
| lin-res | 0.845241 | 0.80286 | 0.603183 |
| lin-lch | 0.721924 | 0.727615 | 0.550272 |
| wup-res | 0.758635 | 0.741911 | 0.560854 |
| wup-lch | 0.641655 | 0.659895 | 0.476197 |
| res-lch | 0.722661 | 0.727615 | 0.550272 |
| Intercept 0.066876 RG 0.835149 dtype: float64 OLS Regression Results =============================================================== Dep. Variable: BM R-squared: 0.714 Model: OLS Adj. R-squared: 0.699 Method: Least Squares F-statistic: 45.03 Date: Sun, 4 September 2022 Prob (F-statistic): 2.72 × 10−6 Time: 17:13:34 Log-Likelihood: 4.6857 No. Observations: 20 AIC: −5.371 Df Residuals: 18 BIC: −3.380 Df Model: 1 Covariance Type: nonrobust ================================================================ coef std err t P > |t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 0.0669 0.074 0.900 0.380 −0.089 0.223 RG 0.8351 0.124 6.711 0.000 0.574 1.097 ================================================================ Omnibus: 0.740 Durbin-Watson: 2.315 Prob(Omnibus): 0.691 Jarque-Bera (JB): 0.634 Skew: −0.387 Prob(JB): 0.728 Kurtosis: 2.600 Cond. No. 3.45 ================================================================ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, S.; Liu, X.; Lin, W.; Gokula, V.; Xiao, R. Integrated Subject–Action–Object and Bayesian Models of Intelligent Word Semantic Similarity Measures. Systems 2025, 13, 902. https://doi.org/10.3390/systems13100902
Zeng S, Liu X, Lin W, Gokula V, Xiao R. Integrated Subject–Action–Object and Bayesian Models of Intelligent Word Semantic Similarity Measures. Systems. 2025; 13(10):902. https://doi.org/10.3390/systems13100902
Chicago/Turabian StyleZeng, Siping, Xiaodong Liu, Wenguang Lin, Vasantha Gokula, and Renbin Xiao. 2025. "Integrated Subject–Action–Object and Bayesian Models of Intelligent Word Semantic Similarity Measures" Systems 13, no. 10: 902. https://doi.org/10.3390/systems13100902
APA StyleZeng, S., Liu, X., Lin, W., Gokula, V., & Xiao, R. (2025). Integrated Subject–Action–Object and Bayesian Models of Intelligent Word Semantic Similarity Measures. Systems, 13(10), 902. https://doi.org/10.3390/systems13100902

