Influence of Artificial Intelligence on Engineering Management Decision-Making with Mediating Role of Transformational Leadership
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Technology Acceptance Model (TAM)
2.2. Transformational Leadership Theory
2.3. Adaptive Structuration Theory (AST)
2.4. Integration of Theories
- Micro-level: TAM explains individual cognitive and behavioral mechanisms of technological adoption.
- Meso-level: Transformational Leadership Theory examines leadership’s role in facilitating technological transition.
- Macro-level: AST explores organizational structural adaptations in response to technological implementation.
- 4.
- Literature Review
3. Methods and Conceptual Model
3.1. Sample
3.2. Measurement Scales
3.3. Measurement Validation
4. Data Analysis Results and Interpretation
5. Discussion and Conclusions
5.1. Implications for Theory and Application
5.2. Study Limitations and Direction for Future Studies
5.3. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cortès, U.; Sànchez-Marrè, M.; Ceccaroni, L.; R-Roda, I.; Poch, M. Artificial intelligence and environmental decision support systems. Appl. Intell. 2000, 13, 77–91. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Mumali, F. Artificial neural network-based decision support systems in manufacturing processes: A systematic literature review. Comput. Ind. Eng. 2022, 165, 107964. [Google Scholar] [CrossRef]
- Odugbesan, J.A.; Aghazadeh, S.; Al Qaralleh, R.E.; Sogeke, O.S. Green talent management and employees’ innovative work behavior: The roles of artificial intelligence and transformational leadership. J. Knowl. Manag. 2023, 27, 696–716. [Google Scholar] [CrossRef]
- Phillips-Wren, G.; Jain, L. Artificial intelligence for decision making. In Knowledge-Based Intelligent Information and Engineering Systems, Proceedings of the 10th International Conference, KES 2006, Bournemouth, UK, 9–11 October 2006; Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2006; Volume 10, pp. 531–536. [Google Scholar]
- Rodgers, W.; Murray, J.M.; Stefanidis, A.; Degbey, W.Y.; Tarba, S.Y. An artificial intelligence algorithmic approach to ethical decision-making in human resource management processes. Hum. Resour. Manag. Rev. 2023, 33, 100925. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Rodríguez, J.P.; Espitia, H.E. Review of artificial intelligence applied in decision-making processes in agricultural public policy. Processes 2020, 8, 1374. [Google Scholar] [CrossRef]
- Trunk, A.; Birkel, H.; Hartmann, E. On the current state of combining human and artificial intelligence for strategic organizational decision making. Bus. Res. 2020, 13, 875–919. [Google Scholar] [CrossRef]
- Ahmed, M.; Rodriguez, J.; Chen, L. Artificial Intelligence in Strategic Management: Emerging Trends and Organizational Dynamics. J. Technol. Manag. Innov. 2023, 18, 45–62. [Google Scholar]
- Zhang, W.; Liu, H. Artificial Intelligence and Management Strategies: Emerging Perspectives and Challenges. J. Bus. Res. 2022, 152, 75–92. [Google Scholar]
- Bag, S.; Dhamija, P.; Pretorius JH, C.; Chowdhury, A.H.; Giannakis, M. Sustainable electronic human resource management systems and firm performance: An empirical study. Int. J. Manpow. 2022, 43, 32–51. [Google Scholar] [CrossRef]
- Nguyen, H.; Thompson, R.; Garcia, M. AI Integration and Organizational Decision-Making: A Multi-Industry Analysis. Strateg. Manag. J. 2023, 44, 187–210. [Google Scholar]
- Peifer, Y.; Jeske, T.; Hille, S. Artificial Intelligence and its Impact on Leaders and Leadership. Procedia Comput. Sci. 2022, 200, 1024–1030. [Google Scholar] [CrossRef]
- Kumar, R.; Patel, S.; Wang, X. Transformational Leadership in the Age of AI: A Comprehensive Framework. Leadersh. Q. 2022, 33, 276–295. [Google Scholar]
- Lee, J.; Park, S. Digital Transformation and Leadership: Bridging Technological Innovation and Organizational Change. Int. J. Inf. Manag. 2023, 41, 102–118. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Burns, J.M. Leadership; Harper & Row: New York City, NY, USA, 1978. [Google Scholar]
- Bass, B.M. Leadership and Performance Beyond Expectations; Free Press: New York City, NY, USA, 1985. [Google Scholar]
- Avolio, B.J.; Bass, B.M. Individual consideration viewed at multiple levels of analysis: A multi-level framework for examining the diffusion of transformational leadership. Leadersh. Q. 1995, 6, 199–218. [Google Scholar] [CrossRef]
- Smith, A.M.; Green, M. Artificial intelligence and the role of leadership. J. Leadersh. Stud. 2018, 12, 85–87. [Google Scholar] [CrossRef]
- Mumford, M.D.; Scott, G.M.; Gaddis, B.; Strange, J.M. Leading creative people: Orchestrating expertise and competitive innovation. Leadersh. Q. 2002, 13, 705–750. [Google Scholar] [CrossRef]
- Giddens, A. The Constitution of Society: Outline of the Theory of Structuration; Polity Press: Cambridge, UK, 1984. [Google Scholar]
- DeSanctis, G.; Poole, M.S. Capturing the complexity in advanced technology use: Adaptive structuration theory. Organ. Sci. 1994, 5, 121–147. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H.; Zhang, Y. AI-powered decision support systems in complex engineering projects: An empirical investigation. Int. J. Proj. Manag. 2021, 39, 412–426. [Google Scholar] [CrossRef]
- Xia, N.; Zou PX, W.; Griffin, M.A.; Wang, X.; Zhong, R. Towards integrating construction risk management and stakeholder management: A systematic literature review and future research agendas. Int. J. Proj. Manag. 2020, 38, 188–212. [Google Scholar] [CrossRef]
- Wilson, K.; Ahmed, S. Global perspectives on AI in engineering management: A survey of decision-making confidence and response times. Eng. Manag. Int. 2023, 89, 106–124. [Google Scholar]
- Li, J.; Zhang, L. Artificial intelligence for sustainable engineering management: A systematic review and future directions. Sustainability 2022, 14, 4567. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Li, Z. Transformational leadership as a mediator between AI implementation and strategic decision-making quality in manufacturing firms. J. Oper. Manag. 2021, 39, 314–332. [Google Scholar]
- Wang, R.; Liu, T. Human-AI collaboration in engineering management decision-making: A mixed-methods study. Eng. Manag. J. 2019, 31, 278–291. [Google Scholar] [CrossRef]
- Wankhede, V.A.; Agrawal, R.; Kumar, A.; Luthra, S.; Pamucar, D.; Stević, Ž. Artificial intelligence an enabler for sustainable engineering decision-making in uncertain environment: A review and future propositions. J. Glob. Opera. Strat. Sou. 2024, 17, 384–401. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, X.; Wu, C. Ethical considerations in AI-assisted engineering management: A framework for responsible decision-making. J. Bus. Ethics 2024, 185, 1–18. [Google Scholar]
- Oberer, B.; Erkollar, A. Leadership 4.0: Digital leaders in the age of industry 4.0. Int. J. Organ. Leadersh. 2018, 7, 404–412. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Bus. Horiz. 2020, 63, 37–50. [Google Scholar] [CrossRef]
- Abdeldayem, M.M.; Aldulaimi, S.H. Trends and opportunities of artificial intelligence in human resource management: Aspirations for public sector in Bahrain. Int. J. Sci. Tech. Res. 2020, 9, 3867–3871. [Google Scholar]
- Lui, A.K.; Lee, M.C.; Ngai, E.W. Impact of artificial intelligence investment on firm value. Annal. Oper. Res. 2022, 308, 373–388. [Google Scholar] [CrossRef]
- Benbya, H.; Pachidi, S.; Jarvenpaa, S. Special issue editorial: Artificial intelligence in organizations: Implications for information systems research. J. Assoc. Inf. Sys. 2021, 22, 10. [Google Scholar] [CrossRef]
- Shrestha, Y.R.; Ben-Menahem, S.M.; Von Krogh, G. Organizational decision-making structures in the age of artificial intelligence. Calif. Manag. Rev. 2019, 61, 66–83. [Google Scholar] [CrossRef]
- Sullivan, D.; Hall, V.P.; Morrison, J. Navigating the future: Artificial intelligence’s impact on transformational nurse leadership. Teach. Learn. Nurs. 2024, 19, 298–300. [Google Scholar] [CrossRef]
- Hui, Z.; Khan, N.A.; Akhtar, M. AI-based virtual assistant and transformational leadership in social cognitive theory perspective: A study of team innovation in construction industry. Int. J. Manag. Proj. Bus. 2024. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Inter. J. Inform. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Soltani, E. Transformational Leadership and Technological Innovation: The Role of Artificial Intelligence in Organizational Adaptation. Technovation 2019, 82–83, 102040. [Google Scholar]
- Sposato, M. Leadership training and development in the age of artificial intelligence. Dev. Learn. Organ. Int. J. 2024, 38, 4–7. [Google Scholar] [CrossRef]
- Verganti, R.; Dell’Era, C. Design-Driven Innovation: Meaning as a Source of Innovation. In The Oxford Handbook of Innovation Management; Dodgson, M., Gann, D.M., Philips, N., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 139–162. ISBN 978-0-19-969494-5. [Google Scholar]
- Luo, J.; Zaman, S.I.; Jamil, S.; Khan, S.A. The future of healthcare: Green transformational leadership and GHRM’s role in sustainable performance. Benchmarking Int. J. 2024. [Google Scholar] [CrossRef]
- Khosravi, M.; Zare, Z.; Mojtabaeian, S.M.; Izadi, R. Artificial intelligence and decision-making in healthcare: A thematic analysis of a systematic review of reviews. Health Serv. Res. Manag. Epidemiol. 2024, 11, 23333928241234863. [Google Scholar] [CrossRef]
- Bass, B.M.; Riggio, R.E. Transformational Leadership, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2006. [Google Scholar]
- Zhang, Y.; Liu, X.; Wang, H. The role of AI-powered decision support systems in engineering project management: Evidence from Chinese firms. Eng. Manag. J. 2021, 33, 78–95. [Google Scholar]
- Gunathilaka, N.J.; Gooden, T.E.; Cooper, J.; Flanagan, S.; Marshall, T.; Haroon, S.; Greenfield, S. Perceptions on artificial intelligence-based decision-making for coexisting multiple long-term health conditions: Protocol for a qualitative study with patients and healthcare professionals. BMJ Open 2024, 14, e077156. [Google Scholar] [CrossRef]
- Goyal, L.; Kiran, R.; Bose, S.C. An empirical investigation of the influence of leadership styles and strategic decision-making on business performance: A generational ownership perspective. Curren. Psycho. 2024, 43, 5472–5489. [Google Scholar] [CrossRef]
- Frimpong, V.; Wolfs, B. Predictive Effect of AI on Leadership: Insights From Public Case Studies on Organizational Dynamics. Int. J. Bus. Adm. 2024, 15, 10–5430. [Google Scholar] [CrossRef]
- García-Álvarez, S.; López-Fernández, A. Co-Creating Value Through People-Centered Leadership: Lessons Learned from the COVID-19 Crisis. In Creating Economic Stability Amid Global Uncertainty: Post-Pandemic Recovery in Mexico’s Emerging Economy; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 65–89. [Google Scholar]
- Wilson, K.; Ahmed, S. The mediating role of transformational leadership in AI and decision-making relationships: A meta-analysis. Leadersh. Q. 2021, 32, 101–124. [Google Scholar]
- Patel, R.; Sharma, A.; Gupta, V. AI-driven quality control in manufacturing: An empirical assessment of decision-making improvements. Int. J. Ind. Eng. 2023, 42, 156–173. [Google Scholar]
- Martinez, S.A.; Leija, N. Distinguishing servant leadership from transactional and transformational leadership. Adv. Develop. Hum. Resou. 2023, 25, 141–188. [Google Scholar] [CrossRef]
- Li, C.; Makhdoom, H.U.R.; Asim, S. Impact of entrepreneurial leadership on innovative work behavior: Examining mediation and moderation mechanisms. Psych. Res. Behav. Manag. 2020, 13, 105. [Google Scholar] [CrossRef]
- Patel, N.; Johnson, A. The moderating role of transformational leadership in AI adoption and clinical decision-making efficiency. Health Care Manag. Rev. 2023, 48, 175–187. [Google Scholar]
- Malik, P.; Malik, P.; Meher, J.R.; Yadav, S. Assessing the relationship between AMO framework and talent retention: Role of employee engagement and transformational leadership. J. Organ. Eff. People Perform. 2024. [Google Scholar] [CrossRef]
- Thompson, L.; Chen, Y.; Wilson, D. Transformational leadership as a mediator between AI adoption and organizational decision-making effectiveness: A cross-industry analysis. Acad. Manag. J. 2023, 66, 512–537. [Google Scholar]
- Nakamura, H.; Smith, T. Transformational leadership and AI integration in public sector decision-making. Public Adm. Rev. 2021, 81, 615–629. [Google Scholar]
- Zhang, R.; Lee, B. Transformational leadership and AI adoption in SME decision-making: A moderated mediation model. J. Small Bus. Manag. 2022, 60, 298–320. [Google Scholar]
- Morales, A.; Garcia, C.; Lee, S. Transformational leadership and AI in higher education: Mediating effects on administrative and academic decision-making. J. High. Educ. 2023, 94, 401–420. [Google Scholar]
- Kumar, V.; Patel, R. The evolving role of transformational leadership in AI-driven decision-making: A three-year longitudinal study. Organ. Sci. 2023, 34, 687–705. [Google Scholar]
- Kock, N. Advanced mediating effects tests, multi-group analyses and measurement model assessments in PLS-based SEM. Int. J. e-Collab. 2014, 10, 1–13. [Google Scholar] [CrossRef]
- Kör, B. The mediating effects of self-leadership on perceived entrepreneurial orientation and innovative work behavior in the banking sector. SpringerPlus 2016, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Crunchbase. Istanbul Companies. 2024. Available online: https://www.crunchbase.com/hub/istanbul-companies (accessed on 20 January 2024).
- Companies Marketcap. Top Publicly Traded Companies in Turkey by Number of Employees. 2024. Available online: https://companiesmarketcap.com/turkey/largest-companies-by-number-of-employees-in-turkey/ (accessed on 20 January 2024).
- Bass, B.; Avolio, B. Multifactor Leadership Questionnaire: Technical Report; Mind Garden: Redwood City, CA, USA, 2000. [Google Scholar]
- Wamba-Taguimdje, S.-L.; Wamba, S.F.; Kamdjoug, J.R.K.; Wanko, C.E.T. Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Grošelj, M.; Černe, M.; Penger, S.; Grah, B. Authentic and transformational leadership and innovative work behaviour: The moderating role of psychological empowerment. Eur. J. Innov. Manag. 2021, 24, 677–706. [Google Scholar] [CrossRef]
- Akhtar, P.; Frynas, J.G.; Mellahi, K.; Ullah, S. Big data-savvy teams’ skills, big data-driven actions and business performance. Br. J. Manag. 2019, 30, 252–271. [Google Scholar] [CrossRef]
- Mohajan, H.K. Two criteria for good measurements in research: Validity and reliability. Annals of Spiru Haret University. Econ. Ser. 2017, 17, 59–82. [Google Scholar]
- Oluwatayo, J. Validity and reliability issues in educational research. J. Educ. Soc. Res. 2012, 2, 391–400. [Google Scholar]
- Taherdoost, H. Validity and reliability of the research instrument; how to test the validation of a questionnaire/survey in a research. How to test the validation of a questionnaire/survey in a research? Int. J. Acad. Res. Manag. (IJARM) 2016, 5, 28–36. [Google Scholar]
- Lawshe, C.H. A quantitative approach to content validity. Pers. Psychol. 1975, 28, 563–575. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. (IJEC) 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Kock, N.; Moqbel, M. Social networking site use, positive emotions, and job performance. J. Comput. Inf. Syst. 2021, 61, 163–173. [Google Scholar] [CrossRef]
- Adetola, O.J.; Aghazadeh, S.; Abdullahi, M. Perceived environmental concern, knowledge, and intention to visit green hotels: Do perceived consumption values matter? Pak. J. Commer. Soc. Sci. (PJCSS) 2021, 15, 240–264. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Geisser, S. A predictive approach to the random effect model. Biometrika 1974, 61, 101–107. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Gel, Y.R.; Gastwirth, J.L. A robust modification of the Jarque–Bera test of normality. Econ. Lett. 2008, 99, 30–32. [Google Scholar] [CrossRef]
- Heukamp, F.; Canals, J. 10 Ways Artificial Intelligence Is Transforming Management|IESE [Online], I.E.S.E. 2018. Available online: https://www.iese.edu/stories/10-ways-artificial-intelligence-is-transforming-management/ (accessed on 3 May 2023).
- McAfee, A.; Goldbloom, A.; Brynjolfsson, E.; Howard, J. Artificial intelligence meets the C-suite. In McKinsey Quarterly, 3rd ed.; McKinsey Company: Hong Kong, China, 2014; pp. 66–75. [Google Scholar]
- Huber, D.M.; Alexy, O. The impact of artificial intelligence on strategic leadership. In Handbook of Research on Strategic Leadership in the Fourth Industrial Revolution; Edward Elgar Publishing: Cheltenham, UK, 2024; pp. 108–136. [Google Scholar]
- Quaquebeke, N.V.; Gerpott, F.H. The now, new, and next of digital leadership: How Artificial Intelligence (AI) will take over and change leadership as we know it. J. Leadersh. Organ. Stud. 2023, 30, 265–275. [Google Scholar] [CrossRef]
- Di Prima, C.; Bevilacqua, S.; Bresciani, S.; Ferraris, A. The Impact of Artificial Intelligence on Organizations and Managers: The Skills Needed for an Effective Leadership. In Artificial Intelligence and Business Transformation; Del Val Núñez, M.T., Yela Aránega, A., Ribeiro-Soriano, D., Eds.; Contributions to Management Science; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Thompson, K. Transformational leadership and AI integration in tech companies: Impact on decision-making processes. MIS Q. 2022, 46, 521–542. [Google Scholar]
TL | DMP | AI | p (Lds.) | Wts. | p (Wts.) | |
---|---|---|---|---|---|---|
TL1 | 0.705 | −0.183 | 0.054 | <0.001 | 0.076 | 0.139 |
TL2 | 0.760 | 0.245 | −0.048 | <0.001 | 0.163 | 0.009 |
TL3 | 0.734 | −0.045 | 0.014 | <0.001 | 0.157 | 0.011 |
TL4 | 0.823 | −0.091 | 0.071 | <0.001 | 0.176 | 0.005 |
TL5 | 0.823 | −0.049 | 0.003 | <0.001 | 0.177 | 0.005 |
TL6 | 0.855 | 0.007 | −0.010 | <0.001 | 0.183 | 0.004 |
TL7 | 0.838 | 0.091 | −0.068 | <0.001 | 0.180 | 0.005 |
TL8 | 0.719 | 0.028 | −0.023 | <0.001 | 0.077 | 0.134 |
TL9 | 0.709 | −0.184 | 0.057 | <0.001 | 0.076 | 0.138 |
TL10 | 0.760 | 0.245 | −0.048 | <0.001 | 0.000 | 1.000 |
DMP1 | 0.011 | 0.876 | 0.036 | <0.001 | 0.310 | <0.001 |
DMP2 | 0.018 | 0.849 | −0.010 | <0.001 | 0.150 | 0.015 |
DMP3 | −0.053 | 0.737 | 0.048 | <0.001 | 0.130 | 0.030 |
DMP4 | 0.019 | 0.622 | 0.052 | <0.001 | 0.110 | 0.056 |
DMP5 | −0.026 | 0.780 | 0.008 | <0.001 | 0.138 | 0.023 |
DMP6 | 0.025 | 0.762 | −0.061 | <0.001 | 0.135 | 0.026 |
DMP7 | 0.035 | 0.781 | −0.075 | <0.001 | 0.138 | 0.023 |
DMP8 | −0.041 | 0.815 | −0.030 | <0.001 | 0.144 | 0.018 |
DMP9 | 0.011 | 0.876 | 0.036 | <0.001 | 0.000 | 1.000 |
AI1 | −0.026 | −0.012 | 0.746 | <0.001 | 0.162 | 0.009 |
AI2 | 0.024 | −0.092 | 0.856 | <0.001 | 0.104 | 0.066 |
AI3 | 0.043 | −0.065 | 0.764 | <0.001 | 0.157 | 0.011 |
AI4 | −0.009 | −0.084 | 0.655 | <0.001 | 0.159 | 0.011 |
AI5 | 0.004 | 0.037 | 0.613 | <0.001 | 0.155 | 0.012 |
AI6 | −0.020 | 0.080 | 0.712 | <0.001 | 0.159 | 0.011 |
AI7 | −0.030 | −0.016 | 0.615 | <0.001 | 0.158 | 0.011 |
AI8 | −0.000 | 0.109 | 0.709 | <0.001 | 0.121 | 0.041 |
AI9 | 0.035 | 0.053 | 0.871 | <0.001 | 0.110 | 0.056 |
AI | TL | DMP | |
---|---|---|---|
AI | 0.788 | ||
TL | 0.197 | 0.675 | |
DMP | 0.029 | 0.532 | 0.792 |
Index | Value | Interpretation |
---|---|---|
Average path coefficient (APC) | 0.168 | p = 0.004 |
Average R2 (ARS) | 0.174 | p = 0.003 |
Average adjusted R2 (AARS) | 0.160 | p = 0.005 |
Average block VIF (AVIF) | 1.037 | Acceptable if <= 5, ideally <= 3.3 |
Average full collinearity VIF (AFVIF) | 1.171 | Acceptable if <= 5, ideally <= 3.3 |
Tenenhaus GoF (GoF) | 0.311 | Small >= 0.1, medium >= 0.25, large >= 0.36 |
Measure | AI | TL | DMP |
---|---|---|---|
Composite reliability | 0.961 | 0.831 | 0.938 |
Cronbach’s alpha | 0.956 | 0.756 | 0.924 |
Average Variance Extracted | 0.622 | 0.500 | 0.628 |
Full collinearity VIF | 1.051 | 1.061 | 1.014 |
R2 | 0.065 | 0.284 | |
Q2 | 0.062 | 0.283 | |
Skewness | −1.433 | −0.635 | −1.409 |
Excess Kurtosis | 3.088 | −0.666 | 2.620 |
Normal: Jarque–Bera test | No | No | No |
Normal: Robust Jarque–Bera test | No | No | No |
Hypotheses | Interaction | ) | p-Value | Decision |
---|---|---|---|---|
H1 | AI DMP | 0.131 | 0.029 | Supported |
H2 | AI TL | 0.127 | 0.013 | Supported |
H3 | TL DMP | 0.470 | <0.001 | Supported |
H4 | AI DMP | 0.078 | 0.030 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abositta, A.; Adedokun, M.W.; Berberoğlu, A. Influence of Artificial Intelligence on Engineering Management Decision-Making with Mediating Role of Transformational Leadership. Systems 2024, 12, 570. https://doi.org/10.3390/systems12120570
Abositta A, Adedokun MW, Berberoğlu A. Influence of Artificial Intelligence on Engineering Management Decision-Making with Mediating Role of Transformational Leadership. Systems. 2024; 12(12):570. https://doi.org/10.3390/systems12120570
Chicago/Turabian StyleAbositta, Abdullah, Muri Wole Adedokun, and Ayşen Berberoğlu. 2024. "Influence of Artificial Intelligence on Engineering Management Decision-Making with Mediating Role of Transformational Leadership" Systems 12, no. 12: 570. https://doi.org/10.3390/systems12120570
APA StyleAbositta, A., Adedokun, M. W., & Berberoğlu, A. (2024). Influence of Artificial Intelligence on Engineering Management Decision-Making with Mediating Role of Transformational Leadership. Systems, 12(12), 570. https://doi.org/10.3390/systems12120570