Advancements in the Practical Applications of Agents, Multi-Agent Systems and Simulating Complex Systems
- Introduction
- An Overview of Published Articles
- Conclusions
- List of Contributions
- Guzmán Rincón, A.; Carrillo Barbosa, R.L.; Segovia-García, N.; Africano Franco, D.R. Disinformation in Social Networks and Bots: Simulated Scenarios of Its Spread from System Dynamics. Systems 2022, 10, 34.
- Ye, Y.; Zhang, R.; Zhao, Y.; Yu, Y.; Du, W.; Chen, T. A Novel Public Opinion Polarization Model Based on BA Network. Systems 2022, 10, 46.
- Koponen, I.T. Agent-Based Modeling of Consensus Group Formation with Complex Webs of Beliefs. Systems 2022, 10, 212.
- Zhao, A.; Wang, J.; Sun, Z.; Guan, H. Research on the Evolutionary Path of Eco-Conservation and High-Quality Development in the Yellow River Basin Based on an Agent-Based Model. Systems 2022, 10, 105.
- Bae, J.W.; Moon, I.-C. Practical Formalism-Based Approaches for Multi-Resolution Modeling and Simulation. Systems 2022, 10, 174.
- Wang, Z.; Yang, T. Multi-Category Innovation and Encroachment Strategy Evolution of Composite E-Commerce Platform Based on Multi-Agent Simulation. Systems 2022, 10, 215.
- Castañón-Puga, M.; Rosales-Cisneros, R.F.; Acosta-Prado, J.C.; Tirado-Ramos, A.; Khatchikian, C.; Aburto-Camacllanqui, E. Earned Value Management Agent-Based Simulation Model. Systems 2023, 11, 86.
- Karalakou, A.; Troullinos, D.; Chalkiadakis, G.; Papageorgiou, M. Deep Reinforcement Learning Reward Function Design for Autonomous Driving in Lane-Free Traffic. Systems 2023, 11, 134.
- Spanoudakis, N.I.; Akasiadis, C.; Iatrakis, G.; Chalkiadakis, G. Engineering IoT-Based Open MAS for Large-Scale V2G/G2V. Systems 2023, 11, 157.
- Gómez Vilchez, J.J.; Pasqualino, R. The Hidden Side of Electro-Mobility: Modelling Agents’ Financial Statements and Their Interactions with a European Focus. Systems 2023, 11, 132.
- Bremer, J.; Lehnhoff, S. Enhancing Local Decisions in Agent-Based Cartesian Genetic Programming by CMA-ES. Systems 2023, 11, 177.
- Atrazhev, P.; Musilek, P. It’s All about Reward: Contrasting Joint Rewards and Individual Reward in Centralized Learning Decentralized Execution Algorithms. Systems 2023, 11, 180.
- Pincheira, M.; Donini, E.; Vecchio, M.; Giaffreda, R. An Infrastructure Cost and Benefits Evaluation Framework for Blockchain-Based Applications. Systems 2023, 11, 184.
- Esmaeili, A.; Ghorrati, Z.; Matson, E.T. Agent-Based Collaborative Random Search for Hyperparameter Tuning and Global Function Optimization. Systems 2023, 11, 228.
- Roussel, S.; Picard, G.; Pralet, C.; Maqrot, S. Conflicting Bundle Allocation with Preferences in Weighted Directed Acyclic Graphs: Application to Orbit Slot Allocation Problems. Systems 2023, 11, 297.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guessoum, Z. Adaptive agents and multiagent systems. IEEE Distrib. Syst. Online 2004, 5. [Google Scholar] [CrossRef]
- Wood, M.F.; DeLoach, S.A. An overview of the multiagent systems engineering methodology. In Proceedings of the International Workshop on Agent-Oriented Software Engineering, Limerick, Ireland, 10 June 2000; pp. 207–221. [Google Scholar]
- Boes, J.; Migeon, F. Self-organizing multi-agent systems for the control of complex systems. J. Syst. Softw. 2017, 134, 12–28. [Google Scholar] [CrossRef]
- Wiener, N. Cybernetics. Sci. Am. 1948, 179, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Panait, L.; Luke, S. Cooperative multi-agent learning: The state of the art. Auton. Agents Multi-Agent Syst. 2005, 11, 387–434. [Google Scholar] [CrossRef]
- Wooldridge, M.; Jennings, N.R.; Kinny, D. The Gaia methodology for agent-oriented analysis and design. Auton. Agents Multi-Agent Syst. 2000, 3, 285–312. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Ulicny, B.; Thalmann, D. Towards interactive real-time crowd behavior simulation. In Computer Graphics Forum; Blackwell Publishing, Inc.: Saarbrücken, Germany, 2002; pp. 767–775. [Google Scholar]
- Hamidi, H.; Kamankesh, A. An approach to intelligent traffic management system using a multi-agent system. Int. J. Intell. Transp. Syst. Res. 2018, 16, 112–124. [Google Scholar] [CrossRef]
- Roche, B.; Guégan, J.-F.; Bousquet, F. Multi-agent systems in epidemiology: A first step for computational biology in the study of vector-borne disease transmission. BMC Bioinform. 2008, 9, 1–9. [Google Scholar] [CrossRef]
- Janssen, M. Complexity and Ecosystem Management: The Theory and Practice of Multi-Agent Systems; Edward Elgar Publishing: Cheltenham, UK, 2002. [Google Scholar]
- Oroojlooy, A.; Hajinezhad, D. A review of cooperative multi-agent deep reinforcement learning. Appl. Intell. 2023, 53, 13677–13722. [Google Scholar] [CrossRef]
- Canese, L.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Spanò, S. Multi-agent reinforcement learning: A review of challenges and applications. Appl. Sci. 2021, 11, 4948. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Richardson, A. Explainability in human–agent systems. Auton. Agents Multi-Agent Syst. 2019, 33, 673–705. [Google Scholar] [CrossRef]
- Dignum, F.; Mathieu, P.; Corchado, J.M.; De la Prieta, F. Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. In The PAAMS Collection: 20th International Conference, PAAMS 2022, L'Aquila, Italy, 13–15 July 2022, Proceedings; Springer Nature: Berlin/Heidelberg, Germany, 2022; Volume 13616. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathieu, P.; Corchado, J.M.; González-Briones, A.; De la Prieta, F. Advancements in the Practical Applications of Agents, Multi-Agent Systems and Simulating Complex Systems. Systems 2023, 11, 525. https://doi.org/10.3390/systems11100525
Mathieu P, Corchado JM, González-Briones A, De la Prieta F. Advancements in the Practical Applications of Agents, Multi-Agent Systems and Simulating Complex Systems. Systems. 2023; 11(10):525. https://doi.org/10.3390/systems11100525
Chicago/Turabian StyleMathieu, Philippe, Juan Manuel Corchado, Alfonso González-Briones, and Fernando De la Prieta. 2023. "Advancements in the Practical Applications of Agents, Multi-Agent Systems and Simulating Complex Systems" Systems 11, no. 10: 525. https://doi.org/10.3390/systems11100525
APA StyleMathieu, P., Corchado, J. M., González-Briones, A., & De la Prieta, F. (2023). Advancements in the Practical Applications of Agents, Multi-Agent Systems and Simulating Complex Systems. Systems, 11(10), 525. https://doi.org/10.3390/systems11100525