Evolution Analysis of Green Innovation in Small and Medium-Sized Manufacturing Enterprises
Abstract
:1. Introduction
- What are the end states of green innovation in SMMEs? Which states are the ones SMMEs expect, and which states are the ones SMMEs want to avoid? Under what conditions can SMMEs encounter green innovation at a given end state?
- How green innovation in SMMEs evolves from an unexpected state to an expected state?
- What SMMEs and regulatory subjects should do to better propel green innovation?
2. Literature Review
2.1. Green Innovation
2.2. SMME-Specific Challenges for Green Innovation
2.3. Current Methods to Propel Green Innovation in SMMEs
2.4. Complex Systems Theory
3. Evolution Model of Green Innovation in SMMEs
3.1. Model Assumptions
3.2. Model Establishment
3.3. Model Analysis
3.3.1. Analysis of Evolutionary Stability
3.3.2. Analysis of Evolutionary Paths
4. Simulations
4.1. Evolutionary Stability of Green Innovation
4.2. Evolutionary Paths of Green Innovation
5. Findings and Discussion
5.1. Findings
5.2. Discussion
6. Contributions and Managerial Implications
7. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Melander, L.; Arvidsson, A. Green innovation networks: A research agenda. J. Clean. Prod. 2022, 357, 131926. [Google Scholar] [CrossRef]
- Li, S.; Lin, Z.; Liang, D. Threshold effect of two-way FDI synergy on regional green technology innovation under heterogeneous environmental regulation: Evidence from China’s provincial panel data. Systems 2022, 10, 230. [Google Scholar] [CrossRef]
- He, F.; Miao, X.; Wong, C.W.Y.; Lee, S. Contemporary corporate eco-innovation research: A systematic review. J. Clean. Prod. 2018, 174, 502–526. [Google Scholar] [CrossRef]
- Yuan, B.; Cao, X. Do corporate social responsibility practices contribute to green innovation? The mediating role of green dynamic capability. Technol. Soc. 2022, 68, 101868. [Google Scholar] [CrossRef]
- Gupta, H.; Barua, M.K. A grey DEMATEL-based approach for modeling enablers of green innovation in manufacturing organizations. Environ. Sci. Pollut. Res. 2018, 25, 9556–9578. [Google Scholar] [CrossRef]
- Cuc, S.; Gîrneață, A.; Iordănescu, M.; Irinel, M. Environmental and socioeconomic sustainability through textile recycling. Ind. Text. 2015, 66, 156–163. [Google Scholar]
- Lavuri, R. Organic green purchasing: Moderation of environmental protection emotion and price sensitivity. J. Clean. Prod. 2022, 368, 133113. [Google Scholar] [CrossRef]
- Li, M.; Tian, Z.; Liu, Q.; Lu, Y. Literature review and research prospect on the drivers and effects of green innovation. Sustainability 2022, 14, 9858. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, L. Eco-innovation: Conception, hierarchy and research progress. Acta Ecol. Sin. 2010, 30, 2465–2474. [Google Scholar]
- Dima, A. The Importance of innovation in entrepreneurship for economic growth and development. A bibliometric analysis. Rev. Int. Comp. Manag. 2021, 22, 120–131. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Sun, W. Does the agglomeration of urban producer services promote carbon efficiency of manufacturing industry? Land Use Policy 2022, 120, 106264. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, Y.; Miao, J. Eco-innovation in SMEs: A scientometric review. Environ. Sci. Pollut. Res. 2022, 29, 48105–48125. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.M.; Redmond, J.; Simpson, M. A review of interventions to encourage SMEs to make environmental improvements. Environ. Plan. C Politics Space 2009, 27, 279–301. [Google Scholar] [CrossRef]
- Chien, F.; Kamran, H.W.; Nawaz, M.A.; Thach, N.N.; Long, P.D.; Baloch, Z.A. Assessing the prioritization of barriers toward green innovation: Small and medium enterprises Nexus. Environ. Dev. Sustain. 2022, 24, 1897–1927. [Google Scholar] [CrossRef]
- Zhu, J.; Dou, Z.; Yan, X.; Yu, L.; Lu, Y. Exploring the influencing factors of carbon neutralization in Chinese manufacturing enterprises. Environ. Sci. Pollut. Res. 2022, 30, 2918–2944. [Google Scholar] [CrossRef] [PubMed]
- Pylaeva, I.S.; Podshivalova, M.V.; Alola, A.A.; Podshivalov, D.V.; Demin, A.A. A new approach to identifying high-tech manufacturing SMEs with sustainable technological development: Empirical evidence. J. Clean. Prod. 2022, 363, 132322. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, X.; Tang, M.; Lan, H. Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China. J. Clean. Prod. 2021, 283, 124649. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Cheng, Z.; Zhong, C.; Ma, W. Evolution and equilibrium of a green technological innovation system: Simulation of a tripartite game model. J. Clean. Prod. 2021, 278, 123944. [Google Scholar] [CrossRef]
- Wu, W.; Sheng, L.; Tang, F.; Zhang, A.; Liu, J. A system dynamics model of green innovation and policy simulation with an application in Chinese manufacturing industry. Sustain. Prod. Consum. 2021, 28, 987–1005. [Google Scholar] [CrossRef]
- El Baz, J.; Evangelista, P.; Iddik, S.; Jebli, F.; Derrouiche, R.; Akenroye, T. Assessing green innovation in supply chains: A systematic review based on causal mechanisms framework. Int. J. Logist. Manag. 2022, 22, 1114–1145. [Google Scholar] [CrossRef]
- Hermundsdottir, F.; Aspelund, A. Sustainability innovations and firm competitiveness: A review. J. Clean. Prod. 2021, 280, 124715. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M. What drives eco-innovation? A review of an emerging literature. Environ. Innov. Soc. Transit. 2016, 19, 31–41. [Google Scholar] [CrossRef]
- Díaz-García, C.; González-Moreno, Á.; Sáez-Martínez, F.J. Eco-innovation: Insights from a literature review. Innovation 2015, 17, 6–23. [Google Scholar] [CrossRef]
- Afeltra, G.; Alerasoul, S.A.; Strozzi, F. The evolution of sustainable innovation: From the past to the future. Eur. J. Innov. Manag. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management—An exploratory literature review. RD Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lai, S.B.; Wen, C.T. The influence of green innovation performance on corporate advantage in Taiwan. J. Bus. Ethics 2006, 67, 331–339. [Google Scholar] [CrossRef]
- Padilla-Lozano, C.P.; Collazzo, P. Corporate social responsibility, green innovation and competitiveness—Causality in manufacturing. Compet. Rev. 2022, 32, 21–39. [Google Scholar] [CrossRef]
- Oduro, S.; Maccario, G.; De Nisco, A. Green innovation: A multidomain systematic review. Eur. J. Innov. Manag. 2022, 25, 567–591. [Google Scholar] [CrossRef]
- Pereira, R.M.; MacLennan, M.L.F.; Tiago, E.F. Interorganizational cooperation and eco-innovation: A literature review. Int. J. Innov. Sci. 2020, 12, 477–493. [Google Scholar] [CrossRef]
- Chen, Y.S. The driver of green innovation and green image—Green core competence. J. Bus. Ethics 2008, 81, 531–543. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y. Analyzing the green innovation practices based on sustainability performance indicators: A Chinese manufacturing industry case. Environ. Sci. Pollut. Res. 2021, 28, 1181–1203. [Google Scholar] [CrossRef]
- Naruetharadhol, P.; Srisathan, W.A.; Gebsombut, N.; Ketkaew, C. Towards the open eco-innovation mode: A model of open innovation and green management practices. Cogent Bus. Manag. 2021, 8, 1945425. [Google Scholar] [CrossRef]
- Hellström, T. Dimensions of environmentally sustainable innovation: The structure of eco-innovation concepts. Sustain. Dev. 2007, 15, 148–159. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Mirbargkar, S.M. Green entrepreneurship and green innovation for SME development in market turbulence. Eurasian Bus. Rev. 2017, 7, 203–228. [Google Scholar] [CrossRef]
- Rathi, R.; Kaswan, M.S.; Antony, J.; Cross, J.; Garza-Reyes, J.A.; Furterer, S.L. Success factors for the adoption of green lean six sigma in healthcare facility: An ISM-MICMAC study. Int. J. Lean Six Sigma 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Kaswan, M.S.; Rathi, R.; Cross, J.; Garza-Reyes, J.A.; Antony, J.; Yadav, V. Integrating green lean six sigma and industry 4.0: A conceptual framework. J. Manuf. Technol. Manag. 2023, 34, 87–121. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chen, A.P.S.; Do, M.H.; Chung, J.C. Assessing the barriers of green innovation implementation: Evidence from the Vietnamese manufacturing sector. Sustainability 2022, 14, 4662. [Google Scholar] [CrossRef]
- Fahad, S.; Alnori, F.; Su, F.; Deng, J. Adoption of green innovation practices in SMEs sector: Evidence from an emerging economy. Econ. Res. Ekon. Istraživanja 2022, 35, 5486–5501. [Google Scholar] [CrossRef]
- Gupta, H.; Barua, M.K. A framework to overcome barriers to green innovation in SMEs using BWM and Fuzzy TOPSIS. Sci. Total Environ. 2018, 633, 122–139. [Google Scholar] [CrossRef] [PubMed]
- Dugonski, F.C.V.; Tumelero, C. Barriers and facilitators of technological eco-innovations: A multilevel analysis in a Brazilian cosmetics company. Innov. Manag. Rev. 2022, 19, 237–251. [Google Scholar] [CrossRef]
- Cecere, G.; Corrocher, N.; Mancusi, M.L. Financial constraints and public funding of eco-innovation: Empirical evidence from European SMEs. Small Bus. Econ. 2020, 54, 285–302. [Google Scholar] [CrossRef]
- Gohoungodji, P.; N’Dri, A.B.; Latulippe, J.M.; Matos, A.L.B. What is stopping the automotive industry from going green? A systematic review of barriers to green innovation in the automotive industry. J. Clean. Prod. 2020, 277, 123524. [Google Scholar] [CrossRef]
- Wang, D.; Si, R.; Fahad, S. Evaluating the small and medium sized enterprises motivating factors and influencing barriers about adoption of green practices. Environ. Dev. Sustain. 2022, 1–13. [Google Scholar] [CrossRef]
- Jun, W.; Ali, W.; Bhutto, M.Y.; Hussain, H.; Khan, N.A. Examining the determinants of green innovation adoption in SMEs: A PLS-SEM approach. Eur. J. Innov. Manag. 2021, 24, 67–87. [Google Scholar] [CrossRef]
- Abdullah, M.; Zailani, S.; Iranmanesh, M.; Jayaraman, K. Barriers to green innovation initiatives among manufacturers: The Malaysian case. Rev. Manag. Sci. 2016, 10, 683–709. [Google Scholar] [CrossRef]
- Zhu, Y.; Wittmann, X.; Peng, M.W. Institution-based barriers to innovation in SMEs in China. Asia Pac. J. Manag. 2012, 29, 1131–1142. [Google Scholar] [CrossRef]
- Ansari, Z.N.; Kant, R. A plithogenic based neutrosophic analytic hierarchy process framework to analyse the barriers hindering adoption of eco-innovation practices in supply chain. Int. J. Sustain. Eng. 2021, 14, 1509–1524. [Google Scholar] [CrossRef]
- Musaad O, A.S.; Zhuo, Z.; Musaad O, A.O.; Ali Siyal, Z.; Hashmi, H.; Shah, S.A.A. A fuzzy multi-criteria analysis of barriers and policy strategies for small and medium enterprises to adopt green innovation. Symmetry 2020, 12, 116. [Google Scholar] [CrossRef]
- De Jesus, A.; Mendonça, S. Lost in transition? Drivers and barriers in the eco-innovation road to the circular economy. Ecol. Econ. 2018, 145, 75–89. [Google Scholar] [CrossRef]
- Govindan, K.; Kaliyan, M.; Kannan, D.; Haq, A.N. Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. Int. J. Prod. Econ. 2014, 147, 555–568. [Google Scholar] [CrossRef]
- Horváth, D.; Szabó, R.Z. Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technol. Forecast. Soc. Change 2019, 146, 119–132. [Google Scholar] [CrossRef]
- Jinzhou, W. Discussion on the relationship between green technological innovation and system innovation. Energy Procedia 2011, 5, 2352–2357. [Google Scholar] [CrossRef] [Green Version]
- Mangla, S.K.; Govindan, K.; Luthra, S. Prioritizing the barriers to achieve sustainable consumption and production trends in supply chains using fuzzy Analytical Hierarchy Process. J. Clean. Prod. 2017, 151, 509–525. [Google Scholar] [CrossRef]
- Naor, M.; Bernardes, E.S.; Druehl, C.T.; Shiftan, Y. Overcoming barriers to adoption of environmentally-friendly innovations through design and strategy: Learning from the failure of an electric vehicle infrastructure firm. Int. J. Oper. Prod. Manag. 2015, 35, 26–59. [Google Scholar] [CrossRef]
- Gupta, H.; Kusi-Sarpong, S.; Rezaei, J. Barriers and overcoming strategies to supply chain sustainability innovation. Resour. Conserv. Recycl. 2020, 161, 104819. [Google Scholar] [CrossRef]
- Xavier, A.; Reyes, T.; Aoussat, A.; Luiz, L.; Souza, L. Eco-innovation maturity model: A framework to support the evolution of eco-innovation integration in companies. Sustainability 2020, 12, 3773. [Google Scholar] [CrossRef]
- Janahi, N.A.; Durugbo, C.M.; Al-Jayyousi, O.R. Eco-innovation strategy in manufacturing: A systematic review. Clean. Eng. Technol. 2021, 5, 100343. [Google Scholar] [CrossRef]
- Melander, L. Customer and supplier collaboration in green product innovation: External and internal capabilities. Bus. Strategy Environ. 2018, 27, 677–693. [Google Scholar] [CrossRef]
- Qu, K.; Liu, Z. Green innovations, supply chain integration and green information system: A model of moderation. J. Clean. Prod. 2022, 339, 130557. [Google Scholar] [CrossRef]
- Yu, C.; Morotomi, T. Impacts of green public procurement on eco-innovation: Evidence from EU countries. Glob. Public Policy Gov. 2022, 2, 154–174. [Google Scholar] [CrossRef]
- Fan, R.; Wang, Y.; Chen, F.; Du, K.; Wang, Y. How do government policies affect the diffusion of green innovation among peer enterprises?—An evolutionary-game model in complex networks. J. Clean. Prod. 2022, 364, 132711. [Google Scholar] [CrossRef]
- Roh, T.; Lee, K.; Yang, J.Y. How do intellectual property rights and government support drive a firm’s green innovation? The mediating role of open innovation. J. Clean. Prod. 2021, 317, 128422. [Google Scholar] [CrossRef]
- Benbya, H.; McKelvey, B. Using coevolutionary and complexity theories to improve IS alignment: A multi-level approach. J. Inf. Technol. 2006, 21, 284–298. [Google Scholar] [CrossRef]
- Canessa, E.; Riolo, R.L. An agent-based model of the impact of computer–mediated communication on organizational culture and performance: An example of the application of complex systems analysis tools to the study of CIS. J. Inf. Technol. 2006, 2, 272–283. [Google Scholar] [CrossRef]
- McCarthy, I.P.; Rakotobe-Joel, T.; Frizelle, G. Complex systems theory: Implications and promises for manufacturing organisations. Int. J. Manuf. Technol. Manag. 2000, 2, 559–579. [Google Scholar] [CrossRef]
- Niu, P.; Zhu, J.; Sun, Y. Dynamic modeling and chaos control of informatization development in manufacturing enterprises. Entropy 2021, 23, 681. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W.; Li, Y.; Sun, Y. Exploring robustness management for dynamic technology fusion. Nonlinear Dyn. 2020, 102, 2969–3011. [Google Scholar] [CrossRef]
- Pal, N.; Samanta, S.; Chattopadhyay, J. The impact of diffusive migration on ecosystem stability. Chaos Solitons Fractals 2015, 78, 317–328. [Google Scholar] [CrossRef]
- Çalış, Y.; Demirci, A.; Özemir, C. Hopf bifurcation of a financial dynamical system with delay. Math. Comput. Simul. 2022, 201, 343–361. [Google Scholar] [CrossRef]
- Xu, X.; Lee, S.D.; Kim, H.S.; You, S.S. Management and optimisation of chaotic supply chain system using adaptive sliding mode control algorithm. Int. J. Prod. Res. 2021, 59, 2571–2587. [Google Scholar] [CrossRef]
- Bertsimas, D.; King, A. Logistic regression: From art to science. Stat. Sci. 2017, 32, 367–384. [Google Scholar] [CrossRef]
- Tariq, A.; Badir, Y.F.; Tariq, W.; Bhutta, U.S. Drivers and consequences of green product and process innovation: A systematic review, conceptual framework, and future outlook. Technol. Soc. 2017, 51, 8–23. [Google Scholar] [CrossRef]
- Sandén, B.A.; Hillman, K.M. A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden. Res. Policy 2011, 40, 403–414. [Google Scholar] [CrossRef]
- Mazzanti, M.; Zoboli, R. Embedding environmental innovation in local production systems: SME strategies, networking and industrial relations: Evidence on innovation drivers in industrial districts. Int. Rev. Appl. Econ. 2009, 23, 169–195. [Google Scholar] [CrossRef]
- Loučanová, E.; Olšiaková, M. Supporting ecological innovation as a factor for economic development. Stud. Univ. Vasile Goldiş Arad Ser. Ştiinţe Econ. 2019, 29, 80–91. [Google Scholar] [CrossRef] [Green Version]
Interactions | γi (i = 1, 2) | Description |
---|---|---|
Neutralism | γ1 = 0, γ2 = 0 | Green product innovation and green process innovation do not affect each other |
Competition | γ1 < 0, γ2 < 0 | Green product innovation and green process innovation inhibit each other |
Amensalism | γ1 < 0, γ2 = 0 | Green product innovation is inhibited, and green process innovation is unaffected |
γ1 = 0, γ2 < 0 | Green product innovation is unaffected, and green process innovation is inhibited | |
Parasitism | γ1 > 0, γ2 < 0 | Green product innovation is benefited, and green process innovation is inhibited |
γ1 < 0, γ2 > 0 | Green product innovation is inhibited, and green process innovation is benefited | |
Commensalism | γ1 > 0, γ2 = 0 | Green product innovation is benefited, and green process innovation is unaffected |
γ1 = 0, γ2 > 0 | Green product innovation is unaffected, and green process innovation is benefited | |
Mutualism | γ1 > 0, γ2 > 0 | γ1 ≠ γ2, Green product innovation and green process innovation are not equally benefited |
γ1 = γ2, Green product innovation and green process innovation are equally benefited |
Ei (i = 1, 2, 3, 4) | det J/tr J | Stable Conditions | Symbiotic Interactions | |
---|---|---|---|---|
E1 | α1α2/α1 + α2 | α1 < 0, α2 < 0 | All | |
E2 | α1 | All | ||
E3 | α2 | All | ||
E4 | γ1γ2 < β1β2 | α1 > 0, α2 < 0, , | Mutualism Commensalism Parasitism | |
α1 < 0, α2 > 0, , | ||||
α1 > 0, α2 > 0, , | All |
Original Points | Middle Points | Final Points | Parameters Values before and after Transitions (10−2) | |||||
---|---|---|---|---|---|---|---|---|
α1 | α2 | β1 | β2 | γ1 | γ2 | |||
E1 | None | E4 with α1 > 0 and α2 < 0 | −2/1 | −1 | 1 | 3 | −2/−0.6 | 6 |
E4 with α1 < 0 and α2 > 0 | −1.4 | −1.4/1.4 | 5 | 2 | 3/4 | 0 | ||
E4 with α1 > 0 and α2 > 0 | −2/2 | −1/1 | 2.5 | 1.5 | 0.5 | 0.5 | ||
E1 | E2 | E4 with α1 > 0 and α2 < 0 | −1/1/1 | −1 | 1 | 3 | 1/1/−0.5 | 4/−5/4 |
E4 with α1 < 0 and α2 > 0 | −1.4/1.4/−1.4 | −1.4/−1.4/1.4 | 5 | 2 | 0.5/0.5/5 | 0/4/0.1 | ||
E4 with α1 > 0 and α2 > 0 | −2/2/2 | −1/−1/1 | 2.5 | 1.5 | 0.5 | 0/−1/0 | ||
E3 | None | E4 with α1 > 0 and α2 < 0 | 1 | 1/−1 | 1 | 3 | −6/−1 | 4 |
E4 with α1 < 0 and α2 > 0 | −1.4 | 1.4 | 5 | 2 | 1/3 | −1 | ||
E4 with α1 > 0 and α2 > 0 | 2 | 1 | 2.5 | 1.5 | −3.5/0.5 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Zhu, J.; Shi, J. Evolution Analysis of Green Innovation in Small and Medium-Sized Manufacturing Enterprises. Systems 2023, 11, 95. https://doi.org/10.3390/systems11020095
Song Z, Zhu J, Shi J. Evolution Analysis of Green Innovation in Small and Medium-Sized Manufacturing Enterprises. Systems. 2023; 11(2):95. https://doi.org/10.3390/systems11020095
Chicago/Turabian StyleSong, Zhiting, Jianhua Zhu, and Jianfeng Shi. 2023. "Evolution Analysis of Green Innovation in Small and Medium-Sized Manufacturing Enterprises" Systems 11, no. 2: 95. https://doi.org/10.3390/systems11020095
APA StyleSong, Z., Zhu, J., & Shi, J. (2023). Evolution Analysis of Green Innovation in Small and Medium-Sized Manufacturing Enterprises. Systems, 11(2), 95. https://doi.org/10.3390/systems11020095