Media News and Social Media Information in the Chinese Peer-to-Peer Lending Market
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. The Effect of Media News
2.2. The Effect of Social Media Information
2.3. The Investors’ Behavior
3. Sentiment Analysis
4. Methods
5. Results and Discussion
5.1. PSM Results-Default Probability
5.2. PSM Results—Cost of Capital
5.3. PSM Results—Investors’ Behavior
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | Media news is the news published by traditional media or mass media, such as the Wall Street Journal or China Daily. |
2 | Social media information is the news or information published by social media or new media, such as Twitter, Facebook, and Weibo. |
3 | Default probability: this is a dummy variable with a value of 1 if the platform defaults and 0 otherwise. |
4 | Propensity Score Matching (PSM) is a statistical method used to process data. Through data modeling, PSM fits probabilities for each user (multi-dimensional characteristics fit into one-dimensional probability) and searches for the closest sample from the control group and the experimental group for comparison. |
5 | Investors will only invest in securities they know about. If a company is known by more investors, it will reduce information asymmetry [36]. |
6 | Herding behavior occurs when a group of investors intentionally follows the actions or reactions of other investors whom they consider to be better informed, instead of following their own beliefs and using their own information when they make the decisions [49]. |
7 | The naive Bayes method is a classification method based on the Bayes theorem and independent hypotheses of feature conditions. The naive Bayesian algorithm is widely used in text recognition, text classification, and image recognition. It can classify an unknown text or image according to its existing classification rules and finally achieve the purpose of classification. |
8 | We also use the BP (back propagation) model, which is a widely used neural network, to run the robustness check. All the results are similar. The results are available if asked. |
9 | The 0.33 and 0.66 are set in Python and Snownlp, based on the previous paper [29], the values 0.33 and 0.66 should be used when we code the sentiment analysis. |
10 | The CC (cost of capital) here also represents the return from an investors’ perspective. |
References
- Cahan, F.S.; Chen, C.; Chen, L.; Nguyen, H.N. Corporate Social Responsibility and Media Coverage. J. Bank. Financ. 2015, 59, 409–422. [Google Scholar] [CrossRef]
- Fang, L.; Peress, J. Media Coverage and the Cross-section of Stock Returns. J. Financ. 2009, 64, 2023–2052. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. In Search of Attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Barber, B.M.; Loeffler, D. The ‘‘Dartboard’’ Column: Second-hand Information and Price Pressure. J. Financ. Quant. Anal. 1993, 28, 273–284. [Google Scholar] [CrossRef]
- Albert, R.L., Jr.; Smaby, T.R. Market Response to Analyst Recommendations in the ‘‘Dartboard’’ Column: The Information and Price-pressure Effects. Rev. Financ. Econ. 1996, 5, 59–74. [Google Scholar] [CrossRef]
- Tetlock, P.C.; Tsechshansky, M.S.; Macskassy, S. More Than Words: Quantifying Language to Measure Firm’ Fundamentals. J. Financ. 2008, 63, 1437–1467. [Google Scholar] [CrossRef]
- Wang, J.; Ye, K. Media Coverage and Firm Valuation: Evidence from China. J. Bus. Ethics 2015, 127, 510–511. [Google Scholar] [CrossRef]
- Tumarkin, R.; Whitelaw, R.F. News or Noise? Internet Postings and Stock Prices. Financ. Anal. J. 2001, 57, 41. [Google Scholar] [CrossRef] [Green Version]
- Dewally, M. Internet Investment Advice: Investing with a Rock of Salt. Financ. Anal. J. 2003, 59, 65–77. [Google Scholar] [CrossRef]
- Antweiler, W.; Frank, M.Z. Is All that Talk Just Noise? The Information Content of Internet Stock Message Boards. J. Financ. 2004, 59, 1259–1294. [Google Scholar] [CrossRef]
- Das, S.R.; Chen, M.Y. Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web. Manag. Sci. 2007, 53, 1375–1388. [Google Scholar] [CrossRef] [Green Version]
- Bollen, J.; Mao, H.; Zeng, X. Twitter Mood Predicts the Stock Market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ge, R.; Feng, J.; Gu, B.; Zhang, P. Predicting and Deterring Default with Social Media Information in Peer-to-Peer Lending. J. Manag. Inf. Syst. 2017, 34, 401–424. [Google Scholar] [CrossRef]
- Luo, J.S.; Li, C.A. Futures Market Sentiment and Institutional Investor Behavior in the Spot Market: The Emerging Market in Taiwan. Emerg. Mark. Financ. Trade 2008, 44, 70–86. [Google Scholar] [CrossRef]
- Gao, B.; Yang, C. Investor Trading Behavior and Sentiment in Futures Markets. Emerg. Mark. Financ. Trade 2018, 54, 707–720. [Google Scholar] [CrossRef]
- Kim, K.; Ryu, D. Does Sentiment Determine Investor Trading Behavior? Appl. Econ. Lett. 2021, 28, 811–816. [Google Scholar] [CrossRef]
- Jiang, Y.; Ho, Y.C.; Yan, X.; Tan, Y. Investor Platform Choice: Herding, Platform Attributes, and Regulations. J. Manag. Inf. Syst. 2018, 35, 86–116. [Google Scholar] [CrossRef]
- Chiang, M.T.; Lin, M.C. Market Sentiment and Herding in Analysts’ Stock Recommendations. North American J. Econ. Financ. 2019, 48, 48–64. [Google Scholar] [CrossRef]
- Berkovich, E. Search and Herding Effects in Peer-to-peer Lending: Evidence from Prosper.com. Ann. Financ. 2011, 7, 389–405. [Google Scholar] [CrossRef]
- Herzenstein, M.; Sonenshein, S.; Dholakia, M.U. Tell Me a Good Story and I May Lend You Money: The Role of Narratives in Peer-to-peer Lending Decisions. J. Mark. Res. 2011, 48, S138–S149. [Google Scholar] [CrossRef] [Green Version]
- Michels, J. Do Unverifiable Disclosure Matter? Evidence from Peer-to-peer Lending. Account. Rev. 2012, 87, 1385–1413. [Google Scholar] [CrossRef]
- Duarte, J.; Siegel, S.; Young, L. Trust and Credit: The Role of Appearance in Peer-to-peer Lending. Rev. Financ. Stud. 2012, 25, 2455–2484. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, J.; Liu, Y. Financial Literacy and Gender Difference in Loan Performance. J. Empir. Financ. 2018, 48, 307–320. [Google Scholar] [CrossRef]
- Lin, M.; Prabhala, P.N.; Viswanathan, S. Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-peer Lending. Manag. Sci. 2018, 59, 17–35. [Google Scholar] [CrossRef]
- Mai, F.; Shan, Z.; Bai, Q.; Wang, X.; Chiang, R.H. How Does Social Media Impact Bitcoin Value? A Test of the Silent Majority Hypothesis. J. Manag. Inf. Syst. 2018, 35, 19–52. [Google Scholar] [CrossRef]
- Xu, J.J.; Chau, M. Cheap talk? The Impact of Lender-Borrower Communication on Peer-to-peer Lending Outcomes. J. Manag. Inf. Syst. 2018, 35, 53–85. [Google Scholar] [CrossRef]
- Joseph, N.; Kar, A.K.; Ilavarasan, P.V.; Ganesh, S. Review of Discussions on Internet of Things (IoT): Insights from Twitter Analytics. J. Glob Inf. Manag. 2017, 25, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.J.; Smith, S.D. Stock Price Reactions to Recommendations in the Wall Street Journal ‘‘Small Stock Focus’’ Column. Q. Rev. Econ. Financ. 1999, 39, 379–389. [Google Scholar] [CrossRef]
- Kerl, A.G.; Walter, A. Market Responses to Buy Recommendations Issued by Personal Finance Magazines: Effects of Information, Price-pressure, and Company Characteristics. Rev. Financ. 2007, 11, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Engelberg, J.E.; Parsons, C.A. The Causal Impact of Media in Financial Markets. J. Financ. 2011, 66, 67–97. [Google Scholar] [CrossRef]
- Dougal, C.; Engelberg, J.; García, D.; Parsons, C.A. Journalists and the Stock Market. Rev. Financ. Stud. 2012, 25, 639–679. [Google Scholar] [CrossRef]
- Peress, J. The Media and the Diffusion of Information in Financial Markets: Evidence from Newspaper Strikes. J. Financ. 2014, 69, 2007–2043. [Google Scholar] [CrossRef]
- Ozik, G.; Sadka, R. Media Coverage and Hedge Fund Returns. Financ. Anal. J. 2013, 69, 57–75. [Google Scholar] [CrossRef]
- Nofsinger, J.R. Social Mood and Financial Economics. J. Behav. Financ. 2005, 6, 144–160. [Google Scholar] [CrossRef]
- Sul, H.K.; Dennis, A.R.; Yuan, L. Trading on Twitter: Using Social Media Sentiment to Predict Stock Returns. J. Decis. Sci. Inst. 2016, 48, 454–488. [Google Scholar] [CrossRef]
- Hudson, Y.; Yan, M.; Zhang, D. Herd Behavior & Investor Sentiment: Evidence from UK Mutual Funds. Int. Rev. Financ. Anal. 2020, 71, 101494. [Google Scholar] [CrossRef]
- Agmon, T.; Donald, R.L. Investor recognition of corporate international diversification. J. Financ. 1977, 32, 1049–1055. [Google Scholar] [CrossRef]
- Merton, R.C. A Simple Model of Capital Market Equilibrium with Incomplete Information. J. Financ. 1987, 42, 483–510. Available online: https://dspace.mit.edu/bitstream/handle/1721.1/2166/SWP-1869-18148074.pdf (accessed on 26 February 2023). [CrossRef]
- Foerster, S.R.; Karolyi, G.A. The Effects of Market Segmentation and Investor Recognition on Asset Prices: Evidence from Foreign Stocks Listing in the United States. J. Financ. 2002, 54, 981–1013. [Google Scholar] [CrossRef]
- Bodnaruk, A.; Ostberg, P. Does Investor Recognition Predict Returns? J. Financ. Econ. 2009, 91, 208–226. [Google Scholar] [CrossRef]
- Green, T.C.; Jame, R. Company Name Fluency, Investor Recognition, and Firm Value. J. Financ. Econ 2013, 109, 813–834. [Google Scholar] [CrossRef]
- Jacobs, H.; Hillert, A.; Bias, A. Investor Recognition, and Trading Behavior. Rev. Financ. 2016, 20, 693–723. [Google Scholar] [CrossRef]
- Sias, R.W. Institutional Herding. Rev. Financ. Stud. 2004, 17, 165–206. [Google Scholar] [CrossRef]
- Blasco, N.; Ferreruela, S. Testing Intentional Herding in Familiar Stocks: An Experiment in an International Context. J. Behav. Financ. 2008, 9, 72–84. [Google Scholar] [CrossRef]
- Chen, T. Investor Attention and Global Stock Returns. J. Behav. Financ. 2017, 18, 358–382. [Google Scholar] [CrossRef]
- Chong, T.; Liu, X.; Zhu, C. What Explains Herd Behavior in the Chinese Stock Market? J. Behav. Financ. 2017, 18, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, J.; Shi, C. Research on Credit Evaluation Model of Online Store Based on SnowNLP. In Proceedings of the 3rd International Conference on Advances in Energy and Environment Research (ICAEER), Guilin, China, 10–12 August 2018; Volume 53. [Google Scholar] [CrossRef]
- Zhao, Z.S.; Jin, X.S.; Wen, T.T.; Liang, J.H. News Comment Data Analysis Based on Python-Snownlp. Public Commun. Sci. Technol. 2018, 10, 104–105. Available online: https://www.cnki.com.cn/Article/CJFDTotal-KJCB201818057.htm (accessed on 26 February 2023).
- Piotroski, D.J.; Wong, J.T.; Zhang, T. Political Bias in Corporate News: The Role of Conglomeration Reform in China. J. Law Econ. 2017, 60, 173–207. [Google Scholar] [CrossRef]
- Carlos, S.C.; Begoña, G.N.; Luz, L.P. Determinants of Default in P2P Lending. PLoS ONE 2015, 10, e0139427. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Si, Z.; Chen, X. Information Disclosure and the Default Risk of Online Peer-to-peer Lending Platform. Financ. Res. Lett. 2020, 38, 101509. [Google Scholar] [CrossRef]
- Fledstein, M.; Eckstein, O. The Fundamental Determinants of the Interest Rate. Rev. Econ. Stat. 1970, 52, 363–375. [Google Scholar] [CrossRef]
- Engle, R.F.; Ng, V.K. Measuring and Testing the Impact of News on Volatility. J. Financ. 1993, 48, 1749–1778. [Google Scholar] [CrossRef]
- Braun, P.A.; Nelson, D.B.; Sunier, A.M. Good News, Bad News, Volatility, and Betas. J. Financ. 1995, 50, 1575–1603. [Google Scholar] [CrossRef]
- Malik, F. Estimating the Impact of Good News on Stock Market Volatility. Appl. Financ. Econ. 2011, 21, 545–554. [Google Scholar] [CrossRef]
- Bae, K.H.; Karolyi, G.A. Good News, Bad News and International Spillovers of Stock Return Volatility between Japan and the US. Pac. -Basin Financ. J. 1994, 2, 405–438. [Google Scholar] [CrossRef]
- Depken, G.A. Good news, Bad News and GARCH Effects in Stock Return Data. J. Appl. Econ. 2011, 4, 313–327. [Google Scholar] [CrossRef] [Green Version]
DEFAULT | (1-1) | (1-2) | (1-3) | (1-4) |
---|---|---|---|---|
PSM-DM | −0.0215 *** | 0.0049 | ||
(0.0080) | (0.0093) | |||
PSM-DS | −0.0478 ** | −0.0337 | ||
(0.0189) | (0.0217) | |||
CC | 0.182 *** | 0.167 *** | 0.127 *** | 0.193 *** |
(0.0141) | (0.0175) | (0.0266) | (0.0323) | |
CR | 0.0367 *** | 0.0465 *** | 0.0179 *** | 0.0037 |
(0.0044) | (0.0075) | (0.0062) | (0.0095) | |
ALT | −0.148 *** | −0.138 *** | −0.0927 *** | −0.0990 *** |
(0.0123) | (0.0181) | (0.0238) | (0.0261) | |
NCI | 0.0003 | −0.0013 | −0.0028 | −0.0035 * |
(0.0012) | (0.0017) | (0.0020) | (0.0021) | |
T | YES | YES | YES | YES |
B | YES | YES | YES | YES |
L | YES | YES | YES | YES |
Constant | −4.8052 *** | −3.3804 *** | −3.1227 *** | −2.1745 *** |
(0.6750) | (0.3824) | (0.4986) | (0.6130) | |
Observations | 4331 | 2433 | 1251 | 1061 |
No. Platforms | 970 | 541 | 252 | 231 |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Pseudo R2 | 0.0436 | 0.0363 | 0.0444 | 0.0617 |
Observations | 4275 | 2328 | 3576 | 1653 |
No. Platforms | 970 | 553 | 969 | 464 |
CC | (2-1) | (2-2) | (2-3) | (2-4) |
---|---|---|---|---|
PSM-RM | −0.0335 ** | 0.0174 | ||
(0.0136) | (0.0127) | |||
PSM-RS | −0.0482 *** | −0.0179 | ||
(0.0145) | (0.0231) | |||
RF | 9.211 *** | 1.746 *** | 9.416 *** | 2.065 *** |
(0.641) | (0.236) | (0.663) | (0.453) | |
CR | −0.0589 *** | −0.0617 *** | −0.0615 *** | −0.0815 *** |
(0.0053) | (0.0055) | (0.0055) | (0.0094) | |
ALT | 0.570 *** | 0.899 *** | 0.568 *** | 0.640 *** |
(0.0104) | (0.0071) | (0.0108) | (0.0139) | |
NCI | −0.0026 ** | −0.0019 ** | −0.0023 * | −0.0029 * |
(0.0011) | (0.0009) | (0.0012) | (0.0017) | |
T | YES | YES | YES | YES |
B | YES | YES | YES | YES |
L | YES | YES | YES | YES |
Constant | −8.320 *** | −8.311 *** | −8.489 *** | −8.467 *** |
(0.749) | (0.747) | (0.770) | (0.766) | |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
R-squared | 0.4315 | 0.6688 | 0.4401 | 0.4752 |
Observations | 4275 | 2328 | 3576 | 1653 |
No. Platforms | 970 | 553 | 969 | 464 |
IN | (3-1) | (3-2) | (3-3) | (3-4) |
---|---|---|---|---|
PSM-IM | 0.192 *** | 0.0783 | ||
(0.0426) | (0.0611) | |||
PSM-IS | 0.216 *** | 0.0686 | ||
(0.0493) | (0.0736) | |||
CC | 1.488 *** | 1.436 *** | 1.519 *** | 1.450 *** |
(0.0480) | (0.0694) | (0.0539) | (0.0834) | |
CR | 0.691 *** | 0.549 *** | 0.709 *** | 0.462 *** |
(0.0165) | (0.0214) | (0.0176) | (0.0236) | |
ALT | −0.00489 | 0.240 *** | −0.0457 | 0.436 *** |
(0.0438) | (0.0612) | (0.0481) | (0.0713) | |
NCI | 0.0331 *** | 0.0268 *** | 0.0309 *** | 0.0368 *** |
(0.0037) | (0.0051) | (0.0042) | (0.0059) | |
T | YES | YES | YES | YES |
B | YES | YES | YES | YES |
L | YES | YES | YES | YES |
Constant | −5.398 *** | −2.957 *** | −5.548 *** | −2.942 ** |
(0.614) | (1.045) | (0.635) | (1.189) | |
Prob > chi2 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
R-squared | 0.7460 | 0.7691 | 0.7320 | 0.7648 |
Observations | 4275 | 2328 | 3576 | 1653 |
No. Platforms | 970 | 553 | 969 | 464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, J.; Ji, X.; Cheng, P.; Kallinterakis, V.B. Media News and Social Media Information in the Chinese Peer-to-Peer Lending Market. Systems 2023, 11, 133. https://doi.org/10.3390/systems11030133
Kuang J, Ji X, Cheng P, Kallinterakis VB. Media News and Social Media Information in the Chinese Peer-to-Peer Lending Market. Systems. 2023; 11(3):133. https://doi.org/10.3390/systems11030133
Chicago/Turabian StyleKuang, Jiaqi, Xudong Ji, Peng Cheng, and Vasileios Bill Kallinterakis. 2023. "Media News and Social Media Information in the Chinese Peer-to-Peer Lending Market" Systems 11, no. 3: 133. https://doi.org/10.3390/systems11030133
APA StyleKuang, J., Ji, X., Cheng, P., & Kallinterakis, V. B. (2023). Media News and Social Media Information in the Chinese Peer-to-Peer Lending Market. Systems, 11(3), 133. https://doi.org/10.3390/systems11030133