Adoption of AI-Based Technologies in the Food Supplement Industry: An Italian Start-Up Case Study
Abstract
:1. Introduction
2. Theoretical Hypotheses Construction
3. Methodology
3.1. AI-Based Advice Structure
3.2. Delphi Method
- Expert recruitment: The expert panel was recruited through public competition. Seven panellists with proven experience (at least three years) in the food and nutrition fields were selected.
- Question evaluation: Each expert was called to indicate any redundant questions—to be omitted—or to add further questions to improve the advice. From the technical assessment, each panellist expressed a score from 1 to 5 (Likert scale) for each question of the advice (Figure 1) [38]. The maximum value of 5 represents an excellent rating in the questionnaire construction; a score of 4, a good structure of the questionnaire; a score of 3 shows gaps in the questions; a score of 2 indicates significant deficiencies in question formulation; and a score of 1 represents a complete lack of prerequisites in the questions.
- Outcome evaluation: To validate the AI-based advice outcomes, the panellists conducted a series of simulations to provide representative cases of reality. In each simulation, the expert impersonated a hypothetic customer to answer the advice questions. A 2 × 2 + 1 scheme was used for this purpose, as reported in Figure 3. The 16 categories were combined, such that each simulation foresaw the coexistence of three categories in the same subject and different clinical problems. The following characteristics were also assigned to complete the simulated consultation: gender, age, constitution (weight and height), presence/absence of pathologies, and allergies/intolerances. The different colours in the table reflect each of the seven panellists to whom the various simulations to be processed were randomly assigned.
3.3. Customer Satisfaction
4. Results
4.1. Delphi Method—AI Question Evaluation
4.2. Delphi Method—AI Outcomes Evaluation
4.3. Comparison of Questions and Outcomes Evaluations
4.4. Assessment of Customer Satisfaction
4.4.1. Participant Profiles
4.4.2. Reliability and Convergent Validity
4.4.3. Descriptive Statistics and Discriminant Validity
4.4.4. Predictive Power of the Inner Model
4.4.5. Hypothesis Testing
5. Discussion
5.1. Delphi Method
5.2. Costumer Satisfaction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hecht, J. Managing Expectations of Artificial Intelligence. Nature 2018, 563, S141–S143. [Google Scholar] [CrossRef] [PubMed]
- Brem, A.; Giones, F.; Werle, M. The AI Digital Revolution in Innovation: A Conceptual Framework of Artificial Intelligence Technologies for the Management of Innovation. IEEE Trans. Eng. Manag. 2023, 70, 770–776. [Google Scholar] [CrossRef]
- Skudalski, L.; Waldman, R.; Kerr, P.E.; Grant-Kels, J.M. Melanoma: How and When to Consider Clinical Diagnostic Technologies. J. Am. Acad. Dermatol. 2022, 86, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.A.; Carter, S.M.; Coiera, E. Exploring Stakeholder Attitudes towards AI in Clinical Practice. BMJ Health Care Inform. 2021, 28, e100450. [Google Scholar] [CrossRef]
- Chang, Z.; Zhan, Z.; Zhao, Z.; You, Z.; Liu, Y.; Yan, Z.; Fu, Y.; Liang, W.; Zhao, L. Application of Artificial Intelligence in COVID-19 Medical Area: A Systematic Review. J. Thorac. Dis. 2021, 13, 7034. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. Precision Nutrition: Approach for Understanding Intra-Individual Biological Variation. J. Nutr. Health 2022, 55, 1–9. [Google Scholar] [CrossRef]
- Tzachor, A.; Devare, M.; King, B.; Avin, S.; Ó hÉigeartaigh, S. Responsible Artificial Intelligence in Agriculture Requires Systemic Understanding of Risks and Externalities. Nat. Mach. Intell. 2022, 4, 104–109. [Google Scholar] [CrossRef]
- Car, N.J. USING Decision Models to Enable Better Irrigation Decision Support Systems. Comput. Electron. Agric. 2018, 152, 290–301. [Google Scholar] [CrossRef]
- Tripodi, P.; Nicastro, N.; Pane, C. Digital Applications and Artificial Intelligence in Agriculture toward Next-Generation Plant Phenotyping. Crop Pasture Sci. 2022, 74. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T. Application of Mixed-Mode Research Paradigms to the Building Sector: A Review and Case Study towards Decarbonising the Built and Natural Environment. Sustain. Cities Soc. 2017, 35, 692–714. [Google Scholar] [CrossRef]
- Debrah, C.; Chan, A.P.C.; Darko, A. Artificial Intelligence in Green Building. Autom. Constr. 2022, 137, 104192. [Google Scholar] [CrossRef]
- Gruyer, D.; Magnier, V.; Hamdi, K.; Claussmann, L.; Orfila, O.; Rakotonirainy, A. Perception, Information Processing and Modeling: Critical Stages for Autonomous Driving Applications. Annu. Rev. Control 2017, 44, 323–341. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics Systems and Artificial Intelligence: Applications of Industry 4.0. Energy Rep. 2022, 8, 334–361. [Google Scholar] [CrossRef]
- Venkatasubramanian, V.; Mann, V. Artificial Intelligence in Reaction Prediction and Chemical Synthesis. Curr. Opin. Chem. Eng. 2022, 36, 100749. [Google Scholar] [CrossRef]
- Baghbani, A.; Choudhury, T.; Costa, S.; Reiner, J. Application of Artificial Intelligence in Geotechnical Engineering: A State-of-the-Art Review. Earth Sci. Rev. 2022, 228, 103991. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, M.; Jia, F.; Liu, G. Artificial Intelligence Adoption in Business-to-Business Marketing: Toward a Conceptual Framework. J. Bus. Ind. Mark. 2022, 37, 1025–1044. [Google Scholar] [CrossRef]
- Gomes, P.; Verçosa, L.; Melo, F.; Silva, V.; Filho, C.B.; Bezerra, B. Artificial Intelligence-Based Methods for Business Processes: A Systematic Literature Review. Appl. Sci. 2022, 12, 2314. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Alam, M.M.; Rahmat, M.K.; Mubarik, M.S.; Hyder, S.I. Academic and Administrative Role of Artificial Intelligence in Education. Sustainability 2022, 14, 1101. [Google Scholar] [CrossRef]
- Bao, J.; Xie, Q. Artificial Intelligence in Animal Farming: A Systematic Literature Review. J. Clean. Prod. 2022, 331, 129956. [Google Scholar] [CrossRef]
- Goel, P.; Kaushik, N.; Sivathanu, B.; Pillai, R.; Vikas, J. Consumers’ Adoption of Artificial Intelligence and Robotics in Hospitality and Tourism Sector: Literature Review and Future Research Agenda. Tour. Rev. 2022, 77, 1081–1096. [Google Scholar] [CrossRef]
- Köchling, A.; Wehner, M.C.; Warkocz, J. Can I Show My Skills? Affective Responses to Artificial Intelligence in the Recruitment Process. Rev. Manag. Sci. 2022. [Google Scholar] [CrossRef]
- Magistretti, S.; Dell’Era, C.; Messeni Petruzzelli, A. How Intelligent Is Watson? Enabling Digital Transformation through Artificial Intelligence. Bus. Horiz. 2019, 62, 819–829. [Google Scholar] [CrossRef]
- Baran, P. On Distributed Communications: I. Introduction to Distributed Communications Networks; RAND Corporation: Santa Monica, CA, USA, 2018. [Google Scholar]
- Bellizzi, V.; Bianchi, S.; Bolasco, P.; Brunori, G.; Cupisti, A.; Gambaro, G.; Gesualdo, L.; Polito, P.; Santoro, D.; Santoro, A. A Delphi Consensus Panel on Nutritional Therapy in Chronic Kidney Disease. J. Nephrol. 2016, 29, 593–602. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Cena, H.; Barr, S.I.; Biesalski, H.K.; Dagach, R.U.; Delaney, B.; Frei, B.; Moreno González, M.I.; Hwalla, N.; Lategan-Potgieter, R.; et al. The Use of Multivitamin/Multimineral Supplements: A Modified Delphi Consensus Panel Report. Clin. Ther. 2018, 40, 640–657. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Pope, N.; Voges, K. Buying or Browsing? Eur. J. Mark. 2003, 37, 1666–1684. [Google Scholar] [CrossRef]
- Cueva, A.; Akhmedova, A.; Marimon, F. Effect of covid on the sharing economy: Delphi analysis confirms that quality plays a key role in customers’ satisfaction. Int. J. Qual. Res. 2023, 17, 209–226. [Google Scholar] [CrossRef]
- Rahmani, M.; Sohrabi, R.; Zandi, P. Identifying the Factors Affecting the Customer Satisfaction of Food Industries Using Thematic Analysis and Delphi. J. Econ. Adm. Sci. 2022, 5, 467–482. [Google Scholar]
- Adak, A.; Pradhan, B.; Shukla, N. Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review. Foods 2022, 11, 1500. [Google Scholar] [CrossRef]
- Brock, J.K.U.; von Wangenheim, F. Demystifying Ai: What Digital Transformation Leaders Can Teach You about Realistic Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 110–134. [Google Scholar] [CrossRef]
- Mende, M.; Scott, M.L.; van Doorn, J.; Grewal, D.; Shanks, I. Service Robots Rising: How Humanoid Robots Influence Service Experiences and Elicit Compensatory Consumer Responses. J. Mark. Res. 2019, 56, 535–556. [Google Scholar] [CrossRef]
- Merkle, M. Customer Responses to Service Robots Comparing Human-Robot Interaction with Human-Human Interaction. In Proceedings of the 52nd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Giroux, M.; Kim, J.; Lee, J.C.; Park, J. Artificial Intelligence and Declined Guilt: Retailing Morality Comparison Between Human and AI. J. Bus. Ethics 2022, 178, 1027–1041. [Google Scholar] [CrossRef] [PubMed]
- Weun, S.; Beatty, S.; Jones, M. The Impact of Service Failure Severity on Service Recovery Evaluations and Post-Recovery Relationships The Impact of Service Failure Severity on Service Recovery Evaluations and Post-Recovery Relationships. J. Serv. Mark. 2004, 18, 133–146. [Google Scholar] [CrossRef]
- Hasson, F.; Keeney, S.; McKenna, H. Research Guidelines for the Delphi Survey Technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar] [CrossRef]
- Lynn, M.R.; Layman, E.L.; Englebardt, S.P. Nursing Administration Research Priorities: A National Delphi Study. J. Nurs. Adm. 1998, 28, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Rowe, G.; Wright, G. The Delphi Technique as a Forecasting Tool: Issues and Analysis. Int. J. Forecast. 1999, 15, 353–375. [Google Scholar] [CrossRef]
- Cheng, C.; Lay, K.L.; Hsu, Y.F.; Tsai, Y.M. Can Likert Scales Predict Choices? Testing the Congruence between Using Likert Scale and Comparative Judgment on Measuring Attribution. Methods Psychol. 2021, 5, 100081. [Google Scholar] [CrossRef]
- Reichheld, F.F. The One Number You Need to Grow. Harv. Bus. Rev. 2003, 81, 46–55. [Google Scholar]
- Wang, O.; Somogyi, S. Motives for Luxury Seafood Consumption in First-Tier Cities in China. Food Qual. Prefer. 2020, 79, 103780. [Google Scholar] [CrossRef]
- Waris, I.; Ali, R.; Nayyar, A.; Baz, M.; Liu, R.; Hameed, I. An Empirical Evaluation of Customers’ Adoption of Drone Food Delivery Services: An Extended Technology Acceptance Model. Sustainability 2022, 14, 2922. [Google Scholar] [CrossRef]
- Salsas, J.G.; Saurí, S.; Raventós, E.; Rúa, C.; Torrent, J. Emerging Trends Defining the Future Role of Ports: Application of the Delphi Method. Transp. Res. Rec. 2022, 2676, 571–585. [Google Scholar] [CrossRef]
- Auer, J.; Bey, N.; Schäfer, J.M. Combined Life Cycle Assessment and Life Cycle Costing in the Eco-Care-Matrix: A Case Study on the Performance of a Modernized Manufacturing System for Glass Containers. J. Clean. Prod. 2017, 141, 99–109. [Google Scholar] [CrossRef]
- Vinci, G.; D’Ascenzo, F.; Esposito, A.; Musarra, M.; Rapa, M.; Rocchi, A. A Sustainable Innovation in the Italian Glass Production: LCA and Eco-Care Matrix Evaluation. J. Clean. Prod. 2019, 223, 587–595. [Google Scholar] [CrossRef]
- Placentino, U.; Sogari, G.; Viscecchia, R.; de Devitiis, B.; Monacis, L. The New Challenge of Sports Nutrition: Accepting Insect Food as Dietary Supplements in Professional Athletes. Foods 2021, 10, 1117. [Google Scholar] [CrossRef] [PubMed]
- Aydınocak, E.U. Internet of Things (IoT) in Marketing Logistics. In Accounting, Finance, Sustainability, Governance and Fraud; Springer: Singapore, 2022. [Google Scholar]
- Esfandiari, N.; Reza, M.; Moghadam, A.E. Expert Systems with Applications Knowledge Discovery in Medicine: Current Issue and Future Trend. Expert Syst. Appl. 2014, 41, 4434–4463. [Google Scholar] [CrossRef]
- Čufar, A.; Mrhar, A.; Robnik-Šikonja, M. Assessment of Surveys for the Management of Hospital Clinical Pharmacy Services. Artif. Intell. Med. 2015, 64, 147–158. [Google Scholar] [CrossRef]
- Juanamasta, I.G.; Wati, N.M.N.; Hendrawati, E.; Wahyuni, W.; Pramudianti, M.; Wisnujati, N.S.; Setiawati, A.P.; Susetyorini, S.; Elan, U.; Rusdiyanto, R.; et al. The Role of Customer Service through Customer Relationship Management (Crm) to Increase Customer Loyalty and Good Image. Int. J. Sci. Technol. Res. 2019, 8, 2004–2007. [Google Scholar]
- Beckett, A.; Hewer, P.; Howcroft, B. An Exposition of Consumer Behaviour in the Financial Services Industry. Int. J. Bank Mark. 2000, 18, 15–26. [Google Scholar] [CrossRef]
- Durso, F.T.; Nickerson, R.S.; Dumais, S.T.; Lewandowsky, S.; Perfect, T.J. Handbook of Applied Cognition, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
Constructs | Items | Loadings | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
Advice Questions | QUE 1 | −0.374 | 0.865 | 0.910 | 0.636 |
QUE 2 | 0.781 | ||||
QUE 3 | 0.884 | ||||
Advice Outputs | OUT 1 | 0.880 | 0.938 | 0.945 | 0.875 |
OUT 2 | 0.645 | ||||
OUT 3 | 0.760 |
Latent Variables | Mean | Median | Mode | SD | 1 | 2 |
---|---|---|---|---|---|---|
Advice questions | 2.116 | 2.333 | 2.333 | 0.565 | 1.027 | |
Advice outputs | 2.861 | 2.833 | 2.667 | 0.851 | 0.874 | 1.037 |
Latent Variables | 1 | 2 |
---|---|---|
Advice questions | 0.715 | |
Advice outputs | 0.768 | 0.704 |
Hypotheses | Beta | SD | T-Value | p-Value | Decision |
---|---|---|---|---|---|
H1: Advice Questions | 0.527 | 0.058 | 9.043 | 0.000 | Supported |
H2: Advice Outputs | 0.394 | 0.064 | 6.260 | 0.000 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapa, M.; Ciano, S.; Orsini, F.; Tullo, M.G.; Giannetti, V.; Boccacci Mariani, M. Adoption of AI-Based Technologies in the Food Supplement Industry: An Italian Start-Up Case Study. Systems 2023, 11, 265. https://doi.org/10.3390/systems11060265
Rapa M, Ciano S, Orsini F, Tullo MG, Giannetti V, Boccacci Mariani M. Adoption of AI-Based Technologies in the Food Supplement Industry: An Italian Start-Up Case Study. Systems. 2023; 11(6):265. https://doi.org/10.3390/systems11060265
Chicago/Turabian StyleRapa, Mattia, Salvatore Ciano, Francesca Orsini, Maria Giulia Tullo, Vanessa Giannetti, and Maurizio Boccacci Mariani. 2023. "Adoption of AI-Based Technologies in the Food Supplement Industry: An Italian Start-Up Case Study" Systems 11, no. 6: 265. https://doi.org/10.3390/systems11060265
APA StyleRapa, M., Ciano, S., Orsini, F., Tullo, M. G., Giannetti, V., & Boccacci Mariani, M. (2023). Adoption of AI-Based Technologies in the Food Supplement Industry: An Italian Start-Up Case Study. Systems, 11(6), 265. https://doi.org/10.3390/systems11060265