Assessing the Dual Innovation Capability of National Innovation System: Empirical Evidence from 65 Countries
Abstract
:1. Introduction
2. What Is Process-Oriented Dual Innovation?
2.1. What Is Dual Innovation?
2.2. Process-Oriented Dual Innovation
3. Research Framework, Methods, and Data
3.1. The Scientific Research/Technology Transfer Function Model
3.2. Index and Data
3.2.1. Scientific Research (SR)
Local Knowledge Creation (LKC)
Knowledge Absorption (KA)
Knowledge Sharing (KS)
3.2.2. Technology Transfer
Local Technology Commercialization (LTC)
Agglomeration of the Technology Transformation Element (ATTE)
Radiation of the Technology Transformation (RTT)
3.3. Methods
4. Empirical Results
4.1. The General Trend of National Dual Innovation Capability
4.2. Empirical Results and Analysis
4.2.1. Internal Comparison of the Dual Innovation Capability Framework
4.2.2. Detailed International Comparative Study on Dual Innovation Capability
5. Discussion
5.1. Open Innovation in the NIS
5.2. Dual Innovation in the NIS
5.3. The Process-Oriented of DIC in the NIS
6. Conclusions
6.1. Theoretical Contributions
6.2. Practical Implications
6.3. Limitations and Future Research Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. List of Countries
Argentina (ARG) | Georgia (GEO) | Mongolia (MNG) |
Australia (AUS) | Greece (GRC) | Mauritius (MUS) |
Austria (AUT) | Guatemala (GTM) | Malaysia (MYS) |
Azerbaijan (AZE) | Croatia (HRV) | Norway (NOR) |
Belgium (BEL) | Hungary (HUN) | New Zealand (NZL) |
Bulgaria (BGR) | Indonesia (IDN) | Pakistan (PAK) |
Bosnia and Herzegovina (BIH) | India (IND) | Panama (PAN) |
Brazil (BRA) | Ireland (IRL) | Poland (POL) |
Canada (CAN) | Iceland (ISL) | Portugal (PRT) |
Switzerland (CHE) | Israel (ISR) | Romania (ROU) |
Chile (CHL) | Italy (ITA) | Russian Federation (RUS) |
China (CHN) | Japan (JPN) | Singapore (SGP) |
Costa Rica (CRI) | Kazakhstan (KAZ) | El Salvador (SLV) |
Cyprus (CYP) | Korea, Rep. (KOR) | Slovenia (SVN) |
Czech Republic (CZE) | Lithuania (LTU) | Sweden (SWE) |
Germany (DEU) | Latvia (LVA) | Thailand (THA) |
Denmark (DNK) | Morocco (MAR) | Tunisia (TUN) |
Spain (ESP) | Moldova (MDA) | Turkey (TUR) |
Estonia (EST) | Madagascar (MDG) | Ukraine (UKR) |
Finland (FIN) | Mexico (MEX) | United States (USA) |
France (FRA) | Malta (MLT) | South Africa (ZAF) |
United Kingdom (GBR) | Montenegro (MNE) |
Appendix B. Source of Indicators
Reference Mark | Source of Indicators |
A | UNESCO |
B | World Bank |
C | WIPO IP Statistics Data Center |
D | World Economic Forum, Executive Opinion Survey |
E | Web of Science |
F | Shanghai Ranking’s Academic Ranking of World Universities |
G | UN Comtrade Database |
H | EU Industrial R&D Investment Scoreboard |
References
- Wonglimpiyarat, J. Innovation index and the innovative capacity of nations. Futures 2010, 42, 247–253. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Wang, S. Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities. Growth Chang. 2020, 51, 440–463. [Google Scholar] [CrossRef]
- OECD. OECD Science, Technology and Innovation Outlook 2018; OECD Publishing: Paris, France, 2018. [Google Scholar]
- European Commission. European Innovation Scoreboard 2020; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- World Bank Group. World Development Indicators 2017; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Dosi, G.; Freeman, C.; Nelson, R.; Silverberg, G.; Soete, L. Technical Change and Economic Theory; Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies: Pisa, Italy, 1988. [Google Scholar]
- Edquist, C. Systems of Innovation: Technologies, Institutions, and Organizations; Psychology Press: Hove, UK, 1997. [Google Scholar]
- Khedhaouria, A.; Thurik, R. Configurational conditions of national innovation capability: A fuzzy set analysis approach. Technol. Forecast. Soc. Chang. 2017, 120, 48–58. [Google Scholar] [CrossRef]
- Lundvall, B.-Å. National Systems of Innovation: Toward a Theory of Innovation and Interactive Learning; Anthem Press: London, UK, 2010; Volume 2. [Google Scholar]
- Nelson, R.R. National Innovation Systems: A Comparative Analysis; Oxford University Press on Demand: Oxford, UK, 1993. [Google Scholar]
- Lee, S.; Lee, H.; Lee, C. Open innovation at the national level: Towards a global innovation system. Technol. Forecast. Soc. Chang. 2020, 151, 119842. [Google Scholar] [CrossRef]
- Danguy, J. Globalization of innovation production: A patent-based industry analysis. Sci. Public Policy 2017, 44, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Gui, Q.; Liu, C.; Du, D. Globalization of science and international scientific collaboration: A network perspective. Geoforum 2019, 105, 1–12. [Google Scholar] [CrossRef]
- Del Canto Viterale, F. Developing a Systems Architecture Model to Study the Science, Technology and Innovation in International Studies. Systems 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Archibugi, D.; Coco, A. A new indicator of technological capabilities for developed and developing countries (ArCo). World Dev. 2004, 32, 629–654. [Google Scholar] [CrossRef] [Green Version]
- Archibugi, D.; Denni, M.; Filippetti, A. The technological capabilities of nations: The state of the art of synthetic indicators. Technol. Forecast. Soc. Chang. 2009, 76, 917–931. [Google Scholar] [CrossRef] [Green Version]
- Herstad, S.J.; Bloch, C.; Ebersberger, B.; Van De Velde, E. National innovation policy and global open innovation: Exploring balances, tradeoffs and complementarities. Sci. Public Policy 2010, 37, 113–124. [Google Scholar] [CrossRef]
- Cassiman, B.; Veugelers, R. Complementarity in the Innovation Strategy: Internal R&D, External Technology Acquisition, and Cooperation in R&D; KU Leuven: Leuven, Belgium, 2002. [Google Scholar]
- Mahroum, S.; Huggins, R.; Clayton, N.; Pain, K.; Taylor, P. Innovation by Adoption: Measuring and Mapping Absorptive Capacity in UK Nations and Regions; National Endowment for Science, Technology and the Arts: London, UK, 2008. [Google Scholar]
- Awan, U.; Muneer, G.; Abbas, W. Organizational collaborative culture as a source of managing innovation. World Appl. Sci. J. 2013, 24, 582–587. [Google Scholar]
- Zhao, J. Knowledge management capability and technology uncertainty: Driving factors of dual innovation. Technol. Anal. Strateg. Manag. 2021, 33, 783–796. [Google Scholar] [CrossRef]
- Tushman, M.L.; O’Reilly III, C.A. Ambidextrous organizations: Managing evolutionary and revolutionary change. Calif. Manag. Rev. 1996, 38, 8–29. [Google Scholar]
- Caridi-Zahavi, O.; Carmeli, A.; Arazy, O. The influence of CEOs’ visionary innovation leadership on the performance of high-technology ventures: The mediating roles of connectivity and knowledge integration. J. Prod. Innov. Manag. 2016, 33, 356–376. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Ding, Y. Analysis of the relationship between open innovation, knowledge management capability and dual innovation. Technol. Anal. Strateg. Manag. 2020, 32, 15–28. [Google Scholar] [CrossRef]
- Kimpimäki, J.-P.; Malacina, I.; Lähdeaho, O. Open and sustainable: An emerging frontier in innovation management? Technol. Forecast. Soc. Chang. 2022, 174, 121229. [Google Scholar] [CrossRef]
- Santos, A.B. Open Innovation research: Trends and influences—a bibliometric analysis. J. Innov. Manag. 2015, 3, 131–165. [Google Scholar] [CrossRef]
- Wu, L.; Hu, Y.-P. Open innovation based knowledge management implementation: A mediating role of knowledge management design. J. Knowl. Manag. 2018, 22, 1736–1756. [Google Scholar] [CrossRef]
- Matricano, D.; Candelo, E.; Sorrentino, M.; Martínez-Martínez, A. Absorbing in-bound knowledge within open innovation processes. The case of Fiat Chrysler Automobiles. J. Knowl. Manag. 2019, 23, 786–807. [Google Scholar] [CrossRef]
- Adamides, E.D.; Karacapilidis, N.I.; Konstantinopoulos, K. Argumentation Schemes in Technology-Mediated Open Innovation Product-Service Models: An Activity Systems Perspective. Systems 2021, 9, 91. [Google Scholar] [CrossRef]
- Castellacci, F.; Natera, J.M. The dynamics of national innovation systems: A panel cointegration analysis of the coevolution between innovative capability and absorptive capacity. Res. Policy 2013, 42, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, Z.; Zhu, Q. Performance evaluation of China’s high-tech innovation process: Analysis based on the innovation value chain. Technovation 2018, 74, 42–53. [Google Scholar] [CrossRef]
- Furman, J.L.; Porter, M.E.; Stern, S. The determinants of national innovative capacity. Res. Policy 2002, 31, 899–933. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Chen, K. Modeling the relative efficiency of national innovation systems. Res. Policy 2012, 41, 102–115. [Google Scholar] [CrossRef]
- Bernstein, B.; Singh, P.J.J.T. An integrated innovation process model based on practices of Australian biotechnology firms. Technovation 2006, 26, 561–572. [Google Scholar] [CrossRef]
- Galanakis, K.J.T. Innovation process. Make sense using systems thinking. Technovation 2006, 26, 1222–1232. [Google Scholar] [CrossRef]
- Fagerberg, J.; Srholec, M. National innovation systems, capabilities and economic development. Res. Policy 2008, 37, 1417–1435. [Google Scholar] [CrossRef]
- Li, R.; Peng, C.; Koo, B.; Zhang, G.; Yang, H. Obtaining sustainable competitive advantage through collaborative dual innovation: Empirical analysis based on mature enterprises in eastern China. Technol. Anal. Strateg. Manag. 2020, 33, 685–699. [Google Scholar] [CrossRef]
- Andriopoulos, C.; Lewis, M.W. Exploitation-exploration tensions and organizational ambidexterity: Managing paradoxes of innovation. Organ. Sci. 2009, 20, 696–717. [Google Scholar] [CrossRef] [Green Version]
- Gibson, C.B.; Birkinshaw, J. The antecedents, consequences, and mediating role of organizational ambidexterity. Acad. Manag. J. 2004, 47, 209–226. [Google Scholar]
- Awan, U.; Bhatti, S.H.; Shamim, S.; Khan, Z.; Akhtar, P.; Balta, M.E. The Role of Big Data Analytics in Manufacturing Agility and Performance: Moderation–Mediation Analysis of Organizational Creativity and of the Involvement of Customers as Data Analysts. Br. J. Manag. 2021. Available online: https://doi.org/10.1111/1467-8551.12549 (accessed on 11 October 2021). [CrossRef]
- Ferrary, M. Specialized organizations and ambidextrous clusters in the open innovation paradigm. Eur. Manag. J. 2011, 29, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, U. Open innovation: Past research, current debates, and future directions. Acad. Manag. Perspect. 2011, 25, 75–93. [Google Scholar]
- Sisodiya, S.R.; Johnson, J.L.; Grégoire, Y. Inbound open innovation for enhanced performance: Enablers and opportunities. Ind. Mark. Manag. 2013, 42, 836–849. [Google Scholar] [CrossRef]
- Marcolin, F.; Vezzetti, E.; Montagna, F. How to practise Open Innovation today: What, where, how and why. Creat. Ind. J. 2017, 10, 258–291. [Google Scholar] [CrossRef]
- Baldwin, C.; Von Hippel, E. Modeling a paradigm shift: From producer innovation to user and open collaborative innovation. Organ. Sci. 2011, 22, 1399–1417. [Google Scholar] [CrossRef] [Green Version]
- Schumpeter, J.; Backhaus, U. The theory of economic development. In Joseph Alois Schumpeter; Springer: Berlin/Heidelberg, Germany, 2003; pp. 61–116. [Google Scholar]
- Lundvall, B.Å. National innovation systems—analytical concept and development tool. Ind. Innov. 2007, 14, 95–119. [Google Scholar] [CrossRef]
- Tijssen, R.J. Anatomy of use-inspired researchers: From Pasteur’s Quadrant to Pasteur’s Cube model. Res. Policy 2018, 47, 1626–1638. [Google Scholar] [CrossRef]
- Reid, S.E.; De Brentani, U. The fuzzy front end of new product development for discontinuous innovations: A theoretical model. J. Prod. Innov. Manag. 2004, 21, 170–184. [Google Scholar] [CrossRef]
- Eling, K.; Griffin, A.; Langerak, F. Consistency matters in formally selecting incremental and radical new product ideas for advancement. J. Prod. Innov. Manag. 2016, 33, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Van Oorschot, K.; Eling, K.; Langerak, F. Measuring the knowns to manage the unknown: How to choose the gate timing strategy in NPD projects. J. Prod. Innov. Manag. 2018, 35, 164–183. [Google Scholar] [CrossRef] [Green Version]
- Schwab, K. The Global Competitiveness Report 2018; World Economic Forum: Cologny, Switzerland, 2018. [Google Scholar]
- Dutta, S.; Lanvin, B.; Wunsch-Vincent, S. Global Innovation Index 2017; Cornell University: Ithaca, NY, USA, 2017. [Google Scholar]
- Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (European Commission). European Innovation Scoreboard 2018; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Mahroum, S.; Al-Saleh, Y. Towards a functional framework for measuring national innovation efficacy. Technovation 2013, 33, 320–332. [Google Scholar] [CrossRef]
- Castellacci, F. Closing the technology gap? Rev. Dev. Econ. 2011, 15, 180–197. [Google Scholar] [CrossRef] [Green Version]
- Fagerberg, J.; Verspagen, B.; von Tunzelmann, G.N. (Eds.) The origins of the postwar catch-up and convergence boom. In The Dynamics of Technology, Trade and Growth; Edward Elgar Publishing: Aldershot, UK, 1994; pp. 21–52. [Google Scholar]
- López-Claros, A.; Mata, Y.N. The innovation capacity index: Factors, policies, and institutions driving country innovation. In The Innovation for Development Report 2009–2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–65. [Google Scholar]
- Gassmann, O.; Enkel, E. Towards a Theory of Open Innovation: Three Core Process Archetypes; University of St. Gallen: Lissabon, Portugal, 2004. [Google Scholar]
- Dvir, R.; Pasher, E. Innovation engines for knowledge cities: An innovation ecology perspective. J. Knowl. Manag. 2004, 8, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Kim, B.-Y. Both institutions and policies matter but differently for different income groups of countries: Determinants of long-run economic growth revisited. World Dev. 2009, 37, 533–549. [Google Scholar] [CrossRef]
- Djankov, S.; La Porta, R.; Lopez-de-Silanes, F.; Shleifer, A. The regulation of entry. Q. J. Econ. 2002, 117, 1–37. [Google Scholar] [CrossRef]
- Filippetti, A.; Archibugi, D. Innovation in times of crisis: National Systems of Innovation, structure, and demand. Res. Policy 2011, 40, 179–192. [Google Scholar] [CrossRef]
- Gong, G.; Keller, W. Convergence and polarization in global income levels: A review of recent results on the role of international technology diffusion. Res. Policy 2003, 32, 1055–1079. [Google Scholar] [CrossRef] [Green Version]
- Jiaxue, L. A Decision Making Method that Has Favouritism Information for the Index Attribute. Syst. Eng. Theory Pract. 1999, 19, 54–57. [Google Scholar]
- Qin, X.; Sun, C.; Zou, W. Quantitative models for assessing the human-ocean system’s sustainable development in coastal cities: The perspective of metabolic-recycling in the Bohai Sea Ring Area, China. Ocean. Coast. Manag. 2015, 107, 46–58. [Google Scholar] [CrossRef]
- Scherngell, T.; Lata, R. Towards an integrated European Research Area? Findings from Eigenvector spatially filtered spatial interaction models using European Framework Programme data. Pap. Reg. Sci. 2013, 92, 555–577. [Google Scholar] [CrossRef]
- Hilbert, M.; López, P. The world’s technological capacity to store, communicate, and compute information. Science 2011, 332, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Bu, J. How valuable is information and communication technology? A study of emerging economy enterprises. J. World Bus. 2016, 51, 200–211. [Google Scholar] [CrossRef]
- Liu, X.; Schwaag Serger, S.; Tagscherer, U.; Chang, A.Y. Beyond catch-up—can a new innovation policy help China overcome the middle income trap? Sci. Public Policy 2017, 44, 656–669. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X. Transformation effect of resource-based cities based on PSM-DID model: An empirical analysis from China. Environ. Impact Assess. Rev. 2021, 91, 106648. [Google Scholar] [CrossRef]
- National Science Board. Science & Engineering Indicators 2018; National Science Board: Alexandria, VA, USA, 2018.
- Awate, S.; Larsen, M.M.; Mudambi, R. Accessing vs. sourcing knowledge: A comparative study of R&D internationalization between emerging and advanced economy firms. J. Int. Bus. Stud. 2015, 46, 63–86. [Google Scholar]
- Ikram, M.; Sroufe, R.; Awan, U.; Abid, N. Enabling Progress in Developing Economies: A Novel Hybrid Decision-Making Model for Green Technology Planning. Sustainability 2022, 14, 258. [Google Scholar] [CrossRef]
- Wan, F.; Williamson, P.J.; Yin, E. Antecedents and implications of disruptive innovation: Evidence from China. Technovation 2015, 39, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R.; Rodríguez-Pose, A. The geography of innovation in China and India. Int. J. Urban Reg. Res. 2017, 41, 1010–1027. [Google Scholar] [CrossRef]
- Asheim, B.T.; Boschma, R.; Cooke, P. Constructing regional advantage: Platform policies based on related variety and differentiated knowledge bases. Reg. Stud. 2011, 45, 893–904. [Google Scholar] [CrossRef]
- Frenken, K.; Van Oort, F.; Verburg, T. Related variety, unrelated variety and regional economic growth. Reg. Stud. 2007, 41, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Kaihua, C.; Mingting, K. Staged efficiency and its determinants of regional innovation systems: A two-step analytical procedure. Ann. Reg. Sci. 2014, 52, 627–657. [Google Scholar] [CrossRef]
- Foss, N.J.; Laursen, K.; Pedersen, T. Linking customer interaction and innovation: The mediating role of new organizational practices. Organ. Sci. 2011, 22, 980–999. [Google Scholar] [CrossRef] [Green Version]
- Majchrzak, A.; Jarvenpaa, S.L.; Bagherzadeh, M. A review of interorganizational collaboration dynamics. J. Manag. 2015, 41, 1338–1360. [Google Scholar] [CrossRef]
- Forés, B.; Camisón, C. Does incremental and radical innovation performance depend on different types of knowledge accumulation capabilities and organizational size? J. Bus. Res. 2016, 69, 831–848. [Google Scholar] [CrossRef] [Green Version]
- Zahra, S.A.; George, G. Absorptive capacity: A review, reconceptualization, and extension. Acad. Manag. Rev. 2002, 27, 185–203. [Google Scholar] [CrossRef]
- Wang, N.; Xiao, M.; Savin, I. Complementarity effect in the innovation strategy: Internal R&D and acquisition of capital with embodied technology. J. Technol. Transf. 2020, 46, 459–482. [Google Scholar]
- Breschi, S.; Lissoni, F. Knowledge spillovers and local innovation systems: A critical survey. Ind. Corp. Chang. 2001, 10, 975–1005. [Google Scholar] [CrossRef]
- Singh, J.; Marx, M. Geographic constraints on knowledge spillovers: Political borders vs. spatial proximity. Manag. Sci. 2013, 59, 2056–2078. [Google Scholar] [CrossRef] [Green Version]
- Carayannis, E.G.; Grigoroudis, E.; Goletsis, Y. A multilevel and multistage efficiency evaluation of innovation systems: A multiobjective DEA approach. Expert Syst. Appl. 2016, 62, 63–80. [Google Scholar] [CrossRef]
- He, Z.-L.; Wong, P.-K. Exploration vs. exploitation: An empirical test of the ambidexterity hypothesis. Organ. Sci. 2004, 15, 481–494. [Google Scholar] [CrossRef]
- Cassiman, B.; Valentini, G. Open innovation: Are inbound and outbound knowledge flows really complementary? Strateg. Manag. J. 2016, 37, 1034–1046. [Google Scholar] [CrossRef]
- Marullo, C.; Di Minin, A.; De Marco, C.; Piccaluga, A. Is open innovation always the best for SMEs? An exploratory analysis at the project level. Creat. Innov. Manag. 2020, 29, 209–223. [Google Scholar] [CrossRef]
- Foege, J.N.; Lauritzen, G.D.; Tietze, F.; Salge, T.O. Reconceptualizing the paradox of openness: How solvers navigate sharing-protecting tensions in crowdsourcing. Res. Policy 2019, 48, 1323–1339. [Google Scholar] [CrossRef]
- Wang, T.; Libaers, D.; Park, H.D. The Paradox of Openness: How Product and Patenting Experience Affect R&D Sourcing in China? J. Prod. Innov. Manag. 2017, 34, 250–268. [Google Scholar]
- Arora, A.; Athreye, S.; Huang, C. The paradox of openness revisited: Collaborative innovation and patenting by UK innovators. Res. Policy 2016, 45, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
Process | Function | Indicators and Sources | Type of Weights | ||
---|---|---|---|---|---|
AHP | Entropy Methods | Weight | |||
Scientific research (SR) | Local knowledge creation (0.2) | F1: GERD as a percentage of GDP [A] | 0.3482 | 0.1405 | 0.1796 |
F2: Researchers (FTE) [A] | 0.2434 | 0.1605 | 0.2225 | ||
F3: Scientific and technical journal articles (per million population) [B] | 0.1289 | 0.1734 | 0.1156 | ||
F4: Total patent applications (per million population) [C] | 0.1398 | 0.4118 | 0.3341 | ||
F5: Trademark applications, direct resident (per million population) [C] | 0.1398 | 0.1139 | 0.1481 | ||
Knowledge absorption (0.15) | F6: Fixed-broadband Internet subscriptions (per 100 population) [D] | 0.1578 | 0.3619 | 0.2288 | |
F7: Internet users (% of adult population) [D] | 0.1578 | 0.1617 | 0.1358 | ||
F8: Education: outbound mobility ratio [A] | 0.0885 | 0.0280 | 0.1946 | ||
F9: Intellectual property protection [D] | 0.2979 | 0.2132 | 0.2076 | ||
F10: Country’s capability to attract talent [D] | 0.2979 | 0.2352 | 0.2332 | ||
Knowledge sharing (0.15) | F11: % Docs cited [E] | 0.2033 | 0.0020 | 0.0557 | |
F12: Category normalized citation impact [E] | 0.3930 | 0.0260 | 0.1412 | ||
F13: Times cited [E] | 0.1632 | 0.3032 | 0.2616 | ||
F14: ARWU world top 500 candidates [F] | 0.1541 | 0.2631 | 0.3121 | ||
F15: Foreign-oriented patent family by origin and destination office [C] | 0.0864 | 0.4057 | 0.2293 | ||
Technology transfer (TT) | Local technology commercialization (0.2) | F16: R&D ranking of the world’s top 1000 companies [H] | 0.1245 | 0.5534 | 0.3758 |
F17: Extent of staff training [D] | 0.2928 | 0.0278 | 0.0947 | ||
F18: University-industry collaboration in R&D [D] | 0.3176 | 0.0443 | 0.1052 | ||
F19: Charges for the use of intellectual property, payments (BoP, current US$) [B] | 0.1781 | 0.3535 | 0.3700 | ||
F20: Industry, value added (% of GDP) [B] | 0.0870 | 0.0210 | 0.0543 | ||
Agglomeration of the technology transformation elements (0.15) | F21: Royalties and license fees (Import) [G] | 0.1603 | 0.1994 | 0.3149 | |
F22: ICT goods imports (% total goods imports) [B] | 0.1603 | 0.4988 | 0.2457 | ||
F23: Prevalence of non-tariff barriers [D] | 0.3027 | 0.0628 | 0.1107 | ||
F24: Foreign direct investment, net inflows (BoP, current US$) [B] | 0.0975 | 0.2071 | 0.2427 | ||
F25: Time to start a business (lower is better) [D] | 0.2791 | 0.0319 | 0.0860 | ||
Radiation of the technology transformation (0.15) | F26: High-technology exports (current USD) [B] | 0.1488 | 0.3416 | 0.3300 | |
F27: High-technology exports (% of manufactured exports) [B] | 0.1488 | 0.0606 | 0.1200 | ||
F28: Merchandise exports (% of GDP) [B] | 0.1614 | 0.0619 | 0.0971 | ||
F29: Exports of goods and services (% of GDP) [B] | 0.1614 | 0.0597 | 0.1074 | ||
F30: Royalties and license fee (export) [G] | 0.3796 | 0.4762 | 0.3454 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Du, D.; Qin, X. Assessing the Dual Innovation Capability of National Innovation System: Empirical Evidence from 65 Countries. Systems 2022, 10, 23. https://doi.org/10.3390/systems10020023
Lu H, Du D, Qin X. Assessing the Dual Innovation Capability of National Innovation System: Empirical Evidence from 65 Countries. Systems. 2022; 10(2):23. https://doi.org/10.3390/systems10020023
Chicago/Turabian StyleLu, Han, Debin Du, and Xionghe Qin. 2022. "Assessing the Dual Innovation Capability of National Innovation System: Empirical Evidence from 65 Countries" Systems 10, no. 2: 23. https://doi.org/10.3390/systems10020023
APA StyleLu, H., Du, D., & Qin, X. (2022). Assessing the Dual Innovation Capability of National Innovation System: Empirical Evidence from 65 Countries. Systems, 10(2), 23. https://doi.org/10.3390/systems10020023