Antimicrobial Peptides of Salmonid Fish: From Form to Function
Abstract
:1. Introduction
2. Structural Properties of Salmonid AMPs
2.1. Length
2.2. Charge
2.3. Hydrophobicity
3. Function of Salmonid AMPs
3.1. Antibacterial
3.2. Antiviral
3.3. Anti-Oomycete and Antifungal
4. Factors Affecting Salmonid AMP Gene Expression
4.1. Bacterial Pathogens
4.2. Viral Pathogens
4.3. Parasites
4.4. Oomycyte and Fungal Pathogens
4.5. Diet
4.6. Development
5. Immunomodulatory Role of Salmonid AMPs
5.1. Cathelicidins
5.2. Defensins
5.3. Hepcidins
5.4. NK-lysins
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shedko, S.V.; Miroshnichenko, I.L.; Nemkova, G.A. Phylogeny of salmonids (salmoniformes: Salmonidae) and its molecular dating: Analysis of mtDNA data. Russ. J. Genet. 2013, 49, 623–637. [Google Scholar] [CrossRef]
- Bols, N.C.; Pham, P.H.; Dayeh, V.R.; Lee, L.E.J. Invitromatics, invitrome, and invitroomics: Introduction of three new terms for in vitro biology and illustration of their use with the cell lines from rainbow trout. In Vitro Cell. Dev. Biol. Anim. 2017, 53, 383–405. [Google Scholar] [CrossRef] [PubMed]
- Iversen, A.; Asche, F.; Hermansen, Ø.; Nystøyl, R. Production cost and competitiveness in major salmon farming countries 2003–2018. Aquaculture 2020, 522, 735089. [Google Scholar] [CrossRef]
- Martin, S.A.M.; Collet, B.; MacKenzie, S.; Evensen, O.; Secombes, C.J. Genomic Tools for Examining Immune Gene Function in Salmonid Fish. Rev. Fish. Sci. 2008, 16, 112–118. [Google Scholar] [CrossRef]
- Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef]
- Hancock, R.E.; Scott, M.G. The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 2000, 97, 8856–8861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzenback, B.A. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. Biology 2015, 4, 607–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masso-Silva, J.A.; Diamond, G. Antimicrobial Peptides from Fish. Pharmaceuticals 2014, 7, 265–310. [Google Scholar] [CrossRef] [Green Version]
- Shabir, U.; Ali, S.; Magray, A.R.; Ganai, A.B.; Firdous, P.; Hassan, T.; Nazir, R. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog. 2017, 114, 50–56. [Google Scholar] [CrossRef]
- Souza, A.L.; Díaz-Dellavalle, P.; Cabrera, A.; Larrañaga, P.; Dalla-Rizza, M.; De Simone, S.G. Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment. Peptides 2013, 45, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.-C.; Hui, C.-F.; Chen, J.-Y.; Wu, J.-L. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 2013, 44, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2015, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, J.M.O.; Kemp, G.D.; Molle, M.G.; Smith, V.J. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem. J. 2002, 368, 611–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, J.M.O.; Molle, G.; Kemp, G.D.; Smith, V.J. Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Dev. Comp. Immunol. 2004, 28, 127–138. [Google Scholar] [CrossRef]
- Valero, Y.; Saraiva-Fraga, M.; Costas, B.; Guardiola, F. Antimicrobial peptides from fish: Beyond the fight against pathogens. Rev. Aquac. 2018, 12, 224–253. [Google Scholar] [CrossRef]
- Muñoz-Atienza, E.; Aquilino, C.; Syahputra, K.; Al-Jubury, A.; Araújo, C.; Skov, J.; Kania, P.W.; Hernández, P.E.; Buchmann, K.; Cintas, L.M.; et al. CK11, a Teleost Chemokine with a Potent Antimicrobial Activity. J. Immunol. 2019, 202, 857–870. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, E.J.; Lolis, E.J. Structure, Function, Andinhibition of chemokines. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 469–499. [Google Scholar] [CrossRef]
- Alejo, A.; Tafalla, C. Chemokines in teleost fish species. Dev. Comp. Immunol. 2011, 35, 1215–1222. [Google Scholar] [CrossRef]
- Semple, S.L.; Eshaque, S.; Fujiki, K.; Tang, C.; Mitchell, L.; Bols, N.C.; Dixon, B.M. CK-2 of rainbow trout (Oncorhynchus mykiss) has two differentially regulated alleles that encode a functional chemokine. Vet. Immunol. Immunopathol. 2018, 198, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Sepahi, A.; Tacchi, L.; Casadei, E.; Takizawa, F.; LaPatra, S.E.; Salinas, I. CK12a, a CCL19-like Chemokine That Orchestrates both Nasal and Systemic Antiviral Immune Responses in Rainbow Trout. J. Immunol. 2017, 199, 3900–3913. [Google Scholar] [CrossRef] [Green Version]
- Söbirk, S.K.; Mörgelin, M.; Egesten, A.; Bates, P.; Shannon, O.; Collin, M. Human Chemokines as Antimicrobial Peptides with Direct Parasiticidal Effect on Leishmania mexicana In Vitro. PLoS ONE 2013, 8, e58129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Guarnieri, M.T.; Vasil, A.I.; Vasil, M.L.; Mant, C.T.; Hodges, R.S. Role of Peptide Hydrophobicity in the Mechanism of Action of α-Helical Antimicrobial Peptides. Antimicrob. Agents Chemother. 2006, 51, 1398–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of Hydrophobicity and Charge Distribution of Cationic Antimicrobial Peptides in Peptide-Membrane Interactions. J. Biol. Chem. 2012, 287, 7738–7745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridle, A.R.; Nosworthy, E.; Polinski, M.P.; Nowak, B. Evidence of an Antimicrobial-Immunomodulatory Role of Atlantic Salmon Cathelicidins during Infection with Yersinia ruckeri. PLoS ONE 2011, 6, e23417. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-I.; Pleguezuelos, O.; Zhang, Y.-A.; Zou, J.; Secombes, C.J. Identification of a Novel Cathelicidin Gene in the Rainbow Trout, Oncorhynchus mykiss. Infect. Immun. 2005, 73, 5053–5064. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-I.; Zhang, Y.-A.; Zou, J.; Nie, P.; Secombes, C.J. Two Cathelicidin Genes Are Present in both Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar). Antimicrob. Agents Chemother. 2006, 50, 185–195. [Google Scholar] [CrossRef] [Green Version]
- D’Este, F.; Benincasa, M.; Cannone, G.; Furlan, M.; Scarsini, M.; Volpatti, D.; Gennaro, R.; Tossi, A.; Skerlavaj, B.; Scocchi, M. Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. Fish Shellfish Immunol. 2016, 59, 456–468. [Google Scholar] [CrossRef]
- Schmitt, P.; Wacyk, J.M.; Morales-Lange, B.; Rojas, V.; Guzman, F.; Dixon, B.; Mercado, L.A. Immunomodulatory effect of cathelicidins in response to a β-glucan in intestinal epithelial cells from rainbow trout. Dev. Comp. Immunol. 2015, 51, 160–169. [Google Scholar] [CrossRef]
- Álvarez, C.A.; Guzman, F.; Cárdenas, C.; Marshall, S.H.; Mercado, L.A. Antimicrobial activity of trout hepcidin. Fish Shellfish Immunol. 2014, 41, 93–101. [Google Scholar] [CrossRef]
- Huang, T.; Gu, W.; Wang, B.; Zhang, Y.; Cui, L.; Yao, Z.; Zhao, C.; Xu, G. Identification and expression of the hepcidin gene from brown trout (Salmo trutta) and functional analysis of its synthetic peptide. Fish Shellfish Immunol. 2019, 87, 243–253. [Google Scholar] [CrossRef]
- Wang, D.; Li, S.; Zhao, J.; Liu, H.-B.; Lu, T.; Yin, J. Genomic organization, expression and antimicrobial activity of a hepcidin from taimen (Hucho taimen, Pallas). Fish Shellfish Immunol. 2016, 56, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, C.A.; Gómez, F.A.; Mercado, L.A.; Ramirez, R.; Marshall, S.H. Piscirickettsia salmonis Imbalances the Innate Immune Response to Succeed in a Productive Infection in a Salmonid Cell Line Model. PLoS ONE 2016, 11, e0163943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uyttendaele, M.; Debevere, J. Evaluation of the antimicrobial activity of protamine. Food Microbiol. 1994, 11, 417–427. [Google Scholar] [CrossRef]
- Cheng, C.; Arritt, F.; Stevenson, C.D. Controlling Listeria monocytogenes in Cold Smoked Salmon with the Antimicrobial Peptide Salmine. J. Food Sci. 2015, 80, 1314–1318. [Google Scholar] [CrossRef] [PubMed]
- Falco, A.; Chico, V.; Marroquí, L.; Perez, L.; Coll, J.; Estepa, A. Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Mol. Immunol. 2008, 45, 757–765. [Google Scholar] [CrossRef]
- De Bruijn, I.; Belmonte, R.; Anderson, V.L.; Saraiva, M.; Wang, T.; Van West, P.; Secombes, C.J. Immune gene expression in trout cell lines infected with the fish pathogenic oomycete Saprolegnia parasitica. Dev. Comp. Immunol. 2012, 38, 44–54. [Google Scholar] [CrossRef]
- Martin, S.A.M.; Douglas, A.; Houlihan, D.F.; Secombes, C.J. Starvation alters the liver transcriptome of the innate immune response in Atlantic salmon (Salmo salar). BMC Genom. 2010, 11, 418. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.; Coll, J.M.; Blanco, M.; Rodriguez-Bertos, A.; Jouneau, L.; Fernández-Garayzábal, J.F.; Gibello, A. Spleen and head kidney differential gene expression patterns in trout infected with Lactococcus garvieae correlate with spleen granulomas. Vet. Res. 2019, 50, 32. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-Miranda, D.; Valenzuela-Muñoz, V.; Farlora, R.; Gallardo-Escárate, C. MicroRNA-based transcriptomic responses of Atlantic salmon during infection by the intracellular bacterium Piscirickettsia salmonis. Dev. Comp. Immunol. 2017, 77, 287–296. [Google Scholar] [CrossRef]
- Maier, V.H.; Dorn, K.V.; Gudmundsdottir, B.K.; Gudmundsson, G.H. Characterisation of cathelicidin gene family members in divergent fish species. Mol. Immunol. 2008, 45, 3723–3730. [Google Scholar] [CrossRef]
- Furlan, M.; Rosani, U.; Gambato, S.; Irato, P.; Manfrin, A.; Mardirossian, M.; Venier, P.; Pallavicini, A.; Scocchi, M. Induced expression of cathelicidins in trout (Oncorhynchus mykiss ) challenged with four different bacterial pathogens. J. Pept. Sci. 2018, 24, e3089. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.; Urquhart, K.; Secombes, C.J.; Collet, B. Individual monitoring of immune responses in rainbow trout after cohabitation and intraperitoneal injection challenge with Yersinia ruckeri. Fish Shellfish Immunol. 2016, 55, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadei, E.; Wang, T.; Zou, J.; Vecino, J.L.G.; Wadsworth, S.; Secombes, C.J. Characterization of three novel β-defensin antimicrobial peptides in rainbow trout (Oncorhunchus mykiss). Mol. Immunol. 2009, 46, 3358–3366. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Li, R.; Xu, Q.; Secombes, C.J.; Wang, T. Two Types of TNF-α Exist in Teleost Fish: Phylogeny, Expression, and Bioactivity Analysis of Type-II TNF-α3 in Rainbow Trout Oncorhynchus mykiss. J. Immunol. 2013, 191, 5959–5972. [Google Scholar] [CrossRef] [Green Version]
- Harte, A.; Tian, G.; Xu, Q.; Secombes, C.J.; Wang, T. Five subfamilies of β-defensin genes are present in salmonids: Evolutionary insights and expression analysis in Atlantic salmon Salmo salar. Dev. Comp. Immunol. 2020, 104, 103560. [Google Scholar] [CrossRef]
- Welch, T.J.; LaPatra, S. Yersinia ruckeri lipopolysaccharide is necessary and sufficient for eliciting a protective immune response in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish Shellfish Immunol. 2016, 49, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Monte, M.; Zou, J.; Wang, T.; Carrington, A.; Secombes, C.J. Cloning, expression analysis and bioactivity studies of rainbow trout (Oncorhynchus mykiss) interleukin-22. Cytokine 2011, 55, 62–73. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Wang, P.; Zhang, N.; Chen, D.-D.; Nie, P.; Li, J.-L.; Zhang, Y.-A. B Cell Functions Can Be Modulated by Antimicrobial Peptides in Rainbow Trout Oncorhynchus mykiss: Novel Insights into the Innate Nature of B Cells in Fish. Front. Immunol. 2017, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Crane, M.S.; Hyatt, A. Viruses of Fish: An Overview of Significant Pathogens. Viruses 2011, 3, 2025–2046. [Google Scholar] [CrossRef]
- Dahle, M.K.; Jørgensen, J.B. Antiviral defense in salmonids—Mission made possible? Fish Shellfish Immunol. 2019, 87, 421–437. [Google Scholar] [CrossRef]
- Gorgoglione, B.; Taylor, N.G.; Holland, J.W.; Feist, S.W.; Secombes, C.J. Immune response modulation upon sequential heterogeneous co-infection with Tetracapsuloides bryosalmonae and VHSV in brown trout (Salmo trutta). Fish Shellfish Immunol. 2019, 88, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.; Abós, B.; Pignatelli, J.; Jørgensen, L.V.G.; Granja, A.G.; Buchmann, K.; Tafalla, C. Early Immune Responses in Rainbow Trout Liver upon Viral Hemorrhagic Septicemia Virus (VHSV) Infection. PLoS ONE 2014, 9, e111084. [Google Scholar] [CrossRef] [PubMed]
- Nombela, I.; Puente-Marin, S.; Chico, V.; Villena, A.; Carracedo, B.; Ciordia, S.; Mena, M.C.; Mercado, L.A.; Perez, L.; Coll, J.M.; et al. Identification of diverse defense mechanisms in trout red blood cells in response to VHSV halted viral replication. F1000Research 2017, 6, 1958. [Google Scholar] [CrossRef]
- Chico, V.; Salvador-Mira, M.E.; Nombela, I.; Puente-Marin, S.; Ciordia, S.; Mena, M.C.; Perez, L.; Coll, J.; Guzman, F.; Encinar, J.A.; et al. IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Front. Immunol. 2019, 10, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesterson, S.P.; Ringiesn, J.; Vakharia, V.N.; Shepherd, B.S.; Leaman, D.W.; Malathi, K. Effect of the Viral Hemorrhagic Septicemia Virus Nonvirion Protein on Translation via PERK-eIF2α Pathway. Viruses 2020, 12, 499. [Google Scholar] [CrossRef] [PubMed]
- Chinchilla, B.; Encinas, P.; Coll, J.M.; Gomez-Casado, E. Differential Immune Transcriptome and Modulated Signalling Pathways in Rainbow Trout Infected with Viral Haemorrhagic Septicaemia Virus (VHSV) and Its Derivative Non-Virion (NV) Gene Deleted. Vaccines 2020, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Secombes, C.J.; Wang, T.; Bird, S. The interleukins of fish. Dev. Comp. Immunol. 2011, 35, 1336–1345. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Wentzel, A.S.; Wiegertjes, G.; Forlenza, M. Carp Il10a and Il10b exert identical biological activities in vitro, but are differentially regulated in vivo. Dev. Comp. Immunol. 2017, 67, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.A.M.; Zou, J.; Houlihan, D.F.; Secombes, C.J. Directional responses following recombinant cytokine stimulation of rainbow trout (Oncorhynchus mykiss) RTS-11 macrophage cells as revealed by transcriptome profiling. BMC Genom. 2007, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, C.; Cabon, J.; Louboutin, L.; Le Floch, S.; Morin, T.; Danion, M. Cellular, humoral and molecular responses in rainbow trout (Oncorhynchus mykiss) exposed to a herbicide and subsequently infected with infectious hematopoietic necrosis virus. Aquat. Toxicol. 2019, 215, 105282. [Google Scholar] [CrossRef]
- Ding, J.; Chou, Y.-Y.; Chang, T.L. Defensins in viral infections. J. Innate Immun. 2009, 1, 413–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polinski, M.; Bradshaw, J.C.; Rise, M.L.; Johnson, S.C.; Garver, K.A. Sockeye salmon demonstrate robust yet distinct transcriptomic kidney responses to rhabdovirus (IHNV) exposure and infection. Fish Shellfish Immunol. 2019, 94, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.; Jung, C.-L.; Gabayan, V.; Deng, J.C.; Ganz, T.; Nemeth, E.; Bulut, Y. Hepcidin Induction by Pathogens and Pathogen-Derived Molecules Is Strongly Dependent on Interleukin-6. Infect. Immun. 2013, 82, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, A.; Garver, K.A.; Jones, S.R.M. Synergistic osmoregulatory dysfunction during salmon lice (Lepeophtheirus salmonis) and infectious hematopoietic necrosis virus co-infection in sockeye salmon (Oncorhynchus nerka) smolts. J. Fish Dis. 2019, 42, 869–882. [Google Scholar] [CrossRef] [Green Version]
- Semple, S.L.; Vo, N.T.K.; Li, A.R.; Pham, P.H.; Bols, N.C.; Dixon, B.M. Development and use of an Arctic charr cell line to study antiviral responses at extremely low temperatures. J. Fish Dis. 2017, 40, 1423–1439. [Google Scholar] [CrossRef]
- Kapralova, K.H.; Guðbrandsson, J.; Reynisdottir, S.; Santos, C.B.; Baltanás, V.C.; Maier, V.H.; Snorrason, S.S.; Palsson, A. Differentiation at the MHCIIα and Cath2 Loci in Sympatric Salvelinus alpinus Resource Morphs in Lake Thingvallavatn. PLoS ONE 2013, 8, e69402. [Google Scholar] [CrossRef] [Green Version]
- Tarifeño-Saldivia, E.; Aguilar, A.; Contreras, D.; Mercado, L.A.; Morales-Lange, B.; Márquez, K.; Henriquez, A.; Riquelme-Vidal, C.; Boltaña, S. Iron Overload Is Associated With Oxidative Stress and Nutritional Immunity During Viral Infection in Fish. Front. Immunol. 2018, 9, 1296. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, N.A.; Saint-Jean, S.S.R.; Encinas, P.; Pérez-Prieto, S.I.; Coll, J.M. Oral immunization of rainbow trout to infectious pancreatic necrosis virus (Ipnv) induces different immune gene expression profiles in head kidney and pyloric ceca. Fish Shellfish Immunol. 2012, 33, 174–185. [Google Scholar] [CrossRef]
- Ballesteros, N.A.; Castro, R.; Abós, B.; Saint-Jean, S.S.R.; Pérez-Prieto, S.I.; Tafalla, C. The Pyloric Caeca Area Is a Major Site for IgM+ and IgT+ B Cell Recruitment in Response to Oral Vaccination in Rainbow Trout. PLoS ONE 2013, 8, e66118. [Google Scholar] [CrossRef] [Green Version]
- Prati, S.; Henriksen, E.H.; Knudsen, R.; Amundsen, P.-A. Impacts of ontogenetic dietary shifts on the food-transmitted intestinal parasite communities of two lake salmonids. Int. J. Parasitol. Parasites Wildl. 2020, 12, 155–164. [Google Scholar] [CrossRef]
- Sudhagar, A.; Kumar, G.; El-Matbouli, M. The Malacosporean Myxozoan Parasite Tetracapsuloides bryosalmonae: A Threat to Wild Salmonids. Pathogens 2019, 9, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotob, M.H.; Menanteau-Ledouble, S.; Kumar, G.; Abdelzaher, M.; El-Matbouli, M. The impact of co-infections on fish: A review. Vet. Res. 2016, 47, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, A. Sea lice—Major pathogens of farmed atlantic salmon. Parasitol. Today 1989, 5, 291–297. [Google Scholar] [CrossRef]
- Núñez-Acuña, G.; Marambio, J.P.; Valenzuela, T.; Wadsworth, S.; Gallardo-Escárate, C. Antimicrobial peptides from Salmon salar skin induce frontal filament development and olfactory/cuticle-related genes in the sea louse Caligus rogercresseyi. Aquaculture 2016, 464, 171–177. [Google Scholar] [CrossRef]
- Syahputra, K.; Kania, P.W.; Al-Jubury, A.; Marnis, H.; Setyawan, A.C.; Buchmann, K. Differential immune gene response in gills, skin, and spleen of rainbow trout Oncorhynchus mykiss infected by Ichthyophthirius multifiliis. PLoS ONE 2019, 14, e0218630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, L.V.G.; Sigh, J.; Kania, P.W.; Holten-Andersen, L.; Buchmann, K.; Clark, T.; Rasmussen, J.S.; Einer-Jensen, K.; Lorenzen, N. Approaches towards DNA Vaccination against a Skin Ciliate Parasite in Fish. PLoS ONE 2012, 7, e48129. [Google Scholar] [CrossRef]
- Khoo, L. Fungal diseases in fish. Semin. Avian Exot. Pet Med. 2000, 9, 102–111. [Google Scholar] [CrossRef]
- Kales, S.C.; DeWitte-Orr, S.J.; Bols, N.C.; Dixon, B.M. Response of the rainbow trout monocyte/macrophage cell line, RTS11 to the water molds Achlya and Saprolegnia. Mol. Immunol. 2007, 44, 2303–2314. [Google Scholar] [CrossRef]
- Roberge, C.; Páez, D.J.; Rossignol, O.; Guderley, H.; Dodson, J.; Bernatchez, L. Genome-wide survey of the gene expression response to saprolegniasis in Atlantic salmon. Mol. Immunol. 2007, 44, 1374–1383. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Hatai, K.; Nomura, T. Saprolegniosis in salmonids and their eggs in Japan. J. Wildl. Dis. 2001, 37, 204–207. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, R.; Wang, T.; Duncan, G.J.; Skaar, I.; Mélida, H.; Bulone, V.; Van West, P.; Secombes, C.J. Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E2in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica. Infect. Immun. 2014, 82, 4518–4529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.A.M.; Król, E. Nutrigenomics and immune function in fish: New insights from omics technologies. Dev. Comp. Immunol. 2017, 75, 86–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipriano, R.C.; Smith, M.L.; Vermeersch, K.A.; Dove, A.; Styczynski, M.P. Differential metabolite levels in response to spawning-induced inappetence in Atlantic salmon Salmo salar. Comp. Biochem. Physiol. Part D Genom. Proteom. 2015, 13, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Solares, A.; Xue, X.; Parrish, C.C.; Foroutani, M.B.; Taylor, R.G.; Rise, M.L. Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil. BMC Genom. 2018, 19, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadei, E.; Bird, S.; Vecino, J.L.G.; Wadsworth, S.; Secombes, C.J. The effect of peptidoglycan enriched diets on antimicrobial peptide gene expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2013, 34, 529–537. [Google Scholar] [CrossRef]
- Casadei, E.; Bird, S.; Wadsworth, S.; Vecino, J.L.G.; Secombes, C.J. The longevity of the antimicrobial response in rainbow trout (Oncorhynchus mykiss) fed a peptidoglycan (PG) supplemented diet. Fish Shellfish Immunol. 2015, 44, 316–320. [Google Scholar] [CrossRef]
- Leal, E.; Zarza, C.; Tafalla, C. Effect of vitamin C on innate immune responses of rainbow trout (Oncorhynchus mykiss) leukocytes. Fish Shellfish Immunol. 2017, 67, 179–188. [Google Scholar] [CrossRef]
- Montero, R.; Strzelczyk, J.E.; Chan, J.T.H.; Verleih, M.; Rebl, A.; Goldammer, T.; Köllner, B.; Korytář, T. Dawn to Dusk: Diurnal Rhythm of the Immune Response in Rainbow Trout (Oncorhynchus Mykiss). Biology 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Estévez, R.A.; Mostazo, M.G.C.; Rodriguez, E.; Espinoza, J.C.; Kuznar, J.; Jónsson, Z.O.; Guðmundsson, G.H.; Maier, V.H. Inducers of salmon innate immunity: An in vitro and in vivo approach. Fish Shellfish Immunol. 2018, 72, 247–258. [Google Scholar] [CrossRef]
- Engelen, M.P.K.J.; Deutz, N.E.P. Is β-hydroxy β-methylbutyrate an effective anabolic agent to improve outcome in older diseased populations? Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 207–213. [Google Scholar] [CrossRef]
- Peng, L.; Malloy, P.J.; Feldman, D. Identification of a Functional Vitamin D Response Element in the Human Insulin-Like Growth Factor Binding Protein-3 Promoter. Mol. Endocrinol. 2004, 18, 1109–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinecke, R.D.; Chettri, J.K.; Buchmann, K. Adaptive and innate immune molecules in developing rainbow trout, Oncorhynchus mykiss eggs and larvae: Expression of genes and occurrence of effector molecules. Fish Shellfish Immunol. 2014, 38, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Dijkstra, J.M.; Köllner, B.; Kiryu, I.; Koppang, E.O.; Hordvik, I.; Sawamoto, Y.; Ototake, M. The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2005, 18, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Heinecke, R.D.; Buchmann, K. Inflammatory response of rainbow trout Oncorhynchus mykiss (Walbaum, 1792) larvae against Ichthyophthirius multifiliis. Fish Shellfish Immunol. 2013, 34, 521–528. [Google Scholar] [CrossRef]
- Chettri, J.K.; Raida, M.K.; Kania, P.W.; Buchmann, K. Differential immune response of rainbow trout (Oncorhynchus mykiss) at early developmental stages (larvae and fry) against the bacterial pathogen Yersinia ruckeri. Dev. Comp. Immunol. 2012, 36, 463–474. [Google Scholar] [CrossRef]
- Santana, P.A.; Guzman, F.; Forero, J.C.; Luna, O.F.; Mercado, L.A.; Oliveros, J.C.F. Hepcidin, Cathelicidin-1 and IL-8 as immunological markers of responsiveness in early developmental stages of rainbow trout. Dev. Comp. Immunol. 2016, 62, 48–57. [Google Scholar] [CrossRef]
- Lannan, C.N.; Winton, J.R.; Fryer, J.L. Fish cell lines: Establishment and characterization of nine cell lines from salmonids. In Vitro 1984, 20, 671–676. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Zhang, X.-Y.; Zhang, N.; Guo, X.; Peng, K.-S.; Wu, H.; Lu, L.; Wu, N.; Chen, D.-D.; Li, S.; et al. Distinctive Structural Hallmarks and Biological Activities of the Multiple Cathelicidin Antimicrobial Peptides in a Primitive Teleost Fish. J. Immunol. 2015, 194, 4974–4987. [Google Scholar] [CrossRef]
- Lai, Y.; Gallo, R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Harun, N.O.; Zou, J.; Zhang, Y.-A.; Nie, P.; Secombes, C.J. The biological effects of rainbow trout (Oncorhynchus mykiss) recombinant interleukin-8. Dev. Comp. Immunol. 2008, 32, 673–681. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, L.; Sun, L. Interleukin-8 of Cynoglossus semilaevis is a chemoattractant with immunoregulatory property. Fish Shellfish Immunol. 2011, 30, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.; Roa, F.; González-Chavarría, I.; Astuya, A.; Maura, R.; Montesino, R.; Muñoz, C.; Camacho, F.; Saavedra, P.; Valenzuela, A.; et al. In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish Shellfish Immunol. 2019, 88, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Basavarajappa, D.K.; Haeggström, J.Z.; Wan, M. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance. J. Immunol. 2015, 195, 1191–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Chen, J.; Lu, X.-J.; Shi, Y.-H. Characterization of P2X7R and Its Function in the Macrophages of ayu, Plecoglossus altivelis. PLoS ONE 2013, 8, e57505. [Google Scholar] [CrossRef] [Green Version]
- Shirdel, I.; Kalbassi, M.R.; Hosseinkhani, S.; Paknejad, H.; Wink, M. Cloning, characterization and tissue-specific expression of the antimicrobial peptide hepcidin from caspian trout (Salmo caspius) and the antibacterial activity of the synthetic peptide. Fish Shellfish Immunol. 2019, 90, 288–296. [Google Scholar] [CrossRef]
- Zou, J.; Secombes, C.J. The Function of Fish Cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunner, S.R.; Varga, J.F.A.; Dixon, B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. Biology 2020, 9, 233. https://doi.org/10.3390/biology9080233
Brunner SR, Varga JFA, Dixon B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. Biology. 2020; 9(8):233. https://doi.org/10.3390/biology9080233
Chicago/Turabian StyleBrunner, Sascha R., Joseph F. A. Varga, and Brian Dixon. 2020. "Antimicrobial Peptides of Salmonid Fish: From Form to Function" Biology 9, no. 8: 233. https://doi.org/10.3390/biology9080233
APA StyleBrunner, S. R., Varga, J. F. A., & Dixon, B. (2020). Antimicrobial Peptides of Salmonid Fish: From Form to Function. Biology, 9(8), 233. https://doi.org/10.3390/biology9080233