Artificial Intelligence and the Great Reset: Impacts and Perspectives for Italian SMEs Business Model Innovation
Abstract
:1. Introduction
2. Literature Review
2.1. Systems Thinking and the Great Reset
2.2. Artificial Intelligence and Sustainable Business Model Innovation
3. Research Framework and Hypothesis Development
3.1. Relationship between the Attitude towards Adopting AI Solutions and Sustainable Business Model Innovation
3.2. Relationship between Interdependence with Partners and the Attitude towards the Adoption of AI Solutions
3.3. Relationship between Entrepreneurial Orientation and Propensity to Adopt AI Solutions
3.4. Relationship between Entrepreneurial Orientation and Sustainable Business Model Innovation
3.5. Relationship between Partners with Interdependent Activities and Tasks and Sustainable Business Model Innovation
3.6. Relationship between Sustainability Orientation and Entrepreneurial Orientation
4. Materials and Methods
4.1. Sample Selection
4.2. Measures
4.3. Data Collection
5. Results and Discussions
5.1. Analysis of Reliability and Convergent Validity
5.2. Discriminant Validity Analysis
5.3. Evaluation of the Structural Model
5.4. Discussion of Results
6. Implication, Limitation, and Future Research
6.1. Theoretical Implications
6.2. Economic Implication
6.3. Managerial Implications
6.4. Limitation and Future Research
7. Conclusions
- -
- AI adoption is affected by collaboration and knowledge sharing among organizations; it is influenced by processes promoting access to external resources and those related to open innovation. Engaging with partners facilitates AI adoption by sharing resources and expertise, accelerating technological advancements. This supports the collaborative goals of the Great Reset (H2b, H5).
- -
- A negative attitude towards AI from managers adversely impacts the adoption of a sustainable business model. Consequently, companies should try to reduce its effects by reducing the fears related to these new technologies and those related to implementing disruptive innovations in company’s processes (H1b).
- -
- The adoption of AI influences entrepreneurial strategies towards sustainability and innovation, confirming the necessity for digital entrepreneurs to integrate AI into decision-making processes. Therefore, on one hand, a strong entrepreneurial orientation facilitates the adoption of AI, while on the other hand, it can help manage risks by avoiding uncalculated investments and preventing financial losses (H3a, H3b, H4).
- -
- Fostering an entrepreneurial mindset and promoting continuous learning can mitigate resistance to AI (H3b) and harness its potential for sustainability (H4, H6).
- -
- Although collaboration is essential for business model innovation from the perspectives of open innovation, excessive dependence on partners can lead organizations to lose control over their strategic and operational directions, thereby limiting their ability to respond to market changes and innovate autonomously (H2b).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Economic Forum. 2024. Available online: https://www.weforum.org/videos/series/the-great-reset-863c8ea2d4/ (accessed on 10 May 2024).
- Roth, S. The Great Reset. Restratification for lives, livelihoods, and the planet. Technol. Forecast. Soc. Change 2021, 166, 120636. [Google Scholar] [CrossRef] [PubMed]
- Schwab, K.; Davis, N. Shaping the future of the fourth industrial revolution; Currency an imprint of the Crown Publishing Group: New York, NY, USA, 2018. [Google Scholar]
- Schwab, K.; Malleret, T. COVID-19: The Great Reset; Forum Publishing: Geneva, Switzerland, 2020. [Google Scholar]
- Cecconi, F. The AI’s Role in the Great Reset. In AI in the Financial Markets: New Algorithms and Solutions; Springer International Publishing: Cham, Switzerland, 2023; pp. 57–64. [Google Scholar]
- Cabrera, D.; Colosi, L.; Lobdell, C. Systems thinking. Eval. Program Plan. 2008, 31, 299–310. [Google Scholar] [CrossRef]
- Arnold, R.D.; Wade, J.P. A definition of systems thinking: A systems approach. Procedia Comput. Sci. 2015, 44, 669–678. [Google Scholar] [CrossRef]
- Kopnina, H. Working with human nature to achieve sustainability: Exploring constraints and opportunities. J. Clean. Prod. 2017, 148, 751–759. [Google Scholar] [CrossRef]
- Păvăloaia, V.D.; Necula, S.C. Artificial intelligence as a disruptive technology—A systematic literature review. Electronics 2023, 12, 1102. [Google Scholar] [CrossRef]
- Denning, P.J. Can generative AI bots be trusted? Commun. ACM 2023, 66, 24–27. [Google Scholar] [CrossRef]
- Brock, J.K.-U.; Von Wangenheim, F. Demystifying. AI: What Digital Transformation Leaders Can Teach You about Realistic Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 110–134. [Google Scholar] [CrossRef]
- Plastino, E.; Purdy, M. Game changing value from Artificial Intelligence: Eight strategies. Strat. Leadersh. 2018, 46, 16–22. [Google Scholar] [CrossRef]
- Statista. Tiktok: Distribution of U.S. Users 2022, by Age Group. 2023. Available online: https://www.statista.com/statistics/1095186/tiktok-us-users-age/ (accessed on 20 March 2024).
- CB Insights. Technology Market Intelligence. 2024. Available online: https://www.cbinsights.com/ (accessed on 15 May 2024).
- Lennox, J.C. 2084: Artificial Intelligence and the Future of Humanity; Zondervan: Grand Rapids, MI, USA, 2020. [Google Scholar]
- PricewaterhouseCoopers. PwC’s Global Artificial Intelligence Study: Sizing the Prize. 2017. Available online: https://www.pwc.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html (accessed on 25 February 2024).
- Clauss, T.; Bouncken, R.B.; Laudien, S.M.; Kraus, S. Business model reconfiguration and innovation in SMEs: A mixed-method analysis from the electronics industry. Int. J. Innov. Manag. 2020, 24, 2050015. [Google Scholar] [CrossRef]
- Amit, R.; Zott, C. Business Model Innovation Strategy: Transformational Concepts and Tools for Entrepreneurial Leaders, 1st ed.; Wiley: New York, NY, USA, 2020. [Google Scholar]
- Kraus, S.; Filser, M.; Kailer, N.; Thurner, S.; Puumalainen, K. Business model innovation: A systematic literature review. Int. J. Innov. Technol. Manag. 2020, 17, 2050043. [Google Scholar] [CrossRef]
- Dymitrowski, A.; Mielcarek, P. Business model innovation based on new technologies and its influence on a company’s competitive advantage. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 2110–2128. [Google Scholar] [CrossRef]
- Lanzolla, G.; Pesce, D.; Tucci, C.L. The digital transformation of search and recombination in the innovation function: Tensions and an integrative framework. J. Prod. Innov. Manag. 2021, 38, 90–113. [Google Scholar] [CrossRef]
- Kanbach, D.K.; Heiduk, L.; Blueher, G.; Schreiter, M.; Lahmann, A. The GenAI is out of the bottle: Generative artificial intelligence from a business model innovation perspective. Rev. Manag. Sci. 2024, 18, 1189–1220. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Suh, T.; Roy, D.; Baucus, M. Emerging technology and business model innovation: The case of artificial intelligence. J. Open Innov. Technol. Mark. Complex. 2019, 5, 44. [Google Scholar] [CrossRef]
- Lindgren, P. The business model ecosystem. J. Multi. Bus Model Innov. Technol. 2016, 4, 1–50. [Google Scholar] [CrossRef]
- Sagin, A.; Çaglar, Ü. Great Reset. In Capitalism at a Crossroads: A New Reset? Springer International Publishing: Cham, Switzerland, 2023; pp. 257–283. [Google Scholar]
- Reim, W.; Åström, J.; Eriksson, O. Implementation of artificial intelligence (AI): A roadmap for business model innovation. Ai 2020, 1, 11. [Google Scholar] [CrossRef]
- Coombs, C. Will COVID-19 be the tipping point for the intelligent automation of work? A review of the debate and implications for research. Int. J. Inf. Manag. 2020, 55, 102182. [Google Scholar] [CrossRef]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826. [Google Scholar]
- Da Silva Vieira, M.M. School culture and innovation: Does the COVID-19 post-pandemic world invite transition or rupture? Europ. J. Soc. Sci. Educ. Res. 2020, 7.2, 23–34. [Google Scholar]
- Winston, P.H. Artificial Intelligence; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1984. [Google Scholar]
- Fetzer, J.H.; Fetzer, J.H. What is Artificial Intelligence? Springer: Dordrecht, The Netherlands, 1990; pp. 3–27. [Google Scholar]
- Boden, M.A. (Ed.) Artificial Intelligence; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Brynjolfsson, E.; Mcafee, A. Artificial intelligence, for real. Harv. Bus. Rev. 2017, 1, 1–31. [Google Scholar]
- Leyer, M.; Schneider, S. Decision augmentation and automation with artificial intelligence: Threat or opportunity for managers? Bus. Horiz. 2021, 64, 711–724. [Google Scholar] [CrossRef]
- Rossmann, L.; Wald, A. The Automation of Management Decisions: A Systematic Review and Research Agenda of the Factors Influencing the Decision to Increase the Level of Automation. Int. J. Inf. Technol. Decis. Mak. 2024, 1–34. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Furman, J.; Seamans, R. AI and the Economy. Innov. Policy Econ. 2019, 19, 161–191. [Google Scholar] [CrossRef]
- Hunt, E.B. Artificial Intelligence; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Stone, P.; Brooks, R.; Brynjolfsson, E.; Calo, R.; Etzioni, O.; Hager, G.; Hirschberg, J.; Kalyanakrishnan, S.; Kamar, E.; Kraus, S.; et al. Artificial intelligence and life in 2030: The one hundred year study on artificial intelligence. arXiv 2022, arXiv:2211.06318. [Google Scholar]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med. 2018, 8, 361–376. [Google Scholar] [CrossRef]
- Su, F.; Song, N.; Shang, H.; Wang, J.; Xue, B. Effects of social capital, risk perception and awareness on environmental protection behavior. Ecosyst. Health Sustain. 2021, 7, 1942996. [Google Scholar] [CrossRef]
- Townsend, D.M.; Hunt, R.A. Entrepreneurial action, creativity, & judgment in the age of artificial intelligence. J. Bus. Ventur. Insights 2019, 11, e00126. [Google Scholar]
- Obschonka, M.; Audretsch, D.B. Artificial intelligence and big data in entrepreneurship: A new era has begun. Small Bus. Econ. 2020, 55, 529–539. [Google Scholar] [CrossRef]
- Langer, M.; König, C.J.; Fitili, A. Information as a double-edged sword: The role of computer experience and information on applicant reactions towards novel technologies for personnel selection. Comput. Hum. Behav. 2018, 81, 19–30. [Google Scholar] [CrossRef]
- Rajaobelina, L.; Prom Tep, S.; Arcand, M.; Ricard, L. Creepiness: Its antecedents and impact on loyalty when interacting with a chatbot. Psychol. Mark. 2021, 38, 2339–2356. [Google Scholar] [CrossRef]
- Laakasuo, M.; Palomäki, J.; Köbis, N. Moral uncanny valley: A robot’s appearance moderates how its decisions are judged. Int. J. Soc. Robot. 2021, 13, 1679–1688. [Google Scholar] [CrossRef]
- Baek, T.H.; Kim, M. Is ChatGPT scary good? How user motivations affect creepiness and trust in generative artificial intelligence. Telemat. Inform. 2023, 83, 102030. [Google Scholar] [CrossRef]
- Shank, D.B.; Graves, C.; Gott, A.; Gamez, P.; Rodriguez, S. Feeling our way to machine minds: People’s emotions when perceiving minds in artificial intelligence. Comput. Hum. Behav. 2019, 98, 256–266. [Google Scholar] [CrossRef]
- Paul, J.; Ueno, A.; Dennis, C. ChatGPT and consumers: Benefits, pitfalls and future research agenda. Int. J. Consum. Stud. 2023, 47, 1213–1225. [Google Scholar] [CrossRef]
- Donaldson, T.; Preston, L.E. The stakeholder theory of the corporation: Concepts, evidence, and implications. Acad. Manag. Rev. 1995, 20, 65–91. [Google Scholar] [CrossRef]
- Bocken, N.M.; Short, S.W.; Rana, P.; Evans, S. A literature and practice review to develop sustainable business model archetypes. J. Clean. Prod. 2014, 65, 42–56. [Google Scholar] [CrossRef]
- Schaltegger, S.; Hansen, E.G.; Lüdeke-Freund, F. Business models for sustainability: Origins, present research, and future avenues. Organ. Environ. 2016, 29, 3–10. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Valter, P.; Lindgren, P.; Prasad, R. Advanced business model innovation supported by artificial intelligence and deep learning. Wirel. Pers. Commun. 2018, 100, 97–111. [Google Scholar] [CrossRef]
- Garbuio, M.; Lin, N. Artificial intelligence as a growth engine for healthcare startups: Emerging business models. Calif. Manag. Rev. 2019, 61, 59–83. [Google Scholar] [CrossRef]
- Desai, H.P. Business models for inclusiveness. Procedia Soc. Behav. Sci. 2014, 157, 353–362. [Google Scholar] [CrossRef]
- Needleman, M.; Hlava, M.; Zeng, M.L.; Dickey, T. Updates to information standards and standardization efforts. Proc. Assoc. Inf. Sci. Technol. 2012, 58, 622–624. [Google Scholar] [CrossRef]
- Serafini, L.; Garcez, A.A. Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. Available online: http://ceur-ws.org/Vol-1768/NESY16_paper3.pdf (accessed on 20 May 2024).
- Kohtamäki, M.; Parida, V.; Oghazi, P.; Gebauer, H.; Baines, T. Digital servitization business models in ecosystems: A theory of the firm. J. Bus. Res. 2019, 104, 380–392. [Google Scholar] [CrossRef]
- Sjödin, D.; Parida, V.; Jovanovic, M.; Visnjic, I. Value creation and value capture alignment in business model innovation: A process view on outcome-based business models. J. Prod. Innov. Manag. 2020, 37, 158–183. [Google Scholar] [CrossRef]
- Sjödin, D.; Parida, V.; Kohtamäki, M. Artificial intelligence enabling circular business model innovation in digital servitization: Conceptualizing dynamic capabilities, AI capacities, business models and effects. Technol. Forecast. Soc. Change 2023, 197, 122903. [Google Scholar] [CrossRef]
- Iansiti, M.; Lakhani, K.R. Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World; Harvard Business Press: Boston, MA, USA, 2020. [Google Scholar]
- Geissdoerfer, M.; Vladimirova, D.; Evans, S. Sustainable business model innovation: A review. J. Clean. Prod. 2018, 198, 401–416. [Google Scholar] [CrossRef]
- Fabianke, K. An Appreciative Inquiry Into Sustainable Business Model Innovation. In Proceedings of the 9th International Conference on New Business Model, Mondragon Unibertsitatea, San Sebastian, Spain, 3–5 July 2024. [Google Scholar] [CrossRef]
- Fleming, A.; Wise, R.M.; Hansen, H.; Sams, L. The sustainable development goals: A case study. Mar. Policy 2017, 86, 94–103. [Google Scholar] [CrossRef]
- Luo, X.; Qian, W.; Liu, M.; Yu, X.; Liu, Y. Towards sustainability: Digital capability, sustainable business model innovation, and corporate environmental responsibility of high-performing enterprises in an emerging market. Bus. Strategy Environ. 2024. [Google Scholar] [CrossRef]
- Chui, M.; Manyika, J.; Miremadi, M. Where machines could replace humans-and where they can’t (yet). The McKinsey Quarterly, 8 July 2016. [Google Scholar]
- Hajiheydari, N.; Kargar Shouraki, M.; Vares, H.; Mohammadian, A. Digital sustainable business model innovation: Applying dynamic capabilities approach (DSBMI-DC). Foresight 2023, 25, 420–447. [Google Scholar] [CrossRef]
- Schepman, A.; Rodway, P. The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory validation and associations with personality, corporate distrust, and general trust. Int. J. Hum. Comput. Interact. 2023, 39, 2724–2741. [Google Scholar] [CrossRef]
- Bergdahl, J.; Latikka, R.; Celuch, M.; Savolainen, I.; Mantere, E.S.; Savela, N.; Oksanen, A. Self-determination and attitudes toward artificial intelligence: Cross-national and longitudinal perspectives. Telemat. Inform. 2023, 82, 102013. [Google Scholar] [CrossRef]
- Jacobides, M.G.; Brusoni, S.; Candelon, F. The evolutionary dynamics of the artificial intelligence ecosystem. Strategy Sci. 2021, 6, 412–435. [Google Scholar] [CrossRef]
- Raisch, S.; Krakowski, S. Artificial intelligence and management: The automation–augmentation paradox. Acad. Manag. Rev. 2021, 46, 192–210. [Google Scholar] [CrossRef]
- Bustinza, O.F.; Vendrell-Herrero, F.; Jabbour, C.J.C. Integration of product-service innovation into green supply chain management: Emerging opportunities and paradoxes. Technovation 2024, 130, 102923. [Google Scholar] [CrossRef]
- Van Wynsberghe, A. Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Mikalef, P.; Gupta, M. Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Inf. Manag. 2021, 58, 103434. [Google Scholar] [CrossRef]
- Kundurpi, A.; Westman, L.; Luederitz, C.; Burch, S.; Mercado, A. Navigating between adaptation and transformation: How intermediaries support businesses in sustainability transitions. J. Clean. Prod. 2018, 283, 125366. [Google Scholar] [CrossRef]
- Kwak, Y.; Ahn, J.W.; Seo, Y.H. Influence of AI ethics awareness, attitude, anxiety, and self-efficacy on nursing students’ behavioral intentions. BMC Nurs. 2022, 21, 267. [Google Scholar] [CrossRef] [PubMed]
- Kaya, F.; Aydin, F.; Schepman, A.; Rodway, P.; Yetişensoy, O.; Demir Kaya, M. The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. Int. J. Hum. Comput. Interact. 2024, 40, 497–514. [Google Scholar] [CrossRef]
- Kelly, S.; Kaye, S.A.; Oviedo-Trespalacios, O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telemat. Inform. 2023, 77, 101925. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.L.; Wamba, S.F.; Kamdjoug JR, K.; Wanko CE, T. Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Davenport, T.H.; Ronanki, R. Artificial intelligence for the real world. Harv. Bus. Rev. 2018, 96, 108–116. [Google Scholar]
- Ghoreishi, M.; Treves, L.; Kuivalainen, O. Artificial Intelligence of Things as an Accelerator of Circular Economy in International Business. In Megatrends in International Business: Examining the Influence of Trends on Doing Business Internationally; Springer International Publishing: Cham, Switzerland, 2022; pp. 83–104. [Google Scholar]
- Enholm, I.M.; Papagiannidis, E.; Mikalef, P.; Krogstie, J. Artificial intelligence and business value: A literature review. Inf. Syst. Front. 2022, 24, 1709–1734. [Google Scholar] [CrossRef]
- Susskind, D. A World without Work: Technology, Automation and How We Should Respond; Penguin UK: London, UK, 2020. [Google Scholar]
- Yu, H.; Wang, J.; Hou, J.; Yu, B.; Pan, Y. The effect of economic growth pressure on green technology innovation: Do environmental regulation, government support, and financial development matter? J. Environ. Manag. 2023, 330, 117172. [Google Scholar] [CrossRef]
- Bianco, M. Overcoming the Social Barriers of AI Adoption. Masters Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2021. Available online: https://research.tue.nl/en/studentTheses/overcoming-the-social-barriers-of-ai-adoption (accessed on 25 May 2024).
- Elliott, D.; Soifer, E. AI technologies, privacy, and security. Front. Artif. Intell. 2023, 5, 826737. [Google Scholar] [CrossRef]
- Siau, K.; Wang, W. Artificial intelligence (AI) ethics: Ethics of AI and ethical AI. J. Database Manag. (JDM) 2020, 31, 74–87. [Google Scholar] [CrossRef]
- Siachou, E.; Vrontis, D.; Trichina, E. Can traditional organizations be digitally transformed by themselves? The moderating role of absorptive capacity and strategic interdependence. J. Bus. Res. 2021, 124, 408–421. [Google Scholar] [CrossRef]
- Madanaguli, A.; Sjödin, D.; Parida, V.; Mikalef, P. Artificial intelligence capabilities for circular business models: Research synthesis and future agenda. Technol. Forecast. Soc. Change 2024, 200, 123189. [Google Scholar] [CrossRef]
- Allioui, H.; Mourdi, Y. Unleashing the potential of AI: Investigating cutting-edge technologies that are transforming businesses. Int. J. Comput. Eng. Data Sci. (IJCEDS) 2023, 3, 1–12. [Google Scholar]
- Makarius, E.E.; Mukherjee, D.; Fox, J.D.; Fox, A.K. Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. J. Bus. Res. 2020, 120, 262–273. [Google Scholar] [CrossRef]
- Nurhayati, K.; Tavasszy, L.; Rezaei, J. Joint B2B supply chain decision-making: Drivers, facilitators and barriers. Int. J. Prod. Econ. 2023, 256, 108721. [Google Scholar] [CrossRef]
- Mosteanu, N.R.; Faccia, A. Digital systems and new challenges of financial management–FinTech, XBRL, blockchain and cryptocurrencies. Qual. Access Success 2020, 21, 159–166. [Google Scholar]
- Allal-Chérif, O.; Simón-Moya, V.; Ballester, A.C.C. Intelligent purchasing: How artificial intelligence can redefine the purchasing function. J. Bus. Res. 2021, 124, 69–76. [Google Scholar] [CrossRef]
- Kashan, A.J.; Wiewiora, A.; Mohannak, K. Unpacking organisational culture for innovation in the Australian mining industry. Resour. Policy 2021, 73, 102149. [Google Scholar] [CrossRef]
- Turnhout, E.; Metze, T.; Wyborn, C.; Klenk, N.; Louder, E. The politics of co-production: Participation, power, and transformation. Curr. Opin. Environ. Sustain. 2020, 42, 15–21. [Google Scholar] [CrossRef]
- Suseno, Y.; Chang, C.; Hudik, M.; Fang, E.S. Beliefs, anxiety and change readiness for artificial intelligence adoption among human resource managers: The moderating role of high-performance work systems. In Artificial Intelligence and International HRM; Routledge: London, UK, 2023; pp. 144–171. [Google Scholar] [CrossRef]
- Öztırak, M. A study on the impact of artificial intelligence anxiety on the innovation-oriented behaviours of employees. Optim. Ekon. Ve Yönetim Bilim. Derg. 2023, 10, 267–286. [Google Scholar] [CrossRef]
- Upadhyay, N.; Upadhyay, S.; Al-Debei, M.M.; Baabdullah, A.M.; Dwivedi, Y.K. The influence of digital entrepreneurship and entrepreneurial orientation on the intention of family businesses to adopt artificial intelligence: Examining the mediating role of business innovativeness. Int. J. Entrep. Behav. Res. 2023, 29, 80–115. [Google Scholar] [CrossRef]
- Zighan, S.; Abualqumboz, M.; Dwaikat, N.; Alkalha, Z. The role of entrepreneurial orientation in developing SMEs resilience capabilities throughout COVID-19. Int. J. Entrep. Innov. 2022, 23, 227–239. [Google Scholar] [CrossRef]
- Vivona, R.; Demircioglu, M.A.; Audretsch, D.B. The costs of collaborative innovation. J. Technol. Transf. 2022, 48, 873–899. [Google Scholar] [CrossRef]
- Ciampi, F.; Demi, S.; Magrini, A.; Marzi, G.; Papa, A. Exploring the impact of big data analytics capabilities on business model innovation: The mediating role of entrepreneurial orientation. J. Bus. Res. 2021, 123, 1–13. [Google Scholar] [CrossRef]
- Pulka, B.M.; Ramli, A.; Mohamad, A. Entrepreneurial competencies, entrepreneurial orientation, entrepreneurial network, government business support and SMEs performance. The moderating role of the external environment. J. Small Bus. Enterp. Dev. 2021, 28, 586–618. [Google Scholar] [CrossRef]
- Souto, J.E. Organizational creativity and sustainability-oriented innovation as drivers of sustainable development: Overcoming firms’ economic, environmental and social sustainability challenges. J. Manuf. Technol. Manag. 2022, 33, 805–826. [Google Scholar] [CrossRef]
- Makhloufi, L.; Laghouag, A.A.; Meirun, T.; Belaid, F. Impact of green entrepreneurship orientation on environmental performance: The natural resource-based view and environmental policy perspective. Bus. Strategy Environ. 2022, 31, 425–444. [Google Scholar] [CrossRef]
- Pai, V.; Chandra, S. Exploring factors influencing organizational adoption of artificial intelligence (AI) in corporate social responsibility (CSR) initiatives. Pac. Asia J. Assoc. Inf. Syst. 2022, 14, 4. [Google Scholar] [CrossRef]
- Lee, I.; Shin, Y.J. Machine learning for enterprises: Applications, algorithm selection, and challenges. Bus. Horiz. 2020, 63, 157–170. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Artificial intelligence applications for industry 4.0: A literature-based study. J. Ind. Integr. Manag. 2022, 7, 83–111. [Google Scholar]
- Van Der Vegt, G.; Emans, B.; Van De Vliert, E. Motivating effects of task and outcome interdependence in work teams. Group Organ. Manag. 1998, 23, 124–143. [Google Scholar] [CrossRef]
- Sambasivan, M.; Siew-Phaik, L.; Abidin Mohamed, Z.; Choy Leong, Y. Impact of interdependence between supply chain partners on strategic alliance outcomes: Role of relational capital as a mediating construct. Manag. Decis. 2011, 49, 548–569. [Google Scholar] [CrossRef]
- Yang, F.H.; Shiu, F.J. Evaluating the Impact of Workplace Friendship on Social Loafing in Long-Term Care Institutions: An Empirical Study. Sustainability 2023, 15, 7828. [Google Scholar] [CrossRef]
- Piller, F.; West, J. Firms, users, and innovation. New Front. Open Innov. 2014, 29, 29–49. [Google Scholar]
- David, I.; Aslam, K.; Malavolta, I.; Lago, P. Collaborative Model-Driven Software Engineering—A systematic survey of practices and needs in industry. J. Syst. Softw. 2023, 199, 111626. [Google Scholar] [CrossRef]
- Habib, M.A.; Bao, Y.; Ilmudeen, A. The impact of green entrepreneurial orientation, market orientation and green supply chain management practices on sustainable firm performance. Cogent Bus. Manag. 2020, 7, 1743616. [Google Scholar] [CrossRef]
- Camilleri, M.A.; Troise, C.; Strazzullo, S.; Bresciani, S. Creating shared value through open innovation approaches: Opportunities and challenges for corporate sustainability. Bus. Strategy Environ. 2023, 32, 4485–4502. [Google Scholar] [CrossRef]
- Klein, S.P.; Spieth, P.; Heidenreich, S. Facilitating business model innovation: The influence of sustainability and the mediating role of strategic orientations. J. Prod. Innov. Manag. 2021, 38, 271–288. [Google Scholar] [CrossRef]
- Bahoo, S.; Cucculelli, M.; Qamar, D. Artificial intelligence and corporate innovation: A review and research agenda. Technol. Forecast. Soc. Change 2023, 188, 122264. [Google Scholar] [CrossRef]
- Schutt, R.K. Investigating the Social World: The Process and Practice of Research; Sage Publications: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Saunders, M.; Lewis, P.; Thornhill, A. Research Methods for Business Students, 8th ed.; Pearson Education Limited: London, UK, 2019. [Google Scholar]
- Khan, A.A.; Laghari, A.A.; Li, P.; Dootio, M.A.; Karim, S. The collaborative role of blockchain, artificial intelligence, and industrial internet of things in digitalization of small and medium-size enterprises. Sci. Rep. 2023, 13, 1656. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009. [Google Scholar]
- Demir, M.; Demir, Ş.Ş. Is ChatGPT the right technology for service individualization and value co-creation? evidence from the travel industry. J. Travel Tour. Mark. 2023, 40, 383–398. [Google Scholar] [CrossRef]
- Covin, J.G.; Slevin, D.P. Strategic management of small firms in hostile and benign environments. Strateg. Manag. J. 1989, 10, 75–87. [Google Scholar] [CrossRef]
- Kollmann, T.; Stöckmann, C.; Niemand, T.; Hensellek, S.; de Cruppe, K. A configurational approach to entrepreneurial orientation and cooperation explaining product/service innovation in digital vs. non-digital startups. J. Bus. Res. 2021, 125, 508–519. [Google Scholar] [CrossRef]
- Kuckertz, A.; Wagner, M. The influence of sustainability orientation on entrepreneurial intentions—Investigating the role of business experience. J. Bus. Ventur. 2010, 25, 524–539. [Google Scholar] [CrossRef]
- Ruiz-Ortega, M.J.; Parra-Requena, G.; García-Villaverde, P.M. From entrepreneurial orientation to sustainability orientation: The role of cognitive proximity in companies in tourist destinations. Tour. Manag. 2021, 84, 104265. [Google Scholar] [CrossRef]
- Bashir, M.; Alfalih, A.; Pradhan, S. Sustainable business model innovation: Scale development, validation and proof of performance. J. Innov. Knowl. 2022, 7, 100243. [Google Scholar] [CrossRef]
- Clauss, T. Measuring business model innovation: Conceptualization, scale development, and proof of performance. RD Manag. 2017, 47, 385–403. [Google Scholar] [CrossRef]
- Kline, T.J.; Sulsky, L.M.; Rever-Moriyama, S.D. Common method variance and specification errors: A practical approach to detection. J. Psychol. 2000, 134, 401–421. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage: Newcastle upon Tyne, UK, 2021. [Google Scholar]
- Abrokwah-Larbi, K.; Awuku-Larbi, Y. The impact of artificial intelligence in marketing on the performance of business organizations: Evidence from SMEs in an emerging economy. J. Entrep. Emerg. Econ. 2024, 16, 1090–1117. [Google Scholar] [CrossRef]
- Hair, J., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM). An emerging tool in business research. Eur. Bus. Rev. 2019, 26, 106–121. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Linde, L.; Sjödin, D.; Parida, V.; Gebauer, H. Evaluation of digital business model opportunities: A framework for avoiding digitalization traps. Res.-Technol. Manag. 2020, 64, 43–53. [Google Scholar] [CrossRef]
- Nitsche, A.M.; Schumann, C.A.; Franczyk, B.; Reuther, K. Artificial Intelligence Inspired Supply Chain Collaboration: A Design-Science Research and System Dynamics Approach. In Proceedings of the 2021 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Cardiff, UK, 21–23 June 2021; pp. 1–9. [Google Scholar]
- Broekhuizen, T.; Dekker, H.; de Faria, P.; Firk, S.; Nguyen, D.K.; Sofka, W. AI for managing open innovation: Opportunities, challenges, and a research agenda. J. Bus. Res. 2023, 167, 114196. [Google Scholar] [CrossRef]
Characteristics | Types | Value | % |
---|---|---|---|
Industry | Manufacturing | 14 | 16.47 |
Service | 17 | 20 | |
Information technology | 21 | 24.70 | |
Healthcare | 11 | 12.94 | |
Energy | 14 | 16.47 | |
Other | 8 | 9.41 | |
Area | North | 35 | 41.17 |
Center | 26 | 30.58 | |
South | 24 | 28.23 | |
Requisites | At least 3% R&D | 26 | 30.58 |
At least 20% qualified staff | 34 | 40 | |
At least one patent | 25 | 29.41 |
Construct | Latent | Items | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) | |
---|---|---|---|---|---|---|
General Attitude Towards AI—Negative | GSN | GSN3 | 0.9140 | 0.943 | 0.959 | 0.887 |
GSN5 | 0.9360 | |||||
GSN6 | 0.9634 | |||||
General Attitude Towards AI—Positive | GSP | GSP1 | 0.8393 | 0.963 | 0.963 | 0.725 |
GSP4 | 0.7825 | |||||
GSP5 | 0.9181 | |||||
GSP6 | 0.8358 | |||||
GSP7 | 0.8712 | |||||
GSP8 | 0.7943 | |||||
GSP9 | 0.8317 | |||||
GSP10 | 0.8785 | |||||
GSP11 | 0.8661 | |||||
GSP12 | 0.8891 | |||||
Initiated-Task Interdependence | IT | IT1 | 0.8991 | 0.887 | 0.92 | 0.742 |
IT2 | 0.8490 | |||||
IT3 | 0.8580 | |||||
IT4 | 0.8379 | |||||
Sustainability Orientation | SO | SO1 | 0.9454 | 0.96 | 0.969 | 0.863 |
SO2 | 0.9087 | |||||
SO3 | 0.9593 | |||||
SO4 | 0.9057 | |||||
SO5 | 0.9242 | |||||
Entrepreneurship Orientation | INN | INN1 | 0.9207 | 0.809 | 0.884 | 0.721 |
INN2 | 0.6846 | |||||
INN3 | 0.9188 | |||||
PRO | PRO2 | 0.9077 | 0.831 | 0.921 | 0.854 | |
PRO3 | 0.9403 | |||||
RT | RT1 | 0.9422 | 0.842 | 0.91 | 0.836 | |
RT2 | 0.7821 | |||||
RT3 | 0.9098 | |||||
Sustainable Business Model Innovation | VCA | VCA1 | 0.7833 | 0.738 | 0.882 | 0.789 |
VCA2 | 0.8102 | |||||
VCA3 | 0.6857 | |||||
VCR | VCR1 | 0.9082 | 0.872 | 0.922 | 0.797 | |
VCR2 | 0.9088 | |||||
VCR3 | 0.8602 | |||||
VP | VP2 | 0.9332 | 0.84 | 0.926 | 0.862 | |
VP3 | 0.9236 |
GSN | GSP | IT | SO | INN | PRO | RT | VCA | VCR | VP | |
---|---|---|---|---|---|---|---|---|---|---|
GSN | 0.942 | . | . | . | . | . | . | . | . | . |
GSP | −0.235 | 0.828 | . | . | . | . | . | . | . | . |
IT | 0.333 | 0.612 | 0.861 | . | . | . | . | . | . | . |
SO | −0.058 | 0.384 | 0.286 | 0.929 | . | . | . | . | . | . |
INN | −0.244 | 0.614 | 0.328 | 0.781 | 0.849 | . | . | . | . | . |
PRO | −0.228 | 0.432 | 0.066 | 0.642 | 0.816 | 0.924 | . | . | . | . |
RT | −0.295 | 0.254 | −0.012 | −0.013 | 0.026 | 0.171 | 0.915 | . | . | . |
VCA | 0.31 | 0.399 | 0.476 | 0.472 | 0.422 | 0.362 | −0.173 | 0.888 | . | . |
VCR | 0.225 | 0.383 | 0.387 | 0.784 | 0.699 | 0.655 | −0.082 | 0.76 | 0.893 | . |
VP | 0.459 | 0.204 | 0.483 | 0.553 | 0.903 | 0.382 | 0.236 | −0.272 | 0.766 | 0.928 |
HP | Relationship | Original Est. | Bootstrap Mean | Bootstrap SD | T Stat. | 2.5% CI | 97.5% CI |
---|---|---|---|---|---|---|---|
HP1a | GSP → SBMI | −0.293 | −0.28 | 0.163 | −1.797 | −0.602 | 0.042 |
HP1b | GSN → SBMI | −0.339 | −0.336 | 0.091 | 3.711 | −0.148 | −0.511 |
HP2a | IT → GSP | 0.456 | 0.459 | 0.063 | 7.258 | 0.336 | 0.585 |
HP2b | IT → GSN | 0.426 | 0.424 | 0.083 | 5.153 | 0.253 | 0.576 |
HP3a | EO → GSP | 0.517 | 0.507 | 0.078 | 6.601 | 0.338 | 0.645 |
HP3b | EO → GSN | −0.419 | −0.407 | 0.103 | −4.078 | −0.583 | −0.189 |
HP4 | EO → SBMI | 0.725 | 0.719 | 0.093 | 7.775 | 0.532 | 0.896 |
HP5 | IT → SBMI | 0.359 | 0.345 | 0.157 | 2.283 | 0.011 | 0.636 |
HP6 | SO → EO | 0.73 | 0.727 | 0.058 | 12.558 | 0.599 | 0.824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muto, V.; Luongo, S.; Percuoco, M.; Tani, M. Artificial Intelligence and the Great Reset: Impacts and Perspectives for Italian SMEs Business Model Innovation. Systems 2024, 12, 330. https://doi.org/10.3390/systems12090330
Muto V, Luongo S, Percuoco M, Tani M. Artificial Intelligence and the Great Reset: Impacts and Perspectives for Italian SMEs Business Model Innovation. Systems. 2024; 12(9):330. https://doi.org/10.3390/systems12090330
Chicago/Turabian StyleMuto, Valerio, Simone Luongo, Martina Percuoco, and Mario Tani. 2024. "Artificial Intelligence and the Great Reset: Impacts and Perspectives for Italian SMEs Business Model Innovation" Systems 12, no. 9: 330. https://doi.org/10.3390/systems12090330
APA StyleMuto, V., Luongo, S., Percuoco, M., & Tani, M. (2024). Artificial Intelligence and the Great Reset: Impacts and Perspectives for Italian SMEs Business Model Innovation. Systems, 12(9), 330. https://doi.org/10.3390/systems12090330