Change Point Detection in Financial Market Using Topological Data Analysis
Abstract
1. Introduction
2. Related Work
2.1. Change Point Detection
2.2. Detection of Extreme Financial Events
2.3. Recent Studies of TDA with Financial Applications
3. TDA Concepts and Methods
3.1. A Brief Review of TDA
3.2. Persistent Homology
- Firstly, by using proper filtration parameters and the initial data, construct a sequence of simplicial complexes, a process called filtration:Here, each is a simplicial complex.
- Secondly, calculate the simplicial homology of each simplicial complex ;
- Thirdly, from the result of the second step, obtain more concise information like persistent diagrams, barcodes and persistent landscapes;
- Finally, conduct further analysis, and observe what insights can be obtained from the topological quantities calculated above.
3.2.1. Simplicial Complex and Simplicial Homology
- Every face of a simplex in S is also in S.
- The intersection of any two simplices in S is either empty or a face of both.
- Three 0-simplices (vertices): ;
- Three 1-simplice (edges): ;
- One 2-simplex (triangle): .
- : The group of k-chains which is nothing but the formal sums of k-simplices:
- : The boundary operator mapping k-chains to -chains,
- : The subgroup of composed by the image of the boundary map, i.e., ;
- : The subgroup of composed by k cycles , which satisfy the condition . It is easy to see that .
3.2.2. Filtration and Persistent Homology
3.2.3. Barcode, Persistence Diagram, and Persistence Landscape
4. From Time Series to Point Cloud
4.1. Sliding Window
4.2. Time Delay Embedding
5. Data Preprocess and TDA Pipeline
5.1. Data Preprocessing
5.2. TDA Pipeline
- Step 1: We apply the sliding window strategy to resample the time series data. Refer to Section 4.1 for the rationale. Subsequently, a time delay embedding algorithm is applied to the resampled data, using a time delay of one day. To simplify calculations and enhance visualization, we represent the transformed data as a 3D point cloud dataset. Following these transformations, we obtain a sequence of point cloud representations of the original time series.
- Step 2: We use the point cloud dataset to construct the Vietoris–Rips complex and then compute the persistence diagram and barcode representation of the extracted topological features of .
- Step 3: The persistence diagrams are then transformed into persistence landscapes, from which we compute the and norms.
6. Fluctuations and Investment Analysis
6.1. Long-Term and Short-Term Fluctuation Analysis
6.2. Investment Advice
6.3. Back-Testing
7. Change Point Detection for Financial Extreme Events
7.1. Financial Extreme Events
7.1.1. European Debt Crisis in 2011
7.1.2. Brexit in 2016
7.1.3. COVID-19 Pandemic in 2020
7.1.4. Energy Crisis in 2022
7.2. Benchmark Test
8. Conclusions
8.1. Summary of Findings
8.2. Economic and Social Implications
8.3. Limitation and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Description of Data
Company | Ticker | Region | Sector | |
---|---|---|---|---|
1 | American Airlines Group Inc. | AAL | USA | Industry |
2 | Amgen Inc. | AMGN | USA | Health |
3 | BHP Group Limited | BHP | Australia | Energy |
4 | Baidu, Inc. | BIDU | China | Technology |
5 | Biogen Inc. | BIIB | USA | Health |
6 | Berkshire Hathaway Inc Class B | BRK-B | USA | Finance |
7 | Chipotle Mexican Grill, Inc. | CMG | USA | Cousumer good |
8 | Comcast Corporation | CMCSA | USA | Telecommunication |
9 | ConocoPhillips | COP | USA | Energy |
10 | Costco Wholesale Corporation | COST | USA | Consumer good |
11 | Salesforce, Inc. | CRM | USA | Technology |
12 | eBay Inc. | EBAY | USA | Consumer good |
13 | Gilead Sciences, Inc. | GILD | USA | Health |
14 | SPDR Gold Shares | GLD | USA | Finance |
15 | GSK plc | GSK | USA | Health |
16 | The Coca-Cola Company | KO | USA | Consumer good |
17 | Merck & Co., Inc. | MRK | USA | Health |
18 | NIKE, Inc. | NKE | USA | Consumer good |
19 | Oracle Corporation (ORCL) | ORCL | USA | Technology |
20 | Pepsi Co., Inc. | PEP | USA | Consumer good |
21 | QUALCOMM Incorporated | QCOM | USA | Technology |
22 | Toyota Motor Corporation | TM | Japan | Industry |
23 | Taiwan Semiconductor Manufacturing Company Limited | TSM | China | Technology |
24 | United States Oil Fund, LP | USO | USA | Energy |
25 | Visa Inc. | V | USA | Finance |
26 | The Financial Select Sector SPDR Fund | XLF | USA | Finance |
Appendix B. Lp Norm Computation
Appendix C. Explanation of Taken’s Time Delay Embedding
Appendix D. Threshold Selection
Appendix E. Global Major Volatility Event Set (2011–2023)
Date | Event | Brief |
---|---|---|
18 April 2011 | The aftermath of the nuclear accident | Global energy policy and insurance industries take a hit |
6 May 2011 | The Dow Jones Index plummeted instantly | Market fragility in the era of high-frequency trading |
6 June 2011 | The European debt crisis | The worsening European debt crisis triggered a global asset sell-off |
5 August 2011 | S&P downgrades US sovereign credit rating | The first downgrade of the US credit rating in history, followed by a repricing of global risk assets |
8 August 2011 | US Debt Downgrade/Peak of European Debt Crisis | Sharp decline in risk appetite |
6 July 2012 | “Whatever it takes” policy | Temporarily curbed the panic selling in the market |
22 May 2013 | Taper Talk (Tapering Expectations) | Rise in term premium and volatility (“Taper Tantrum”) |
24 August 2015 | Global Stock Market Crash Post China’s “811” FX Reform | Synchronized decline in global risk assets |
24 June 2016 | Brexit Referendum Result | Cross-asset repricing led by European equities and GBP |
2 November 2016 | Before the election | Markets priced in the risk of a very different future for the United States |
6 December 2016 | Italian referendum | Fluctuations involving European banks |
5 February 2018 | “Volmageddon” (XIV ETN Implosion) | Surge in both implied and realized volatility |
10 October 2018 | Onset of Q4 2018 US Stock Market Correction | Medium-term deterioration in risk sentiment |
24 February 2020 | Initial Global Sell-off due to COVID-19 Pandemic | Extreme risk shock (risk aversion) |
23 March 2020 | COVID-19 Market Bottom (US Stocks)/Global Policy Bottom | Policy support, inflection point in risk appetite |
20 April 2020 | Commodity Energy | WTI crude oil settlement price turned negative for the first time, hitting risk appetite again |
25 June 2020 | Fluctuations in post-pandemic liquidity and “reflation” phase | Huge liquidity from monetary and fiscal policies |
23 September 2021 | Credit pressure on Evergrande/Chinese real estate companies | Market worried China’s real estate risks may spread to the financial system |
26 November 2021 | Omicron Variant News | Short-term risk repricing |
15 December 2021 | Signals of Accelerated Fed Tightening | Shift in inflation-policy expectations, rise in volatility |
24 February 2022 | Outbreak of Russia-Ukraine Conflict | Geopolitical and commodity-driven equity shock |
13 June 2022 | Above-Expectation Inflation/Accelerated Rate Hike Pricing | Peak of interest rate-valuation recalibration |
28 September 2022 | Bank of England temporary purchase of long-term government bonds | Rare financial stability operation disrupted global asset rhythm |
13 October 2022 | Near Market Bottom Post US CPI Report | Inflection point expecting “peak inflation → peak rates” |
10 March 2023 | SVB Incident/Regional Banking Stress | Transmission of liquidity and credit volatility |
16 June 2023 | Long-term U.S. Treasury bonds rose | Market expected Fed to maintain high interest rates for longer |
24 July 2023 | U.S. long and short yields fall | Economic slowdown signals outweighed inflation concerns |
27 October 2023 | Near 2023 Market Bottom (US Stocks) | Strong rally followed/“Soft Landing” trade |
14 November 2023 | US CPI Lower Than Expected | Optimistic repricing of rate cut path |
References
- Tsay, R.S. Analysis of Financial Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Bar-Joseph, Z. Analyzing time series gene expression data. Bioinformatics 2004, 20, 2493–2503. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Sapankevych, N.I.; Sankar, R. Time series prediction using support vector machines: A survey. IEEE Comput. Intell. Mag. 2009, 4, 24–38. [Google Scholar] [CrossRef]
- Dose, C.; Cincotti, S. Clustering of financial time series with application to index and enhanced index tracking portfolio. Phys. A Stat. Mech. Its Appl. 2005, 355, 145–151. [Google Scholar] [CrossRef]
- James, S.L.; Gubbins, P.; Murray, C.J.; Gakidou, E. Developing a comprehensive time series of GDP per capita for 210 countries from 1950 to 2015. Popul. Health Metrics 2012, 10, 12. [Google Scholar] [CrossRef]
- Katris, C. Prediction of Unemployment Rates with Time Series and Machine Learning Techniques. Comput. Econ. 2020, 55, 673–706. [Google Scholar] [CrossRef]
- Inoue, A.; Kilian, L. How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation. J. Am. Stat. Assoc. 2008, 103, 511–522. [Google Scholar] [CrossRef]
- Hamilton, J.D. A new approach to the economic analysis of nonstationary time series and the business cycle. Econom. J. Econom. Soc. 1989, 57, 357–384. [Google Scholar] [CrossRef]
- Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 2020. [Google Scholar]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Rojo-Alvarez, J.L.; Martinez-Ramon, M. Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1822–1835. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L. A new test for multivariate normality. J. Multivar. Anal. 2005, 93, 58–80. [Google Scholar] [CrossRef]
- Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef]
- Lavielle, M.; Teyssière, G. Adaptive Detection of Multiple Change-Points in Asset Price Volatility. In Long Memory in Economics; Teyssière, G., Kirman, A.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 129–156. [Google Scholar] [CrossRef]
- Niu, Y.S.; Hao, N.; Zhang, H. Multiple Change-Point Detection: A Selective Overview. Stat. Sci. 2016, 31, 611–623. [Google Scholar] [CrossRef]
- Burg, G.J.J.v.d.; Williams, C.K.I. An Evaluation of Change Point Detection Algorithms. arXiv 2020, arXiv:2003.06222. [Google Scholar]
- Hassler, U.; Scheithauer, J. Detecting changes from short to long memory. Stat. Pap. 2011, 52, 847–870. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Kim, J.Y. Detection of change in persistence of a linear time series. J. Econom. 2000, 95, 97–116. [Google Scholar] [CrossRef]
- Tempelman, J.R.; Khasawneh, F.A. A look into chaos detection through topological data analysis. Phys. D Nonlinear Phenom. 2020, 406, 132446. [Google Scholar] [CrossRef]
- Islambekov, U.; Yuvaraj, M.; Gel, Y.R. Harnessing the power of topological data analysis to detect change points. Environmetrics 2020, 31, e2612. [Google Scholar] [CrossRef]
- Gu, K.; Yan, L.; Li, X.; Duan, X.; Liang, J. Change point detection in multi-agent systems based on higher-order features. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 111102. [Google Scholar] [CrossRef]
- Carlsson, G.E. Topology and data. Bull. Am. Math. Soc. 2009, 46, 255–308. [Google Scholar] [CrossRef]
- Carlsson, G. Topological pattern recognition for point cloud data. Acta Numer. 2014, 23, 289–368. [Google Scholar] [CrossRef]
- Perea, J.A.; Deckard, A.; Haase, S.B.; Harer, J. SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinform. 2015, 16, 257. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Letscher, D.; Zomorodian, A. Topological persistence and simplification. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12–14 November 2000; pp. 454–463. [Google Scholar] [CrossRef]
- Zomorodian, A.; Carlsson, G. Computing Persistent Homology. Discret. Comput. Geom. 2005, 33, 249–274. [Google Scholar] [CrossRef]
- Carlsson, G.; Ishkhanov, T.; de Silva, V.; Zomorodian, A. On the Local Behavior of Spaces of Natural Images. Int. J. Comput. Vis. 2008, 76, 1–12. [Google Scholar] [CrossRef]
- Bubenik, P.; Carlsson, G.; Kim, P.; Luo, Z. Statistical Topology Via Morse Theory Persistence and Nonparametric Estimation. Contemp. Math. 2009, 516, 75–92. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Kovacev-Nikolic, V.; Bubenik, P.; Nikolić, D.; Heo, G. Using persistent homology and dynamical distances to analyze protein binding. Stat. Appl. Genet. Mol. Biol. 2016, 15, 19–38. [Google Scholar] [CrossRef]
- Bendich, P.; Marron, J.S.; Miller, E.; Pieloch, A.; Skwerer, S. Persistent Homology Analysis of Brain Artery Trees. Ann. Appl. Stat. 2016, 10, 198–218. [Google Scholar] [CrossRef]
- Carstens, C.J.; Horadam, K.J. Persistent Homology of Collaboration Networks. Math. Probl. Eng. 2013, 2013, 815035. [Google Scholar] [CrossRef]
- Gidea, M.; Katz, Y. Topological data analysis of financial time series: Landscapes of crashes. Phys. A Stat. Mech. Its Appl. 2018, 491, 820–834. [Google Scholar] [CrossRef]
- Bubenik, P. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 2015, 16, 77–102. [Google Scholar]
- Pereira, C.M.M.; de Mello, R.F. Persistent homology for time series and spatial data clustering. Expert Syst. Appl. 2015, 42, 6026–6038. [Google Scholar] [CrossRef]
- Bubenik, P.; Dłotko, P. A persistence landscapes toolbox for topological statistics. J. Symb. Comput. 2017, 78, 91–114. [Google Scholar] [CrossRef]
- Lee, K.M.; Yang, J.S.; Kim, G.; Lee, J.; Goh, K.I.; Kim, I.m. Impact of the Topology of Global Macroeconomic Network on the Spreading of Economic Crises. PLoS ONE 2011, 6, e18443. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Perron, P. Computation and analysis of multiple structural change models. J. Appl. Econom. 2003, 18, 1–22. [Google Scholar] [CrossRef]
- Page, E.S. Controlling the Standard Deviation by Cusums and Warning Lines. Technometrics 1963, 5, 307–315. [Google Scholar] [CrossRef]
- Bai, J.; Perron, P. Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica 1998, 66, 47–78. [Google Scholar] [CrossRef]
- Donald, W.K.A. Tests for Parameter Instability and Structural Change With Unknown Change Point. Econometrica 1993, 61, 821–856. [Google Scholar] [CrossRef]
- Barry, D.; Hartigan, J.A. A Bayesian Analysis for Change Point Problems. J. Am. Stat. Assoc. 1993, 88, 309–319. [Google Scholar] [CrossRef]
- Chib, S.; Greenberg, E.; Winkelmann, R. Posterior simulation and Bayes factors in panel count data models. J. Econom. 1998, 86, 33–54. [Google Scholar] [CrossRef]
- Carlin, J.B. Meta-analysis for 2 × 2 tables: A bayesian approach. Stat. Med. 1992, 11, 141–158. [Google Scholar] [CrossRef]
- Matteson, D.S.; James, N.A. A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data. J. Am. Stat. Assoc. 2014, 109, 334–345. [Google Scholar] [CrossRef]
- Amini, A.A.; Wainwright, M.J. High-dimensional analysis of semidefinite relaxations for sparse principal components. In Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 2454–2458. [Google Scholar] [CrossRef]
- Harchaoui, Z.; Lévy-Leduc, C. Multiple Change-Point Estimation With a Total Variation Penalty. J. Am. Stat. Assoc. 2010, 105, 1480–1493. [Google Scholar] [CrossRef]
- Shi, Z.; Chehade, A. A dual-LSTM framework combining change point detection and remaining useful life prediction. Reliab. Eng. Syst. Saf. 2021, 205, 107257. [Google Scholar] [CrossRef]
- Lavielle, M. Using penalized contrasts for the change-point problem. Signal Process. 2005, 85, 1501–1510. [Google Scholar] [CrossRef]
- Wei, C.Y.; Luo, H. Non-stationary Reinforcement Learning without Prior Knowledge: An Optimal Black-box Approach. arXiv 2021, arXiv:2102.05406. [Google Scholar]
- Jiang, J.; Chen, R.; Zhang, C.; Chen, M.; Li, X.; Ma, G. Dynamic Fault Prediction of Power Transformers Based on Lasso Regression and Change Point Detection by Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 2130–2137. [Google Scholar] [CrossRef]
- Khasawneh, F.A.; Munch, E. Exploring Equilibria in Stochastic Delay Differential Equations Using Persistent Homology. In Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, NY, USA, 17–20 August 2014. [Google Scholar] [CrossRef]
- Khasawneh, F.A.; Munch, E. Stability Determination in Turning Using Persistent Homology and Time Series Analysis. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.; Rinaldo, A. Time Series Featurization via Topological Data Analysis. arXiv 2018, arXiv:1812.02987. [Google Scholar] [CrossRef]
- Bubenik, P.; Kim, P.T. A statistical approach to persistent homology. Homol. Homotopy Appl. 2006, 9, 337–362. [Google Scholar] [CrossRef]
- Chazal, F.; Fasy, B.T.; Lecci, F.; Rinaldo, A.; Wasserman, L. Stochastic Convergence of Persistence Landscapes and Silhouettes. arXiv 2013, arXiv:1312.0308. [Google Scholar] [CrossRef]
- Leibon, G.; Pauls, S.; Rockmore, D.; Savell, R. Topological structures in the equities market network. Proc. Natl. Acad. Sci. USA 2008, 105, 20589–20594. [Google Scholar] [CrossRef]
- Gidea, M. Topological Data Analysis of Critical Transitions in Financial Networks. In 3rd International Winter School and Conference on Network Science; Shmueli, E., Barzel, B., Puzis, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 47–59. [Google Scholar]
- Gidea, M.; Goldsmith, D.; Katz, Y.; Roldan, P.; Shmalo, Y. Topological recognition of critical transitions in time series of cryptocurrencies. Phys. A Stat. Mech. Its Appl. 2020, 548, 123843. [Google Scholar] [CrossRef]
- Aguilar, A.; Ensor, K.E. Topology Data Analysis Using Mean Persistence Landscapes in Financial Crashes. J. Math. Financ. 2020, 10, 648–678. [Google Scholar] [CrossRef]
- Goel, A.; Pasricha, P.; Mehra, A. Topological data analysis in investment decisions. Expert Syst. Appl. 2020, 147, 113222. [Google Scholar] [CrossRef]
- Goel, A.; Filipović, D.; Pasricha, P. Sparse Portfolio Selection via Topological Data Analysis Based Clustering. arXiv 2024, arXiv:2401.16920. [Google Scholar] [CrossRef]
- Sokerin, P.O.; Kuznetsov, K.; Makhneva, E.; Zaytsev, A. Portfolio selection via topological data analysis. In Proceedings of the International Conference on Machine Vision, Yerevan, Armenia, 15–18 November 2023. [Google Scholar]
- Guo, H.; Xia, S.; An, Q.; Zhang, X.; Sun, W.; Zhao, X. Empirical study of financial crises based on topological data analysis. Phys. A Stat. Mech. Its Appl. 2020, 558, 124956. [Google Scholar] [CrossRef]
- Guo, H.; Yu, H.; An, Q.; Zhang, X. Risk analysis of China’s stock markets based on topological data structures. Procedia Comput. Sci. 2022, 202, 203–216. [Google Scholar] [CrossRef]
- Ismail, M.S.; Hussain, S.I.; Noorani, M.S.M. Detecting Early Warning Signals of Major Financial Crashes in Bitcoin Using Persistent Homology. IEEE Access 2020, 8, 202042–202057. [Google Scholar] [CrossRef]
- Ismail, M.S.; Md Noorani, M.S.; Ismail, M.; Abdul Razak, F.; Alias, M.A. Predicting next day direction of stock price movement using machine learning methods with persistent homology: Evidence from Kuala Lumpur Stock Exchange. Appl. Soft Comput. 2020, 93, 106422. [Google Scholar] [CrossRef]
- Ismail, M.S.; Noorani, M.S.M.; Ismail, M.; Razak, F.A.; Alias, M.A. Early warning signals of financial crises using persistent homology. Phys. A Stat. Mech. Its Appl. 2022, 586, 126459. [Google Scholar] [CrossRef]
- Katz, Y.A.; Biem, A. Time-resolved topological data analysis of market instabilities. Phys. A Stat. Mech. Its Appl. 2021, 571, 125816. [Google Scholar] [CrossRef]
- Yen, P.T.W.; Cheong, S.A. Using Topological Data Analysis (TDA) and Persistent Homology to Analyze the Stock Markets in Singapore and Taiwan. Front. Phys. 2021, 9, 572216. [Google Scholar] [CrossRef]
- Yen, P.T.W.; Xia, K.; Cheong, S.A. Understanding Changes in the Topology and Geometry of Financial Market Correlations during a Market Crash. Entropy 2021, 23, 1211. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Laha, A.K. Clustering and classification of time series using topological data analysis with applications to finance. Expert Syst. Appl. 2020, 162, 113868. [Google Scholar] [CrossRef]
- Rai, A.; Nath Sharma, B.; Rabindrajit Luwang, S.; Nurujjaman, M.; Majhi, S. Identifying extreme events in the stock market: A topological data analysis. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 103106. [Google Scholar] [CrossRef]
- Sebestyén, T.; Iloskics, Z. Do economic shocks spread randomly?: A topological study of the global contagion network. PLoS ONE 2020, 15, e0238626. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Y. Topological Time Series Analysis of Market Crashes: A Persistence Homology Approach. In Proceedings of the 2025 5th International Conference on Applied Mathematics, Modelling and Intelligent Computing, Shanghai, China, 21–23 March 2025. [Google Scholar] [CrossRef]
- Guritanu, E.; Barbierato, E.; Gatti, A. Topological Machine Learning for Financial Crisis Detection: Early Warning Signals from Persistent Homology. Computers 2025, 14, 408. [Google Scholar] [CrossRef]
- Nath Sharma, B.; Rai, A.; Luwang, S.; Nurujjaman, M.; Majhi, S. Causality Analysis of COVID-19 Induced Crashes in Stock and Commodity Markets: A Topological Perspective. arXiv 2025, arXiv:2502.14431. [Google Scholar] [CrossRef]
- de Jesus, L.C.; Fernández-Navarro, F.; Carbonero-Ruz, M. Enhancing financial time series forecasting through topological data analysis. Neural Comput. Appl. 2025, 37, 6527–6545. [Google Scholar] [CrossRef]
- Biasotti, S.; Floriani, L.D.; Falcidieno, B.; Frosini, P.; Giorgi, D.; Landi, C.; Papaleo, L.; Spagnuolo, M. Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 2008, 40, 12. [Google Scholar] [CrossRef]
- Carlsson, G.; Zomorodian, A.; Collins, A.; Guibas, L. Persistence barcodes for shapes. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Nice, France, 8–10 July 2004. [Google Scholar] [CrossRef]
- Ghrist, R. Barcodes: The persistent topology of data. Bull. Am. Math. Soc. 2007, 45, 61–75. [Google Scholar] [CrossRef]
- Chazal, F.; Michel, B. An introduction to topological data analysis: Fundamental and practical aspects for data scientists. Front. Artif. Intell. 2021, 4, 667963. [Google Scholar] [CrossRef] [PubMed]
- Munkres, J.R.; Munkres, J.W. Elements of Algebraic Topology; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Carlsson, G.; Zomorodian, A. The Theory of Multidimensional Persistence. Discret. Comput. Geom. 2009, 42, 71–93. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Harer, J. Computational Topology: An Introduction. In Effective Computational Geometry for Curves and Surfaces; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J. Stability of Persistence Diagrams. Discret. Comput. Geom. 2007, 37, 103–120. [Google Scholar] [CrossRef]
- Bubenik, P. The Persistence Landscape and Some of Its Properties. In Topological Data Analysis; Baas, N.A., Carlsson, G.E., Quick, G., Szymik, M., Thaule, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 97–117. [Google Scholar]
- Feng, M.; Porter, M.A. Persistent Homology of Geospatial Data: A Case Study with Voting. SIAM Rev. 2021, 63, 67–99. [Google Scholar] [CrossRef]
- Bleile, B.; Garin, A.; Heiss, T.; Maggs, K.; Robins, V. The Persistent Homology of Dual Digital Image Constructions. arXiv 2021, arXiv:2102.11397. [Google Scholar] [CrossRef]
- Myers, A.; Munch, E.; Khasawneh, F.A. Persistent homology of complex networks for dynamic state detection. Phys. Rev. E 2019, 100, 022314. [Google Scholar] [CrossRef]
- Wang, R.; Nguyen, D.D.; Wei, G.W. Persistent spectral graph. Int. J. Numer. Method Biomed. Eng. 2020, 36, e3376. [Google Scholar] [CrossRef]
- Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977, 23, 337–343. [Google Scholar] [CrossRef]
- Perea, J.A.; Harer, J. Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis. Found. Comput. Math. 2015, 15, 799–838. [Google Scholar] [CrossRef]
- Packard, N.H.; Crutchfield, J.P.; Farmer, J.D.; Shaw, R.S. Geometry from a Time Series. Phys. Rev. Lett. 1980, 45, 712–716. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Sauer, T.; Yorke, J.A.; Casdagli, M. Embedology. J. Stat. Phys. 1991, 65, 579–616. [Google Scholar] [CrossRef]
- Lum, P.Y.; Singh, G.; Lehman, A.; Ishkanov, T.; Vejdemo-Johansson, M.; Alagappan, M.; Carlsson, J.; Carlsson, G. Extracting insights from the shape of complex data using topology. Sci. Rep. 2013, 3, 1236. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 2018, 58, 267–288. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 2000, 42, 80–86. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; McPhearson, T.; Méndez-Lázaro, P.; Rosi, E.J.; et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future 2018, 6, 441–455. [Google Scholar] [CrossRef]
- Montgomery, D. Introduction to Statistical Quality Control; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Zhang, N.R.; Siegmund, D.O. A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data. Biometrics 2007, 63, 22–32. [Google Scholar] [CrossRef]
- Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
Reference | Dataset | Time Span | Data Type | SW | TDE | SV | PL | Applications |
---|---|---|---|---|---|---|---|---|
Gidea [59] | DJIA 29 stocks | 23 February 2007– 2008 | daily closing prices | ✓ | / | Pearson correlation | / | Detect early warning signals for critical transitions |
Gidea and Katz [34] | S&P 500, DJIA, NASDAQ, and Russell2000 | 23 December 1987– 8 December 2016 | 7301 daily log-returns | ✓ | ✓ | / | L1 norm, L2 norm | Detect early warning signals of imminent market crashes |
Gidea et al. [60] | Bitcoin, Ethereum, Litecoin and Ripple | 2016–2018 | daily log-returns | ✓ | ✓ | / | C1 norm | Critical transitions in time series of cryptocurrencies |
Aguilar and Ensor [61] | 4 major US stock market indices 10 ETF sectors indices | January 2010– June 2020 | daily log-returns | ✓ | / | / | L1 norm, L2 norm | Critical transitions are identified by the statistical properties |
Goel et al. [62] | Thompson Reuters EIKON data stream | January 2005– November 2018 | daily closing price | ✓ | ✓ | / | L1 norm | Investment decision |
Guo et al. [65] | DAJA, NASDAQ indices | 2 January 2003– 31 December 2013 | daily log-returns | ✓ | ✓ | / | L1 norm, L2 norm | Financial crises |
Ismail et al. [67] | Bitcoin | 24 August 2016– 19 February 2020 | daily closing prices | ✓ | / | / | L1 norm | Detect early warning signals |
Majumdar and Laha [73] | IBEX35,FTSE MIB, FTSE ATHEX20, PSI20 and ISEQ; Shanghai Composite index and Shenzhen Component index | 1 January 2003– 31 December 2013 | daily log-returns | ✓ | ✓ | / | L1 norm | Identified sectors features |
Ismail et al. [68] | 3 indices from Kuala | 15 May 2000– 27 March 2020 | daily log-returns | ✓ | ✓ | Betti sequences | / | Detect early warning signals |
Sebestyén and Iloskics [75] | GDP growth Y | 1961 Q2–2006 Q4 1996 Q3–2006 Q4 | / | / | Network properties | / | Reveal shock contagion | |
Katz and Biem [70] | CDS spreads with 5-years maturity on senior unsecured debt of 93 North American firms distributed among 10 economic sectors | January 2004– August 2019 | daily log-returns | ✓ | ✓ | / | L1 norm | Establish a indicator of an approaching financial crash |
Yen and Cheong [71] | Singapore Exchange &Taiwan Stock Exchange | 1 January 2017– 30 April 2019 | daily adj closing price | ✓ | ✓ | Betti number &Euler characteristics | / | Identify which homology groups becomes less persistence |
Yen et al. [72] | Taiwan stock exchange | 1 January 2017– 30 April 2019 | daily-closing price | ✓ | / | Ricci Curvature, Ricci Flow | / | Understand changes in financial market correlation |
Guo et al. [66] | 100 stocks from China’s markets | 3 January 2013– 31 August 2020 | daily log returns | ✓ | ✓ | / | L1 norm, L2 norm | Risk analysis |
Ismail et al. [69] | 11 indexes of US, Singapore Malaysia | 22 December 1987– 29 December 2017, 31 August 1991– 27 March 2018, 15 May 2000– 27 March 2018 | daily closing price | ✓ | ✓ | / | L1 norm | Detect early warning signals of financial crises |
Sokerin et al. [64] | S&P 500 index | 2012–2013; 2015–2016; 2018–2019 | daily closing price | ✓ | ✓ | Bars statistics | 1 & 2-dim | Protfolio selection |
Goel et al. [63] | S&P 500 index | December 2009– August 2022 | daily log returns | ✓ | ✓ | / | LP norm | Sparse portfolios |
Rai et al. [74] | Forty indices from 40 countries/regions | 2006–2010 COVID-19 pandemic era | daily log returns | ✓ | / | / | L1 norm, L2 norm | Identifying extreme events |
Our research | 26 stocks from NASDAQ | 24 March 2011– 15 December 2023 | daily log returns | ✓ | ✓ | / | L1 norm, L2 norm | Long- and short-term volatility analysis, financial extreme event detection and portfolio advice |
Region | Stock Tickers | L1 Mean | L2 Mean |
---|---|---|---|
USA | CRM, ORCL, QCOM, AAL, CMG, COST, EBAY, KO, NKE, PEP, BRK-B, V, XLF, GLD, COP, USO, AMGN, BIIB, GILD, GSK, MRK, CMCSA | ||
China | BIDU, TSM | ||
Australia | BHP | ||
Japan | TM |
Sectors | Stock Tickers | L1 Mean | L2 Mean |
---|---|---|---|
Technology | BIDU, CRM, ORCL, QCOM, TSM | ||
Industry | AAL, TM | ||
Consumer good | CMG, COST, EBAY, KO, NKE, PEP | ||
Finance | BRK-B, V, XLF, GLD | ||
Energy | COP, USO, BHP | ||
Health | AMGN, BIIB, GILD, GSK, MRK | ||
Telecommunication | CMCSA |
Fluctuation Dimension | Short-Term Low Volatility (L1-L) | Short-Term High Volatility (L1-H) |
---|---|---|
Long-term low volatility (L2-L) | Stable portfolio: CMCSA, AMGN, BIIB, GILD, GSK, MRK | Short-term sensitive portfolio: CRM, ORCL, QCOM, BHP, BIDU, TSM, TM |
Long-term high volatility (L2-H) | Long-term sensitive portfolio: COP, USO, GLD, BRK-B, V, XLF | High-volatility portfolio: AAL, CMG, COST, EBAY, KO, NKE, PEP |
Dotcom | Financial | European | Brexit | COVID-19 | Russia-Ukraine | |
---|---|---|---|---|---|---|
Crash 2000 | Crisis 2008 | Debt 2011 | 2016 | 2020 | War 2022 | |
Gidea [59] | - | ✓ | - | - | - | - |
Gidea and Katz [34] | ✓ | ✓ | - | - | ||
Aguilar and Ensor [61] | - | - | ✓ | - | ||
Katz and Biem [70] | - | ✓ | - | - | ||
Yen and Cheong [71] | - | - | - | - | ✓ | - |
Guo et al. [66] | - | - | - | ✓ | - | |
Ismail et al. [69] | ✓ | - | - | |||
Rai et al. [74] | - | ✓ | ✓ | |||
Our study | - | - | ✓ | ✓ | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Li, J.; Wu, J.; Yang, M.; Wang, X. Change Point Detection in Financial Market Using Topological Data Analysis. Systems 2025, 13, 875. https://doi.org/10.3390/systems13100875
Yao J, Li J, Wu J, Yang M, Wang X. Change Point Detection in Financial Market Using Topological Data Analysis. Systems. 2025; 13(10):875. https://doi.org/10.3390/systems13100875
Chicago/Turabian StyleYao, Jian, Jingyan Li, Jie Wu, Mengxi Yang, and Xiaoxi Wang. 2025. "Change Point Detection in Financial Market Using Topological Data Analysis" Systems 13, no. 10: 875. https://doi.org/10.3390/systems13100875
APA StyleYao, J., Li, J., Wu, J., Yang, M., & Wang, X. (2025). Change Point Detection in Financial Market Using Topological Data Analysis. Systems, 13(10), 875. https://doi.org/10.3390/systems13100875