Deep Learning-Based Community Detection Approach on Bitcoin Network †
Abstract
:1. Introduction
1.1. Contribution
1.2. Structure of the Paper
2. Bitcoin & Blockchain Background
3. Proposed Methodology
3.1. Deep Learning Model Preliminary
3.2. Model Description
3.3. Topology Dynamicity Analysis
4. Experiment & Results
4.1. Data Collection
4.2. Description of the Experiment
4.3. Modularity Results
4.4. Community Structure Analysis Result
4.5. Bitcoin Network Properties
5. Discussion
5.1. Performance Improvement
5.2. Analysis of Security Vulnerabilities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Judmayer, A.; Stifter, N.; Schindler, P.; Weippl, E. Blockchain: Basics. In Business Transformation through Blockchain; Palgrave Macmillan: London, UK, 2019; pp. 339–355. [Google Scholar] [CrossRef]
- Kasper, M.; Schindler, W.; Stöttinger, M. A stochastic method for security evaluation of cryptographic FPGA implementations. In Proceedings of the 2010 International Conference on Field-Programmable Technology, Beijing, China, 8–10 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 146–153. [Google Scholar] [CrossRef]
- Grym, A. The great illusion of digital currencies, BoF Economics Review, No. 1/2018. 2018. Available online: http://hdl.handle.net/10419/212992 (accessed on 11 January 2022).
- Michael, J.; Cohn, A.L.A.N.; Butcher, J.R. Blockchain technology. Journal 2018, 1, 7. [Google Scholar] [CrossRef]
- Capece, G.; Ghiron, N.L.; Pasquale, F. Blockchain Technology: Redefining Trust for Digital Certificates. Sustainability 2020, 12, 18952. [Google Scholar] [CrossRef]
- Karrer, B.; Newman, M.E. Stochastic blockmodels and community structure in networks. Phys. Rev. E 2011, 83, 016107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Leskovec, J. Overlapping community detection at scale: A nonnegative matrix factorisation approach. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, Roma, Italy, 4–8 February 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 587–596. [Google Scholar]
- Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; Zhang, W. Modularity Based Community Detection with Deep Learning. IJCAI 2016, 16, 2252–2258. [Google Scholar]
- Jusko, J.; Rehak, M. Identifying peer-to-peer communities in the network by connection graph analysis. Int. J. Netw. Manag. 2014, 24, 235–252. [Google Scholar] [CrossRef]
- Bhih, A.; Johnson, P.; Randles, M. Decentralized iterative approaches for community clustering in the networks. J. Supercomput. 2019, 75, 4894–4917. [Google Scholar] [CrossRef]
- Ding, S.; Yue, Z.; Yang, S.; Niu, F.; Zhang, Y. A novel trust model based overlapping community detection algorithm for social networks. IEEE Trans. Knowl. Data Eng. 2019, 32, 2101–2114. [Google Scholar] [CrossRef]
- Bonifazi, G.; Cecchini, S.; Corradini, E.; Giuliani, L.; Ursino, D.; Virgili, L. Investigating community evolutions in TikTok dangerous and non-dangerous challenges. J. Inf. Sci. 2022, 32, 2101–2114. [Google Scholar] [CrossRef]
- Ruan, Y.; Fuhry, D.; Parthasarathy, S. Efficient community detection in large networks using content and links. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 1089–1098. [Google Scholar]
- Yang, J.; McAuley, J.; Leskovec, J. Community detection in networks with node attributes. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Houston, TX, USA, 7–10 December 2013; Volume 13, pp. 1151–1156. [Google Scholar]
- Pool, S.; Bonchi, F.; Leeuwen, M.V. Description-driven community detection. ACM Trans. Intell. Syst. Technol. 2014, 5, 1–28. [Google Scholar] [CrossRef]
- Chang, S.; Han, W.; Tang, J.; Qi, G.J.; Aggarwal, C.; Huang, T.S. Heterogeneous network embedding via deep architectures. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 119–128. [Google Scholar]
- Tian, F.; Gao, B.; Cui, Q.; Chen, E.; Liu, T.Y. Learning deep representations for graph clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, Quebec, QC, Canada, 27–31 July 2014; Volume 28. Available online: https://ojs.aaai.org/index.php/AAAI/article/view/8916 (accessed on 26 September 2022).
- Nie, F.; Wang, X.; Huang, H. Clustering and projected clustering with adaptive neighbors. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2014; pp. 977–986. [Google Scholar]
- Hu, H.; Lin, Z.; Feng, J.; Zhou, J. Smooth representation clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3834–3841. [Google Scholar]
- Bhih, A.; Johnson, P.; Randles, M. An optimisation tool for robust community detection algorithms using content and topology information. J. Supercomput. 2020, 76, 226–254. [Google Scholar] [CrossRef] [Green Version]
- Bourlard, H. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 1988, 59, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Song, Y.; Bai, H.; Lin, C.J.; Chang, E.Y. Parallel spectral clustering in distributed systems. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 568–586. [Google Scholar] [CrossRef] [PubMed]
- Essaid, M.; Park, S.; Ju, H. Visualising Bitcoin’s Dynamic P2P Network Topoogy and Performance. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Korea, 15–17 May 2019; pp. 141–145. [Google Scholar]
- Eisenbarth, J.P.; Cholez, T.; Perrin, O. A Comprehensive Study of the Bitcoin P2P Network. In Proceedings of the 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Paris, France, 27–30 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 105–112. [Google Scholar]
- Essaid, M.; Kim, H.W.; Park, W.G.; Lee, K.Y.; Park, S.J.; Ju, H.T. Network usage of bitcoin full node. In Proceedings of the 2018 International conference on information and communication technology convergence (ICTC), Jeju Island, Korea, 19–21 October 2018; pp. 1286–1291. [Google Scholar]
- Beukema, W. Formalising the Bitcoin Protocol. In 21th Twente Student Conference on It. 2014. Available online: https://allquantor.at/blockchainbib/pdf/beukema2014formalising.pdf (accessed on 11 January 2022).
- Sriman, B.; Kumar, S.G.; Shamili, P. Blockchain technology: Consensus protocol proof of work and proof of stake. In Intelligent Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 395–406. [Google Scholar]
- Kostarev, G. Review of blockchain consensus mechanisms. Waves Platform, 31. 2017. Available online: https://medium.com/wavesprotocol/review-of-blockchain-consensus-mechanisms-f575afae38f2 (accessed on 26 September 2022).
- Skudnov, R. Bitcoin Clients. 2012. Available online: https://bitcoin.org/en/ (accessed on 26 September 2022).
- BTCD. Available online: https://github.com/btcsuite/btcd (accessed on 26 September 2022).
- BitcoinJ. Available online: https://bitcoinj.github.io/getting-started (accessed on 26 September 2022).
- Libbitcoin. Available online: https://github.com/libbitcoin/libbitcoin-system (accessed on 26 September 2022).
- Python-bitcoinlib. Available online: https://github.com/petertodd/python-bitcoinlib (accessed on 26 September 2022).
- Yang, T.; Jin, R.; Chi, Y.; Zhu, S. A Bayesian framework for community detection integrating content and link. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–21 June 2009; pp. 615–622. [Google Scholar]
- Wang, X.; Jin, D.; Cao, X.; Yang, L.; Zhang, W. Semantic community identification in large attribute networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Essaid, M.; Park, S.; Ju, H.T. Bitcoin’s dynamic peer-to-peer topology. Int. J. Netw. Manag. 2020, 30, e2106. [Google Scholar] [CrossRef]
- Bitnodes. Available online: https://bitnodes.earn.com/ (accessed on 26 September 2022).
- KIT "DSN Bitcoin Monitoring. Available online: https://dsn.tm.kit.edu/bitcoin/ (accessed on 26 September 2022).
- Stanford Large Network Dataset Collection. Available online: https://snap.stanford.edu/data/#communities (accessed on 26 September 2022).
- Abbe, E. Community detection and stochastic block models: Recent developments. J. Mach. Learn. Res. 2017, 18, 6446–6531. [Google Scholar]
- Louvain Algorithm for Community Detection. Available online: https://mons1220.tistory.com/129 (accessed on 26 September 2022).
- Fu, J.; He, J.; Ge, M.; Zhang, K.; Zhang, Q. A seed-edge-based link clustering LPA for robust overlapping community detection. In Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 1715–1720. [Google Scholar]
- Corradini, E.; Nicolazzo, S.; Nocera, A.; Ursino, D.; Virgili, L. A two-tier Blockchain framework to increase protection and autonomy of smart objects in the IoT. Comput. Commun. 2022, 181, 338–356. [Google Scholar] [CrossRef]
- Essaid, M.; Lee, K.; Kim, D.; Shin, H.; Ju, H.T. Mapping Out Bitcoin’s Pseudonymous actors. In Proceedings of the 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, 7–10 January 2020; pp. 802–806. [Google Scholar]
# of Community | Nodes% 1 | Heavy Nodes% 2 |
---|---|---|
1 | 4.44 | 0.9 |
2 | 3.76 | 0.9 |
3 | 7.71 | 19.99 |
4 | 6.49 | 10.75 |
5 | 3.76 | 0.9 |
6 | 1.46 | 0.9 |
7 | 5.71 | 0.9 |
8 | 5.56 | 0.9 |
9 | 3.16 | 0.9 |
10 | 1.65 | 0.9 |
11 | 6.12 | 4.83 |
12 | 5.47 | 0.9 |
13 | 1.78 | 0.9 |
14 | 2.68 | 0.9 |
15 | 4.36 | 0.9 |
16 | 4.17 | 0.9 |
17 | 1.39 | 0.9 |
18 | 1.32 | 0.9 |
19 | 4.81 | 0.9 |
20 | 1.8 | 0.9 |
21 | 1.94 | 0.9 |
22 | 6.26 | 8.66 |
23 | 1.19 | 0.9 |
24 | 0.39 | 0.9 |
25 | 3.64 | 0.9 |
26 | 8.98 | 36.87 |
Bitcoin Network | ER Network | Bitcoin Network | ER Network | |
---|---|---|---|---|
Diameter | 6 | 5 | 5 | 5.897 |
Degree | 16.576 | 15.98 | 15.81 | 15.98 |
Clustering coef. | 0.068 | 0.045 | 0.044 | 0.044 |
Path length | 3.621 | 3.163 | 3.366 | 3.570 |
Assortativity coef. | 0.337 | 0.209 | 0.198 | 0.204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essaid, M.; Ju, H. Deep Learning-Based Community Detection Approach on Bitcoin Network. Systems 2022, 10, 203. https://doi.org/10.3390/systems10060203
Essaid M, Ju H. Deep Learning-Based Community Detection Approach on Bitcoin Network. Systems. 2022; 10(6):203. https://doi.org/10.3390/systems10060203
Chicago/Turabian StyleEssaid, Meryam, and Hongteak Ju. 2022. "Deep Learning-Based Community Detection Approach on Bitcoin Network" Systems 10, no. 6: 203. https://doi.org/10.3390/systems10060203