Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications
Abstract
:1. Introduction
1.1. Study Motivation
- ▪
- Identified Energy Issue: This study highlights a clear problem in effectively addressing complex issues related to IoT systems’ reliable and scalable energy usage.
- ▪
- Maximize Energy Efficiency: The main motivation of this study is how to increase the operational lifetime of IoUT networks by improving the CH selection to reduce energy consumption.
- ▪
- Enhancing Network Stability: Study the impact of AI algorithms in reducing the effects of changes in environmental factors of the Internet of Underwater Things (IoUT), changes in node characteristics, and difficulties of underwater ecosystems.
- ▪
- Improve Reliable Communication: Develop an intelligent CH selection process to transmit data efficiently and reduce communication failures using cutting-edge methods, including SI algorithms and Q-learning optimization.
1.2. The Contributions
- ▪
- Customized for IoUT Challenges: Develop proposed swarm techniques specifically to handle the complexity of IoUT networks, such as variable node depths, varying energy levels, and fluctuating distances from base stations, to provide efficient energy consumption by dynamically adjusting the CH selection.
- ▪
- Advanced CH Election Strategies: Present innovative techniques for CH selection to handle the unique issues provided by the environments of the IoUT by examining the integration of SI algorithms such as ABC, ACO, GA, and PSO with a Q-learning approach.
- ▪
- Improved Energy Efficiency: Establish a more equitable distribution of energy consumption among nodes, hence increasing the network’s operational lifespan, by utilizing the ABC algorithm improved by the Q-learning approach.
- ▪
- Adaptability to Changing Conditions: Provide an intelligent scheme to adjust the CH selection process in response to changes in underwater node attributes by integrating ABC and machine learning approaches.
2. Background and Related Works
3. Heterogeneous IoUT Clustering Approach Model
4. Energy Efficiency Based on SI Methods
4.1. Generic Algorithm (GA)
4.2. Particle Swarm Optimization (PSO)
4.3. Ant Colony Optimization (ACO)
4.4. Artificial Bee Colony (ABC)
4.5. Exploration and Exploitation Balancing in SI Methods
5. Modelling and Problem Formulation
- ▪
- The precise position data of surface sea stations and underwater nodes are accessible.
- ▪
- The initial energy levels of UNs are heterogeneous and constant, but there are no energy restrictions on sink nodes. Each node can store locally updated records of recent communications.
- ▪
- Underwater nodes within the cluster only send data to their corresponding CH, passing the packets to the surface sea station.
5.1. Energy Efficient Heterogeneous CH Selection Process
- ▪
- Residual Energy: This element promotes CH choice for nodes with more residual energy. The payout increases with a node’s leftover energy level. A function is used to calculate it.
- ▪
- Signal Quality: This characteristic promotes CH selection of better signal-quality nodes. The reward increases with a node’s signal quality.
- ▪
- Motion: CH selection for nodes with minimal motion is encouraged by this factor. The payout increases when a node’s speed decreases (signifying less motion).
- ▪
- Depth: This element promotes the use of CHs for nodes located at shallower depths. The payout increases as a node’s depth decreases.
5.2. Q-Learning for CH Selection Optimization
6. The Methodology and Proposed Solution
Algorithm 1 Evaluated Fitness Function |
|
Algorithm 2 Q-learning Optimization based Dynamic CH Selection |
|
7. Simulation Scenario and Parameters
8. Evaluation Results and Discussion
- ▪
- Evaluation of the experiment of GA, ABC, PSO, and ACO swarm intelligence methods on the CH selection process.
- ▪
- Evaluation of the performance of improved ABC by Q-learning for CH selection optimization.
- ▪
- Analysis of the proposed algorithm performance in case of increasing the number of underwater nodes.
8.1. Performance of Swarm Algorithms
8.2. Performance of Improved ABC-QL Algorithm
8.2.1. Numerical and General Case Evaluation
8.2.2. Evaluation Based on Underwater Node Density
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamalika, B.; Debashis, D. IoUT: Modelling and simulation of Edge-Drone-based Software-Defined smart Internet of Underwater Things. Simul. Model. Pract. Theory 2021, 109, 102304. [Google Scholar]
- Nayyar, A.; Ba, C.H.; Cong Duc, N.P.; Binh, H.D. Smart-IoUT 1.0: A Smart Aquatic Monitoring Network Based on Internet of Underwater Things (IoUT). In Proceedings of the International Conference on Industrial Networks and Intelligent Systems, Ho Chi Minh, Vietnam, 19 August 2019; Volume 257, pp. 1–16. [Google Scholar]
- Kim, H.; Cho, H.-S. SOUNET: Self-Organized Underwater Wireless Sensor Network. Sensors 2017, 17, 283. [Google Scholar] [CrossRef] [PubMed]
- Felemban, E.; Shaikh, F.K.; Qureshi, U.M.; Sheikh, A.A.; Qaisar, S.B. Underwater Sensor Network Applications: A Comprehensive Survey. Int. J. Distrib. Sens. Netw. 2015, 2015, 1–14. [Google Scholar]
- Khan, M.F.; Bibi, M.; Aadil, F.; Lee, J.W. Adaptive Node Clustering for Underwater Sensor Networks. Sensors 2021, 21, 4514. [Google Scholar]
- Gola, K.K.; Arya, S. Underwater acoustic sensor networks: Taxonomy on applications, architectures, localization methods, deployment techniques, routing techniques, and threats: A systematic review. Concurr. Comput. Pract. Exper. 2023, 35, e7815. [Google Scholar]
- Khalifa, O.O.; Roubleh, A.; Esgiar, A.; Abdelhaq, M.; Alsaqour, R.; Abdalla, A.; Ali, E.S.; Saeed, R. An IoT-Platform-Based Deep Learning System for Human Behavior Recognition in Smart City Monitoring Using the Berkeley MHAD Datasets. Systems 2022, 10, 177. [Google Scholar] [CrossRef]
- Shah, S.; Zhaoyun, S.; Khalid, Z.; Altaf, H.; Inam, U.; Yazeed, Y.G.; Muhammad, A.K.; Rashid, N. Advancements in Neighboring-Based Energy-Efficient Routing Protocol (NBEER) for Underwater Wireless Sensor Networks. Sensors 2023, 23, 6025. [Google Scholar]
- Xing, G.; Chen, Y.; Hou, R.; Dong, M.; Zeng, D.; Luo, J.; Ma, M. Game-Theory-Based Clustering Scheme for Energy Balancing in Underwater Acoustic Sensor Networks. IEEE Internet Things J. 2021, 8, 9005–9013. [Google Scholar] [CrossRef]
- Sandeep, D.N.; Kumar, V. Review on Clustering, Coverage and Connectivity in Underwater Wireless Sensor Networks: A Communication Techniques Perspective. IEEE Access 2017, 5, 11176–11199. [Google Scholar]
- Ghoreyshi, S.M.; Shahrabi, A.; Boutaleb, T.; Khalily, M. Mobile Data Gathering with Hop-Constrained Clustering in Underwater Sensor Networks. IEEE Access 2019, 7, 21118–21132. [Google Scholar] [CrossRef]
- Jahanbakht, M.; Xiang, W.; Hanzo, L.; Azghadi, M.R. Internet of Underwater Things and Big Marine Data Analytics—A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2021, 23, 904–956. [Google Scholar]
- Figueiredo, E.; Macedo, M.; Siqueira, H.V.; Santana, C.J.; Gokhale, A.; Bastos-Filho, C.J.A. Swarm intelligence for clustering—A systematic review with new perspectives on data mining. Eng. Appl. Artif. Intell. 2019, 82, 313–329. [Google Scholar]
- Elmustafa, S.A.; Rashid, A.S.; Ibrahim, K.E.; Othman, O.K. A systematic review on energy efficiency in the internet of underwater things (IoUT): Recent approaches and research gaps. J. Netw. Comput. Appl. 2023, 213, 103594. [Google Scholar]
- Islam, K.Y.; Ahmad, I.; Habibi, D.; Waqar, A. A survey on energy efficiency in underwater wireless communications. J. Netw. Comput. Appl. 2022, 198, 103295. [Google Scholar]
- Awan, K.M.; Shah, P.A.; Iqbal, K.; Gillani, S.; Ahmad, W.; Nam, Y. Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wirel. Commun. Mob. Comput. 2019, 2019, 6470359. [Google Scholar] [CrossRef]
- Wei, X.; Guo, H.; Wang, X.; Wang, X.; Qiu, M. Reliable Data Collection Techniques in Underwater Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 404–431. [Google Scholar]
- Kamal, K.G.; Manish, D.; Bhumika, G.; Rahul, R. An empirical study on underwater acoustic sensor networks based on localization and routing approaches. Adv. Eng. Softw. 2023, 175, 103319. [Google Scholar]
- Feng, P.; Qin, D.; Ji, P.; Zhao, M.; Guo, R.; Berhane, T.M. Improved energy-balanced algorithm for underwater wireless sensor network based on depth threshold and energy level partition. J. Wirel. Commun. Netw. 2019, 2019, 228. [Google Scholar]
- Mohan, P.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Ulaganathan, S. Improved Metaheuristics-Based Clustering with Multihop Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 1618. [Google Scholar]
- Fattah, S.; Gani, A.; Ahmedy, I.; Idris, M.Y.I.; Hashem, I.A.T. A Survey on Underwater Wireless Sensor Networks: Requirements, Taxonomy, Recent Advances, and Open Research Challenges. Sensors 2020, 20, 5393. [Google Scholar] [CrossRef]
- Elmustafa, S.; Rashid, A. Chapter 6: Intelligent Underwater Wireless Communications. In Intelligent Wireless Communications; IET: London, UK, 2021; pp. 271–305. [Google Scholar]
- Sathish, K.; Cv, R.; Ab Wahab, M.N.; Anbazhagan, R.; Pau, G.; Akbar, M.F. Underwater Wireless Sensor Networks Performance Comparison Utilizing Telnet and Superframe. Sensors 2023, 23, 4844. [Google Scholar] [CrossRef]
- Ahmed, G.; Zhao, X.; Fareed, M.M.S. A Hybrid Energy Equating Game for Energy Management in the Internet of Underwater Things. Sensors 2019, 19, 2351. [Google Scholar] [CrossRef]
- Hou, R.; Fu, J.; Dong, M.; Ota, K.; Zeng, D. An Unequal Clustering Method Based on Particle Swarm Optimization in Underwater Acoustic Sensor Networks. IEEE Internet Things J. 2022, 9, 25027–25036. [Google Scholar] [CrossRef]
- Khan, Z.A.; Karim, O.A.; Abbas, S.; Javaid, N.; Zikria, Y.B.; Tariq, U. Q-learning based energy-efficient and void avoidance routing protocol for underwater acoustic sensor networks. Comput. Netw. 2021, 197, 108309. [Google Scholar] [CrossRef]
- Li, L.; Qiu, Y.; Xu, J. A K-Means Clustered Routing Algorithm with Location and Energy Awareness for Underwater Wireless Sensor Networks. Photonics 2022, 9, 282. [Google Scholar] [CrossRef]
- Gupta, S.; Singh, N.P. Energy hole mitigation through optimized cluster head selection and strategic routing in Internet of Underwater Things. Int. J. Commun. Syst. 2022, 35, e5283. [Google Scholar] [CrossRef]
- Subramani, N.; Prakash, M.; Youseef, A.; Saleh, A.; Osamah, I.K. An Efficient Metaheuristic-Based Clustering with Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 415. [Google Scholar] [CrossRef]
- Keshav Kumar Tiwari, K.; Singh, S. Energy-optimized cluster head selection based on enhanced remora optimization algorithm in underwater wireless sensor network. Int. J. Commun. Syst. 2023, 36, e5560. [Google Scholar] [CrossRef]
- Salil, B.; Sharma, S.; Alsharabi, N.; Eldin, E.T.; Ghamry, N.A. Energy-efficient clustering protocol for underwater wireless sensor networks using optimized glowworm swarm optimization. Front. Mar. Sci. 2023, 10, 1117787. [Google Scholar]
- Ullah, S.; Saleem, A.; Hassan, N.; Muhammad, G.; Shin, J.; Minhas, Q.-A.; Khan, M.K. Reliable and Delay Aware Routing Protocol for Underwater Wireless Sensor Networks. IEEE Access 2023, 11, 116932–116943. [Google Scholar] [CrossRef]
- Khan, Z.U.; Gang, Q.; Muhammad, A.; Muzzammil, M.; Khan, S.U.; El Affendi, M.; Ali, G.; Ullah, I.; Khan, J. A Comprehensive Survey of Energy-Efficient MAC and Routing Protocols for Underwater Wireless Sensor Networks. Electronics 2022, 11, 3015. [Google Scholar] [CrossRef]
- Almazrouei, K.; Kamel, I.; Rabie, T. Dynamic Obstacle Avoidance and Path Planning through Reinforcement Learning. Appl. Sci. 2023, 13, 8174. [Google Scholar] [CrossRef]
- Natesan, S.; Krishnan, R. FLCEER: Fuzzy Logic Cluster-Based Energy Efficient Routing Protocol for Underwater Acoustic Sensor Network. Int. J. Inf. Technol. Web Eng. IJITWE 2020, 15, 76–101. [Google Scholar] [CrossRef]
- Alsaqour, R.; Ali, E.S.; Mokhtar, R.A.; Saeed, R.A.; Alhumyani, H.; Abdelhaq, M. Efficient Energy Mechanism in Heterogeneous WSNs for Underground Mining Monitoring Applications. IEEE Access 2022, 10, 72907–72924. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Wang, B.; Sun, W.; Du, H.; Zhao, Y. Energy-Efficient Data Transmission for Underwater Wireless Sensor Networks: A Novel Hierarchical Underwater Wireless Sensor Transmission Framework. Sensors 2023, 23, 5759. [Google Scholar] [CrossRef]
- Ahmad, I.; Rahman, T.; Zeb, A.; Khan, I.; Othman, M.T.B.; Hamam, H. Cooperative Energy-Efficient Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 6945. [Google Scholar] [CrossRef]
- Qawqzeh, Y.; Alharbi, M.T.; Jaradat, A.; Abdul Sattar, K.N. A review of swarm intelligence algorithms deployment for scheduling and optimization in cloud computing environments. PeerJ Comput. Sci. 2021, 7, e696. [Google Scholar] [CrossRef]
- Xiao, X.; Huang, H.; Wang, W. Underwater Wireless Sensor Networks: An Energy-Efficient Clustering Routing Protocol Based on Data Fusion and Genetic Algorithms. Appl. Sci. 2021, 11, 312. [Google Scholar] [CrossRef]
- Sajwan, M.; Bhatt, S.; Arora, K.; Singh, S. GAER-UWSN: Genetic Algorithm-Based Energy-Efficient Routing Protocols in Underwater Wireless Sensor Networks. In Data Analytics and Management; Lecture Notes in Networks and Systems; Khanna, A., Polkowski, Z., Castillo, O., Eds.; Springer: Singapore, 2023; Volume 572. [Google Scholar]
- Lilhore, U.K.; Khalaf, O.I.; Simaiya, S.; Romero, C.A.T.; Abdulsahib, G.M.; M, P.; Kumar, D. A depth-controlled and energy-efficient routing protocol for underwater wireless sensor networks. Int. J. Distrib. Sens. Netw. 2022, 18, 1–16. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Naveen, J.; Alphonse, P.J.A.; Dhasarathan, C.; Sambasivam, G. Energy-Aware Multilevel Clustering Scheme for Underwater Wireless Sensor Networks. IEEE Access 2022, 10, 55868–55875. [Google Scholar] [CrossRef]
- Jalal, R.D.; Aliesawi, S.A. Enhancing TEEN Protocol using the Particle Swarm Optimization and BAT Algorithms in Underwater Wireless Sensor Network. In Proceedings of the 15th International Conference on Developments in eSystems Engineering (DeSE), Baghdad, Iraq, 9–12 January 2023; pp. 504–510. [Google Scholar]
- Gadal, S.; Mokhtar, R.; Abdelhaq, M.; Alsaqour, R.; Ali, E.S.; Saeed, R. Machine Learning-Based Anomaly Detection Using K-mean Array and Sequential Minimal Optimization. Electronics 2022, 11, 2158. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, J.; Jiang, S.; Chen, W. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms. Sensors 2016, 16, 212. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Huang, H. A Clustering Routing Algorithm Based on Improved Ant Colony Optimization Algorithms for Underwater Wireless Sensor Networks. Algorithms 2020, 13, 250. [Google Scholar] [CrossRef]
- Maheshwari, P.; Sharma, A.K.; Verma, K. Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Netw. 2021, 110, 102317. [Google Scholar] [CrossRef]
- Aadil, F.; Bajwa, K.B.; Khan, S.; Chaudary, N.M.; Akram, A. CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET. PLoS ONE 2016, 11, e0154080. [Google Scholar] [CrossRef] [PubMed]
- Zehra, S.S.; Qureshi, R.; Dev, K.; Shahid, S.; Bhatti, N.A. Comparative Analysis of Bio-Inspired Algorithms for Underwater Wireless Sensor Networks. Wirel. Pers. Commun. 2021, 116, 1311–1323. [Google Scholar] [CrossRef]
- Kim, D.; Wang, W.; Ding, L.; Lim, J.; Oh, H.; Wu, W. Minimum average routing path clustering problem in multi-hop 2-D underwater sensor networks. Optim. Lett. 2020, 4, 383–392. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, P.; Lei, G.; Chen, P.; Yang, G. Energy-Efficient Multiple Autonomous Underwater Vehicle Path Planning Scheme in Underwater Sensor Networks. Electronics 2023, 12, 3321. [Google Scholar] [CrossRef]
- Ghorpade, S.N.; Zennaro, M.; Chaudhari, B.S.; Saeed, R.A.; Alhumyani, H.; Abdel-Khalek, S. Enhanced Differential Crossover and Quantum Particle Swarm Optimization for IoT Applications. IEEE Access 2021, 9, 93831–93846. [Google Scholar] [CrossRef]
- Sun, W.; Tang, M.; Zhang, L.; Huo, Z.; Shu, L. A Survey of Using Swarm Intelligence Algorithms in IoT. Sensors 2020, 20, 1420. [Google Scholar] [CrossRef]
- Nain, M.; Goyal, N.; Awasthi, L.K.; Malik, A. A range based node localization scheme with hybrid optimization for underwater wireless sensor network. Int. J. Commun. Syst. 2022, 35, e5147. [Google Scholar] [CrossRef]
- Sivakumar, V.; Kanagachidambaresan, G.R.; Dhilip kumar, V.; Arif, M.; Jackson, C.; Arulkumaran, G. Energy-Efficient Markov-Based Lifetime Enhancement Approach for Underwater Acoustic Sensor Network. J. Sens. 2022, 2022, 3578002. [Google Scholar] [CrossRef]
- Faheem, M.; Ngadi, M.A.; Gungor, V.C. Energy efficient multi-objective evolutionary routing scheme for reliable data gathering in Internet of underwater acoustic sensor networks. Ad Hoc Netw. 2019, 93, 101912. [Google Scholar] [CrossRef]
- Mukhtar, A.M.; Saeed, R.A.; Mokhtar, R.A.; Ali, E.S.; Alhumyani, H. Performance Evaluation of Downlink Coordinated Multipoint Joint Transmission under Heavy IoT Traffic Load. Wirel. Commun. Mob. Comput. 2022, 2022, 6837780. [Google Scholar] [CrossRef]
- Saeed, M.M.; Saeed, R.A.; Abdelhaq, M.; Alsaqour, R.; Hasan, M.K.; Mokhtar, R.A. Anomaly Detection in 6G Networks Using Machine Learning Methods. Electronics 2023, 12, 3300. [Google Scholar] [CrossRef]
- Touafek, N.; Tayeb, F.B.-S.; Ladj, A. A Reinforcing-Learning-Driven Artificial Bee Colony Algorithm for Scheduling Jobs and Flexible Maintenance under Learning and Deteriorating Effects. Algorithms 2023, 16, 397. [Google Scholar] [CrossRef]
- Fairee, S.; Prom-On, S.; Sirinaovakul, B. Reinforcement learning for solution updating in Artificial Bee Colony. PLoS ONE 2018, 13, e0200738. [Google Scholar] [CrossRef]
- Lu, Y.; He, R.; Chen, X.; Lin, B.; Yu, C. Energy-Efficient Depth-Based Opportunistic Routing with Q-Learning for Underwater Wireless Sensor Networks. Sensors 2020, 20, 1025. [Google Scholar] [CrossRef]
- Chang, H.; Feng, J.; Duan, C. Reinforcement Learning-Based Data Forwarding in Underwater Wireless Sensor Networks with Passive Mobility. Sensors 2019, 19, 256. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, M.; Han, X.; Li, S.; Yin, J. Adaptive clustering routing protocol for underwater sensor networks. Ad Hoc Netw. 2022, 136, 102953. [Google Scholar] [CrossRef]
- Vijay, M.M.; Sunil, J.; Vincy, V.G.A.G.; IjazKhan, M.; Abdullaev, S.S.; Eldin, S.M.; Govindan, V.; Ahmad, H.; Askar, S. Underwater wireless sensor network-based multihop data transmission using hybrid cat cheetah optimization algorithm. Sci. Rep. 2023, 13, 10810. [Google Scholar] [CrossRef] [PubMed]
Citation | Algorithm/Scheme | Contributions | Shortcomings (Challenges) |
---|---|---|---|
Saleem et al. [32] | DRAR and Co-DRAR | Improve reliability with energy consumption reduction | Overhead during operations; does not consider a depth effect factor |
Salil et al. [31] | glowworm swarm optimization | Efficient selecting CH and clustering generation | After selecting CHs, it does not take into account the dynamic change of underwater nodes’ position (depth) |
Keshav et al. [30] | remora optimization algorithm | CH selection-based energy efficiency maximization | Some CHs consume higher levels of energy |
Subramani et al. [29] | grasshopper optimization (MHR-GOA) technique | Elect an efficient set of cluster heads (CHs) and route them to the destination | Clustering is not so much optimal |
Gupta et al. [28] | Tunicate Swarm and Moth Flame Optimization | Avoid energy holes in IoUT multi-hop communication by improving the routing and CHs selection mechanisms | No node distance and depth are considered for the fitness function |
Luyao et al. [27] | K-means Algorithm | Efficiently select the CHs based on their distance from the base station | Not Suitable for the dynamic underwater environment |
Zahoor et al. [26] | Q-learning | Balancing the data gathering for energy-efficient mechanisms to solve the High energy consumption related to void hole and mobility issues | Depends only on node residual energy |
Hou et al. [25] | optimized PSO | Cluster size adjustment and CH optimization | Depends only on energy and distance factors |
Gulnaz et al. [24] | clustering approach based on game theory and Nash equilibrium | Improve the cluster head management and relay node selection for heterogeneous IoUT | Complex process |
Network Parameters | Values |
---|---|
Simulation Area | 1000 × 1000 m |
Underwater Nodes (General Scenario) | 80 |
Underwater Nodes (Density Scenario) | 50, 100, 150, 200, 250 |
Area dimensions | 2D |
Surface Base Station | 1 |
Max Depth | 50 m |
Tx and Rx Energies | 50 nJ/bits |
Initial Energy Scaling Factor | 1.2 J |
CH energy dissipation | 1.5 J |
Non-CH Energy Dissipation | 0.8 J |
Propagation Loss dissipation | 0.2 J |
Distance Between UNs | 50 m |
Packet Size | 1024 bits |
Acoustic Frequency Band | 200 KHz |
CH based Q-learning States | 4 stats (residual energy, depth, motion, signal quality) |
Q- Learning Rate (alpha) | 0.5 |
Q- Discount Factor (gamma) | 0.9 |
Q- Exploration Factor (epsilon) | 0.1 |
ABC Population Size | 50 |
ABC Cycles (limits) | 5 |
Energy Calculations States | residual energy and distance-based |
Max Iterations | 1000 |
Iterations | Scheme | Mean Fitness Value | Std | Min Fitness Value | Best Selected CH | CH Selection Ratio (%) |
---|---|---|---|---|---|---|
200 | ABC | 0.82 | 0.07 | 0.64 | 9 | 21 |
ACO | 0.48 | 0.31 | 0.02 | 14 | 35 | |
PSO | 0.92 | 0.05 | 0.74 | 5 | 14 | |
GA | 0.63 | 0.14 | 0.44 | 11 | 20 | |
400 | ABC | 0.82 | 0.07 | 0.65 | 11 | 23 |
ACO | 0.49 | 0.31 | 0.02 | 16 | 40 | |
PSO | 0.92 | 0.06 | 0.73 | 5 | 14 | |
GA | 0.61 | 0.61 | 0.41 | 15 | 39 | |
600 | ABC | 0.81 | 0.08 | 0.64 | 6 | 18 |
ACO | 0.51 | 0.30 | 0.02 | 19 | 49 | |
PSO | 0.94 | 0.05 | 0.78 | 8 | 19 | |
GA | 0.68 | 0.14 | 0.50 | 18 | 43 | |
800 | ABC | 0.86 | 0.06 | 0.69 | 10 | 22 |
ACO | 0.48 | 0.29 | 0.02 | 22 | 53 | |
PSO | 0.94 | 0.06 | 0.75 | 5 | 15 | |
GA | 0.65 | 0.14 | 0.5 | 15 | 28 | |
1000 | ABC | 0.79 | 0.08 | 0.43 | 8 | 20 |
ACO | 0.49 | 0.28 | 0.06 | 12 | 24 | |
PSO | 0.91 | 0.05 | 0.74 | 6 | 15 | |
GA | 0.65 | 0.14 | 0.47 | 23 | 44 |
Algorithms | Min Fitness Value | Best Selection Cost | Mean Fitness Value | Std | Best Selected CH | Number of Dead UNs | CH Selection Ratio (%) |
---|---|---|---|---|---|---|---|
With 200 iterations | |||||||
ABC | 0.03 | 34 | 0.53 | 0.29 | 14 | 46 | 34 |
Improved ABC-QL | 0.05 | 35 | 0.52 | 0.27 | 15 | 34 | 36 |
With 400 iterations | |||||||
ABC | 0.03 | 35 | 0.54 | 0.29 | 14 | 45 | 35 |
Improved ABC-QL | 0.03 | 33 | 0.53 | 0.29 | 14 | 36 | 35 |
With 600 iterations | |||||||
ABC | 0.03 | 36 | 0.50 | 0.28 | 15 | 44 | 36 |
Improved ABC-QL | 0.03 | 36 | 0.53 | 0.30 | 13 | 37 | 33 |
With 800 iterations | |||||||
ABC | 0.03 | 35 | 0.53 | 0.26 | 14 | 45 | 34 |
Improved ABC-QL | 0.03 | 35 | 0.55 | 0.30 | 11 | 31 | 31 |
With 1000 iterations | |||||||
ABC | 0.03 | 37 | 0.48 | 0.29 | 15 | 43 | 36 |
Improved ABC-QL | 0.05 | 35 | 0.49 | 0.30 | 12 | 33 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed Ali, E.; Saeed, R.A.; Eltahir, I.K.; Abdelhaq, M.; Alsaqour, R.; Mokhtar, R.A. Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications. Systems 2023, 11, 529. https://doi.org/10.3390/systems11110529
Sayed Ali E, Saeed RA, Eltahir IK, Abdelhaq M, Alsaqour R, Mokhtar RA. Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications. Systems. 2023; 11(11):529. https://doi.org/10.3390/systems11110529
Chicago/Turabian StyleSayed Ali, Elmustafa, Rashid A. Saeed, Ibrahim Khider Eltahir, Maha Abdelhaq, Raed Alsaqour, and Rania A. Mokhtar. 2023. "Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications" Systems 11, no. 11: 529. https://doi.org/10.3390/systems11110529
APA StyleSayed Ali, E., Saeed, R. A., Eltahir, I. K., Abdelhaq, M., Alsaqour, R., & Mokhtar, R. A. (2023). Energy Efficient CH Selection Scheme Based on ABC and Q-Learning Approaches for IoUT Applications. Systems, 11(11), 529. https://doi.org/10.3390/systems11110529