Urban Development Scenario Simulation and Model Research Based on System Dynamics from the Perspective of Effect and Efficiency
Abstract
:1. Introduction
- (1)
- The analysis model of SD-EWM-DEA was established. The system dynamics were used for scenario simulation, and the simulation data were used as the basic data for evaluation and analysis, fully combining the comprehensiveness of system dynamics and the accuracy of the evaluation methods, and realizing in-depth analysis of data on the basis of grasping the development trend.
- (2)
- A research perspective combining effect and efficiency was put forward. Based on the entropy weight method and DEA, effect evaluation and efficiency evaluation were combined to comprehensively evaluate urban development and to then obtain a development plan with good effect and efficiency.
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Research Methods
2.2.1. Entropy Weight Method
- (1)
- Data standardization processing
- (2)
- Scheme effect evaluation
2.2.2. EBM Model
3. The Construction of Urban Development Models Based on System Dynamics
3.1. System Structure Analysis
3.1.1. Economic Subsystem Analysis
3.1.2. Social Subsystem Analysis
3.1.3. Environmental Subsystem Analysis
3.2. System Dynamics Model
3.2.1. System Variables and Model Establishment
- (1)
- Causality analysis
- (2)
- Variable selection and setting
- (3)
- Parameter settings
3.2.2. Model Validation
3.3. Urban Development Scenario Design and Simulation
4. Evaluation of Urban Development Model Based on Entropy Weight Method and DEA-EBM
4.1. Construction of the Indicator System
4.2. Weight Calculation
5. Results and Discussion
5.1. Analysis of Urban Development Effect
5.1.1. Scheme Analysis
5.1.2. Subsystem Analysis
5.2. Analysis of Urban Development Efficiency
5.2.1. Scheme Analysis
5.2.2. Input and Output Analysis
- (1)
- Economic input
- (2)
- Resource input
- (3)
- Economic output
- (4)
- Social output
- (5)
- Environmental output:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, C.; Wu, L.; Xie, Y.; He, J.; Chen, X.; Wang, T.; Lin, Y.; Jin, T.; Wang, A.; Liu, Y.; et al. Air Pollution in China: Status and Spatiotemporal Variations. Environ. Pollut. 2017, 227, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Choy, L.H.T.; Li, V.J. The Role of Higher Education in China’s Inclusive Urbanization. Cities 2017, 60, 504–510. [Google Scholar] [CrossRef]
- Dong, L.; Longwu, L.; Zhenbo, W.; Liangkan, C.; Faming, Z. Exploration of Coupling Effects in the Economy–Society–Environment System in Urban Areas: Case Study of the Yangtze River Delta Urban Agglomeration. Ecol. Indic. 2021, 128, 107858. [Google Scholar] [CrossRef]
- Jing, Z.; Wang, J. Sustainable Development Evaluation of the Society–Economy–Environment in a Resource-Based City of China: A Complex Network Approach. J. Clean. Prod. 2020, 263, 121510. [Google Scholar] [CrossRef]
- Tan, F.; Lu, Z. Study on the Interaction and Relation of Society, Economy and Environment Based on PCA–VAR Model: As a Case Study of the Bohai Rim Region, China. Ecol. Indic. 2015, 48, 31–40. [Google Scholar] [CrossRef]
- Bahtebay, J.; Zhang, F.; Ariken, M.; Chan, N.W.; Tan, M.L. Evaluation of the Coordinated Development of Urbanization-Resources-Environment from the Incremental Perspective of Xinjiang, China. J. Clean. Prod. 2021, 325, 129309. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Y.; Huang, Z.; Lou, Y.; Ye, G.; Wong, S.-W. Improved Coupling Analysis on the Coordination between Socio-Economy and Carbon Emission. Ecol. Indic. 2018, 94, 357–366. [Google Scholar] [CrossRef]
- Hao, L.; Yu, J.; Du, C.; Wang, P. A Policy Support Framework for the Balanced Development of Economy-Society-Water in the Beijing-Tianjin-Hebei Urban Agglomeration. J. Clean. Prod. 2022, 374, 134009. [Google Scholar] [CrossRef]
- Li, W.; Bao, L.; Wang, L.; Li, Y.; Mai, X. Comparative Evaluation of Global Low-Carbon Urban Transport. Technol. Forecast. Soc. Chang. 2019, 143, 14–26. [Google Scholar] [CrossRef]
- Jia, B.; Zhou, J.; Zhang, Y.; Tian, M.; He, Z.; Ding, X. System Dynamics Model for the Coevolution of Coupled Water Supply–Power Generation–Environment Systems: Upper Yangtze River Basin, China. J. Hydrol. 2021, 593, 125892. [Google Scholar] [CrossRef]
- Guo, H.; Yang, C.; Liu, X.; Li, Y.; Meng, Q. Simulation Evaluation of Urban Low-Carbon Competitiveness of Cities within Wuhan City Circle in China. Sustain. Cities Soc. 2018, 42, 688–701. [Google Scholar] [CrossRef]
- Li, R.; Wu, Q.; Jinjin, Z.; Wen, Y.; Li, Q. Effects of Land Use Change of Sloping Farmland on Characteristic of Soil Erosion Resistance in Typical Karst Mountainous Areas of Southwestern China. Pol. J. Environ. Stud. 2019, 28, 2707–2716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J. China’s Urban Residential Carbon Emission and Energy Efficiency Policy. Energy 2016, 109, 866–875. [Google Scholar] [CrossRef]
- Cheng, M.; Lu, Y. Investment Efficiency of Urban Infrastructure Systems: Empirical Measurement and Implications for China. Habitat Int. 2017, 70, 91–102. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Song, L.; Wang, Y. The Coupling Effect between Economic Development and the Urban Ecological Environment in Shanghai Port. Sci. Total Environ. 2022, 841, 156734. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, J.; Duan, K.; Li, H.; Zhang, Y.; Xu, Q. Efficiency of China’s Urban Development under Carbon Emission Constraints: A City-Level Analysis. Phys. Chem. Earth Parts A/B/C 2022, 127, 103182. [Google Scholar] [CrossRef]
- Guo, J.; Ma, S.; Li, X. Exploring the Differences of Sustainable Urban Development Levels from the Perspective of Multivariate Functional Data Analysis: A Case Study of 33 Cities in China. Sustainability 2022, 14, 12918. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, Z.; Zhang, H. Assessment of Urban Green Development Efficiency Based on Three-Stage DEA: A Case Study from China’s Yangtze River Delta. Sustainability 2022, 14, 12076. [Google Scholar] [CrossRef]
- Huang, W.; Shuai, B.; Sun, Y.; Wang, Y.; Antwi, E. Using Entropy-TOPSIS Method to Evaluate Urban Rail Transit System Operation Performance: The China Case. Transp. Res. A Policy Pract. 2018, 111, 292–303. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, T.; Xia, M.; Zeng, T. Sustainable Livelihood Security in the Poyang Lake Ecological Economic Zone: Identifying Spatial-Temporal Pattern and Constraints. Appl. Geogr. 2021, 135, 102553. [Google Scholar] [CrossRef]
- Ren, F.; Tian, Z.; Liu, J.; Shen, Y. Analysis of CO2 Emission Reduction Contribution and Efficiency of China’s Solar Photovoltaic Industry: Based on Input-Output Perspective. Energy 2020, 199, 117493. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, X. Measurement and Convergence of Transportation Industry Total Factor Energy Efficiency in China. Alex. Eng. J. 2021, 60, 4267–4274. [Google Scholar] [CrossRef]
- Papachristos, G. System Dynamics Modelling and Simulation for Sociotechnical Transitions Research. Environ. Innov. Soc. Transit. 2019, 31, 248–261. [Google Scholar] [CrossRef]
- Bugalia, N.; Maemura, Y.; Ozawa, K. A System Dynamics Model for Near-Miss Reporting in Complex Systems. Saf. Sci. 2021, 142, 105368. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, W.; Zhang, B. Distortion of Government Behaviour under Target Constraints: Economic Growth Target and Urban Sprawl in China. Cities 2022, 131, 104009. [Google Scholar] [CrossRef]
- Yin, X.; Xu, Z. An Empirical Analysis of the Coupling and Coordinative Development of China’s Green Finance and Economic Growth. Resour. Policy 2022, 75, 102476. [Google Scholar] [CrossRef]
- Weng, Q.; Lian, H.; Qin, Q. Spatial Disparities of the Coupling Coordinated Development among the Economy, Environment and Society across China’s Regions. Ecol. Indic. 2022, 143, 109364. [Google Scholar] [CrossRef]
- Gan, L.; Yang, X.; Chen, L.; Lev, B.; Lv, Y. Optimization Path of Economy-Society-Ecology System Orienting Industrial Structure Adjustment: Evidence from Sichuan Province in China. Ecol. Indic. 2022, 144, 109479. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, C.; Yang, J.; Yang, S. Coupling Analysis of Environment and Economy Based on the Changes of Ecosystem Service Value. Ecol. Indic. 2022, 144, 109524. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Y.; Huang, K.; Yi, T. Spatial-Temporal Differentiation of the Coupling Coordinated Development of Regional Energy-Economy-Ecology System: A Case Study of the Yangtze River Economic Belt. Ecol. Indic. 2021, 124, 107394. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling Coordinated Development between Social Economy and Ecological Environment in Chinese Provincial Capital Cities-Assessment and Policy Implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial Dynamics. J. Oper. Res. Soc. 1997, 48, 1037–1041. [Google Scholar] [CrossRef]
- Forrester, J.W. Urban Dynamics. IMR Ind. Manag. Rev. (Pre-1986) 1970, 11, 67. [Google Scholar] [CrossRef]
- Kotagodahetti, R.; Hewage, K.; Karunathilake, H.; Sadiq, R. Long-Term Feasibility of Carbon Capturing in Community Energy Systems: A System Dynamics-Based Evaluation. J. Clean. Prod. 2022, 377, 134460. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, M.; Xu, H. The Impact of Subsidy and Preferential Tax Policies on Mobile Phone Recycling: A System Dynamics Model Analysis. Waste Manag. 2022, 152, 6–16. [Google Scholar] [CrossRef]
- Liu, B.; Qin, X.; Zhang, F. System-Dynamics-Based Scenario Simulation and Prediction of Water Carrying Capacity for China. Sustain. Cities Soc. 2022, 82, 103912. [Google Scholar] [CrossRef]
- Liu, G.; Xu, Y.; Ge, W.; Yang, X.; Su, X.; Shen, B.; Ran, Q. How Can Marine Fishery Enable Low Carbon Development in China? Based on System Dynamics Simulation Analysis. Ocean. Coast. Manag. 2023, 231, 106382. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, S.; Li, Y. Removing the “Hats of Poverty”: Effects of Ending the National Poverty County Program on Fiscal Expenditures. China Econ. Rev. 2021, 69, 101673. [Google Scholar] [CrossRef]
- Wei, L.; Lin, B.; Zheng, Z.; Wu, W.; Zhou, Y. Does Fiscal Expenditure Promote Green Technological Innovation in China? Evidence from Chinese Cities. Environ. Impact Assess. Rev. 2023, 98, 106945. [Google Scholar] [CrossRef]
- Wang, S. Differences between Energy Consumption and Regional Economic Growth under the Energy Environment. Energy Rep. 2022, 8, 10017–10024. [Google Scholar] [CrossRef]
- Kim, D.; Park, Y.-J. Nonlinear Causality between Energy Consumption and Economic Growth by Timescale. Energy Strategy Rev. 2022, 44, 100949. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L. The Effects of Population Aging, Life Expectancy, Unemployment Rate, Population Density, per Capita GDP, Urbanization on per Capita Carbon Emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar] [CrossRef]
- Testik, M.C.; Sarikulak, O. Change Points of Real GDP per Capita Time Series Corresponding to the Periods of Industrial Revolutions. Technol. Forecast. Soc. Chang. 2021, 170, 120911. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, L.; Wang, S.; Wang, J.-Z.; Liu, M. Predicting Beijing’s Tertiary Industry with an Improved Grey Model. Appl. Soft Comput. 2017, 57, 482–494. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Li, Y.; Wang, M.; Liu, J.; Yin, L.; Zuo, S.; Wu, J. Riverine Nitrogen Export and Its Natural and Anthropogenic Determinants in a Subtropical Agricultural Catchment. Agric. Ecosyst. Environ. 2020, 301, 107021. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Z.; Ge, X.; Hu, Y. Empirical Analysis of the Synergy of the Three Sectors’ Development and Labor Employment. Technol. Forecast. Soc. Chang. 2020, 160, 120223. [Google Scholar] [CrossRef]
- Bjuggren, C.M. Employment Protection and Labor Productivity. J. Public Econ. 2018, 157, 138–157. [Google Scholar] [CrossRef]
- de Souza Mendonça, A.K.; de Andrade Conradi Barni, G.; Moro, M.F.; Bornia, A.C.; Kupek, E.; Fernandes, L. Hierarchical Modeling of the 50 Largest Economies to Verify the Impact of GDP, Population and Renewable Energy Generation in CO2 Emissions. Sustain. Prod. Consum. 2020, 22, 58–67. [Google Scholar] [CrossRef]
- Kalimeris, P.; Bithas, K.; Richardson, C.; Nijkamp, P. Hidden Linkages between Resources and Economy: A “Beyond-GDP” Approach Using Alternative Welfare Indicators. Ecol. Econ. 2020, 169, 106508. [Google Scholar] [CrossRef]
- Fullman, N.; Yearwood, J.; Abay, S.M.; Abbafati, C.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abebe, Z.; Abebo, T.A.; Aboyans, V.; et al. Measuring Performance on the Healthcare Access and Quality Index for 195 Countries and Territories and Selected Subnational Locations: A Systematic Analysis from the Global Burden of Disease Study 2016. Lancet 2018, 391, 2236–2271. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Chen, Y.; Ashraf, U.; Li, L.; Zhang, M.; Mo, Z.; Duan, M.; Wang, Z.; Tang, X.; et al. Effects of Different Fertilization Methods on Grain Yield, Photosynthetic Characteristics and Nitrogen Synthetase Enzymatic Activities of Direct-Seeded Rice in South China. J. Plant Growth Regul. 2022, 41, 1642–1653. [Google Scholar] [CrossRef]
- He, D.; Jin, F.; Dai, T.; Sun, Y.; Zhou, Z. Spatial Patterns and Characteristics for Service Level of Urban Public Cultural Facilities in Central Beijing. Prog. Geogr. 2017, 36, 1128–1139. [Google Scholar]
- Wu, L.; Liu, D.; Chen, X.; Ma, C.; Wang, H.; Zhang, Y.; Xu, X.; Zhou, Y. Nutrient Flows in the Crop-Livestock System in an Emerging County in China. Nutr. Cycl. Agroecosyst. 2021, 120, 243–255. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, T. Difference Analysis of the Relationship between Household per Capita Income, per Capita Expenditure and per Capita CO2 Emissions in China: 1997–2014. Atmos. Pollut. Res. 2017, 8, 310–319. [Google Scholar] [CrossRef]
- Xiao, X.D.; Dong, L.; Yan, H.; Yang, N.; Xiong, Y. The Influence of the Spatial Characteristics of Urban Green Space on the Urban Heat Island Effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Tian, P.; Zhu, Z.; Yue, Q.; He, Y.; Zhang, Z.; Hao, F.; Guo, W.; Chen, L.; Liu, M. Soil Erosion Assessment by RUSLE with Improved P Factor and Its Validation: Case Study on Mountainous and Hilly Areas of Hubei Province, China. Int. Soil Water Conserv. Res. 2021, 9, 433–444. [Google Scholar] [CrossRef]
- Lan, X.; Ding, G.; Dai, Q.; Yan, Y. Assessing the Degree of Soil Erosion in Karst Mountainous Areas by Extenics. CATENA 2022, 209, 105800. [Google Scholar] [CrossRef]
- Fetanat, A.; Tayebi, M.; Mofid, H. Water-Energy-Food Security Nexus Based Selection of Energy Recovery from Wastewater Treatment Technologies: An Extended Decision Making Framework under Intuitionistic Fuzzy Environment. Sustain. Energy Technol. Assess. 2021, 43, 100937. [Google Scholar] [CrossRef]
- Fang, X.; Shi, X.; Phillips, T.K.; Du, P.; Gao, W. The Coupling Coordinated Development of Urban Environment Towards Sustainable Urbanization: An Empirical Study of Shandong Peninsula, China. Ecol. Indic. 2021, 129, 107864. [Google Scholar] [CrossRef]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the Relationship between Urbanization and the Eco-Environment Using a Coupling Analysis: Case Study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Dong, L.; Shang, J. System Dynamics Analysis of the Coordinated Development for Urban Agglomerations in Western China. Environ. Dev. Sustain. 2024, 1–38. [Google Scholar] [CrossRef]
Variables | Formulas |
---|---|
Total population | INTEG (Birth population-Dead population, 782.73) |
Urban GDP | INTEG (GDP growth, 3195.05) |
Total energy consumption | INTEG (Increase in energy consumption, 2566.9) |
Public Library Collection | INTEG (Increase in Library Collection, 998) |
Per capita disposable income | INTEG (Added value of per capita disposable income,14,687.3) |
Green park area | INTEG (Increase in park green space area, 3253) |
Number of postgraduates in school | INTEG (Increase in the number of graduate students in Colleges and Universities, 75,483) |
Number of doctors | INTEG (Increase in the number of doctors, 18,763) |
Comprehensive utilization rate of industrial solid waste | (−2.735 ∗ (Time, −2009) + 103.67)/100 ∗ Environmental protection factor |
GDP growth rate | WITH LOOKUP (Time, ([(2010, 0) − (2025, 0.2)], historical data from 2010 to 2025, (2025, 0.2))) |
Increase rate of invention patent authorization | WITH LOOKUP (Time, ([(2010, 0) − (2025, 0.7)], historical data from 2010 to 2025, (2025, 0.7))) |
Increase rate of per capita disposable income | WITH LOOKUP (Time, ([(2010, 0) − (2025, 0.3)], historical data from 2010 to 2025, (2025, 0.3))) |
GDP growth | GDP growth rate after adjusting parameters ∗ Urban GDP |
Industrial wastewater production | Proportion of industrial wastewater in industrial water ∗ Water consumption for industrial production |
Labor productivity of tertiary industry | Output value of tertiary industry after adjusting parameters/Employees in the tertiary industry |
Total amount of municipal solid waste | Output of industrial solid waste + Domestic waste removal volume |
Control Factors | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
Economic factor | 1 | 1.3 | 1 | 1 | 1.15 | 1.15 | 1 | 1.1 |
Energy-saving factor | 1 | 1 | 1 | 1.3 | 1 | 1.15 | 1.15 | 1.1 |
Environmental protection factor | 1 | 1 | 1 | 1.3 | 1 | 1.15 | 1.15 | 1.1 |
Life factor | 1 | 1 | 1.3 | 1 | 1.15 | 1 | 1.15 | 1.1 |
Medical factors | 1 | 1 | 1.3 | 1 | 1.15 | 1 | 1.15 | 1.1 |
Cultural factors | 1 | 1 | 1.3 | 1 | 1.15 | 1 | 1.15 | 1.1 |
Educational factor | 1 | 1 | 1.3 | 1 | 1.15 | 1 | 1.15 | 1.1 |
Plan | Year | Input Indicators | Output Indicators | |||
---|---|---|---|---|---|---|
I1 | I2 | O1 | O2 | O3 | ||
P1 | 2021 | 0.100 | 0.352 | 0.208 | 0.100 | 0.146 |
2022 | 0.182 | 0.494 | 0.264 | 0.203 | 0.229 | |
2023 | 0.268 | 0.649 | 0.315 | 0.317 | 0.316 | |
2024 | 0.356 | 0.817 | 0.370 | 0.430 | 0.409 | |
2025 | 0.447 | 1.000 | 0.479 | 0.553 | 0.506 | |
P2 | 2021 | 0.360 | 0.352 | 0.717 | 0.100 | 0.100 |
2022 | 0.506 | 0.494 | 0.787 | 0.203 | 0.187 | |
2023 | 0.662 | 0.649 | 0.851 | 0.317 | 0.278 | |
2024 | 0.826 | 0.817 | 0.921 | 0.430 | 0.374 | |
2025 | 1.000 | 1.000 | 1.000 | 0.553 | 0.475 | |
P3 | 2021 | 0.144 | 0.352 | 0.100 | 0.360 | 0.164 |
2022 | 0.211 | 0.494 | 0.143 | 0.501 | 0.245 | |
2023 | 0.341 | 0.649 | 0.181 | 0.638 | 0.331 | |
2024 | 0.500 | 0.817 | 0.222 | 0.834 | 0.422 | |
2025 | 0.685 | 1.000 | 0.267 | 1.000 | 0.518 | |
P4 | 2021 | 0.100 | 0.100 | 0.208 | 0.100 | 0.427 |
2022 | 0.182 | 0.213 | 0.264 | 0.203 | 0.555 | |
2023 | 0.268 | 0.357 | 0.315 | 0.317 | 0.692 | |
2024 | 0.356 | 0.458 | 0.370 | 0.430 | 0.840 | |
2025 | 0.447 | 0.541 | 0.429 | 0.553 | 1.000 | |
P5 | 2021 | 0.272 | 0.352 | 0.427 | 0.313 | 0.136 |
2022 | 0.382 | 0.494 | 0.467 | 0.447 | 0.219 | |
2023 | 0.499 | 0.649 | 0.500 | 0.596 | 0.307 | |
2024 | 0.621 | 0.817 | 0.535 | 0.745 | 0.400 | |
2025 | 0.748 | 1.000 | 0.574 | 0.910 | 0.499 | |
P6 | 2021 | 0.272 | 0.175 | 0.413 | 0.100 | 0.331 |
2022 | 0.382 | 0.285 | 0.475 | 0.203 | 0.444 | |
2023 | 0.499 | 0.403 | 0.532 | 0.317 | 0.565 | |
2024 | 0.621 | 0.530 | 0.594 | 0.430 | 0.696 | |
2025 | 0.748 | 0.667 | 0.661 | 0.553 | 0.837 | |
P7 | 2021 | 0.173 | 0.175 | 0.108 | 0.313 | 0.337 |
2022 | 0.329 | 0.285 | 0.156 | 0.447 | 0.440 | |
2023 | 0.489 | 0.403 | 0.200 | 0.596 | 0.549 | |
2024 | 0.577 | 0.530 | 0.246 | 0.745 | 0.666 | |
2025 | 0.742 | 0.667 | 0.297 | 0.910 | 0.791 | |
P8 | 2021 | 0.124 | 0.202 | 0.472 | 0.278 | 0.350 |
2022 | 0.224 | 0.297 | 0.496 | 0.401 | 0.456 | |
2023 | 0.329 | 0.425 | 0.540 | 0.537 | 0.595 | |
2024 | 0.439 | 0.564 | 0.608 | 0.681 | 0.695 | |
2025 | 0.553 | 0.689 | 0.669 | 0.832 | 0.811 |
Index Classification | Index Type | Index Name | Index Code | Index Weight | Comprehensive Weight | Reference |
---|---|---|---|---|---|---|
Economic input | Economic input | Fiscal expenditure | I1 | 0.546 | 0.546 | [38,39] |
Resource input | Resource input | Total energy consumption | I2 | 0.454 | 0.454 | [40,41] |
Economic indicators (Economic output) O1 | Economic level | Per capita GDP | O1-1 | 0.081 | 0.322 | [42,43] |
Economic structure | Proportion of tertiary industry in GDP | O1-2 | 0.079 | [44,45] | ||
Economic efficiency | Labor productivity of the tertiary industry | O1-3 | 0.075 | [46,47] | ||
Economic growth | GDP growth rate | O1-4 | 0.087 | [48,49] | ||
Social indicators (Social output) O2 | Medical and health care | Number of doctors | O2-1 | 0.091 | 0.356 | [50] |
Higher education | Number of postgraduates in school | O2-2 | 0.088 | [51] | ||
Cultural publicity | Public library collection | O2-3 | 0.091 | [52] | ||
People’s living conditions | Per capita disposable income | O2-4 | 0.086 | [53,54] | ||
Environmental indicators (Environmental output) O3 | Urban greening | Green park area | O3-1 | 0.098 | 0.322 | [55] |
Environmental treatment | Cumulative soil erosion control area | O3-2 | 0.088 | [56,57] | ||
Wastewater treatment | Urban wastewater treatment rate | O3-3 | 0.050 | [58,59] | ||
Waste treatment | Comprehensive utilization rate of industrial solid waste | O3-4 | 0.086 | [31,60] |
Plan | 2021 | 2022 | 2023 | 2024 | 2025 | Average Score |
---|---|---|---|---|---|---|
P1 | 0.0093 | 0.0135 | 0.0179 | 0.0224 | 0.0281 | 0.0182 |
P2 | 0.0163 | 0.0208 | 0.0254 | 0.0303 | 0.0356 | 0.0257 |
P3 | 0.0129 | 0.0177 | 0.0223 | 0.0282 | 0.0338 | 0.023 |
P4 | 0.0141 | 0.0191 | 0.0245 | 0.0301 | 0.0362 | 0.0248 |
P5 | 0.0163 | 0.0209 | 0.0258 | 0.0308 | 0.0363 | 0.026 |
P6 | 0.0156 | 0.0205 | 0.0256 | 0.031 | 0.0369 | 0.0259 |
P7 | 0.0153 | 0.0203 | 0.0257 | 0.0313 | 0.0374 | 0.026 |
P8 | 0.0199 | 0.0245 | 0.0302 | 0.0357 | 0.0416 | 0.0304 |
Plan | Economic Subsystem | Social Subsystem | Environmental Subsystem |
---|---|---|---|
P1 | 0.00644 | 0.00614 | 0.0056 |
P2 | 0.01446 | 0.00601 | 0.006 |
P3 | 0.00432 | 0.01282 | 0.00584 |
P4 | 0.00628 | 0.00622 | 0.0123 |
P5 | 0.00893 | 0.01158 | 0.0054 |
P6 | 0.0098 | 0.00588 | 0.01022 |
P7 | 0.00458 | 0.0116 | 0.00982 |
P8 | 0.00978 | 0.01048 | 0.01014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Ma, Y.; Lou, K. Urban Development Scenario Simulation and Model Research Based on System Dynamics from the Perspective of Effect and Efficiency. Systems 2024, 12, 259. https://doi.org/10.3390/systems12070259
Yang L, Ma Y, Lou K. Urban Development Scenario Simulation and Model Research Based on System Dynamics from the Perspective of Effect and Efficiency. Systems. 2024; 12(7):259. https://doi.org/10.3390/systems12070259
Chicago/Turabian StyleYang, Liu, Yuchen Ma, and Kailun Lou. 2024. "Urban Development Scenario Simulation and Model Research Based on System Dynamics from the Perspective of Effect and Efficiency" Systems 12, no. 7: 259. https://doi.org/10.3390/systems12070259
APA StyleYang, L., Ma, Y., & Lou, K. (2024). Urban Development Scenario Simulation and Model Research Based on System Dynamics from the Perspective of Effect and Efficiency. Systems, 12(7), 259. https://doi.org/10.3390/systems12070259