Genetic Stability of the Endangered Species Salix lapponum L. Regenerated In Vitro during the Reintroduction Process
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Culture Initiation and Stabilization
2.2. Multiplication
2.3. Rooting and Acclimatization
2.4. ISSR Analysis
2.5. Flow Cytometry
2.6. Statistical Analysis
3. Results and Discussion
3.1. Tissue Culture Initiation and Stabilization
3.2. Multiplication
3.3. ISSR
- -
- Nineteen products were unique to wild forms.
- -
- Ten products were amplified in at least one group of regenerated plants but absent in wild forms.
- -
- Eighty-two products were present in wild forms and at least one group of regenerated plants. Seventeen of them were monomorphic in all analyzed individuals.
3.4. Flow Cytometry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
MS | Murashige and Skoog medium |
BA | benzyladenine |
KIN | kinetin |
2iP | 2-isopentenyl-adenine |
IBA | indolebutyric acid |
IAA | indole-3-acetic acid |
NaOCl | sodium hypochlorite |
AgNO3 | silver nitrate |
HgCl2 | mercuric chloride |
ISSR | inter-simple sequence repeat |
RAPD | random amplified polymorphic DNA |
AFLP | amplified fragment length polymorphism |
PCoA | principal coordinate analysis |
Mn rate | multiplication rate |
References
- Argus, G.W. Infrageneric Classification of Salix (Salicaceae) in the New World. Syst. Bot. Monogr. 1997, 52. [Google Scholar] [CrossRef]
- Chmelař, J.; Meusel, W. The Willows of Europe: The Genus Salix, 3rd ed.; Ziemsen: Munich, Germany, 1986. [Google Scholar]
- Newsholme, C. Willows: The Genus Salix; Timber Pragg: Portland, OR, USA, 1992. [Google Scholar]
- Skálová, D.; Navrátilová, B.; Richterová, L.; Knit, M.; Sochor, M.; Vasut, R.J. Biotechnological methods of in vitro propagation in willows (Salix spp.). Open Life Sci. 2012, 7, 931–940. [Google Scholar] [CrossRef] [Green Version]
- Hroneš, M.; Macurová, S.H.; Hradílek, Z.; Hekera, P.; Duchoslav, M. Female-biased sex ratio despite the absence of spatial and niche segregation between sexes in alpine populations of dioecious Salix lapponum (Salicaceae). Alp. Bot. 2018, 129, 1–9. [Google Scholar] [CrossRef]
- Rutkowski, L. (Ed.) A Key for the Identification of Vascular Plants of Lowland Poland; Polish Scientific Publishers PWN: Warsaw, Poland, 2006. [Google Scholar]
- Kruszelnicki, J. Salix lapponum L. (wierzba lapońska). In Polish Red Book of Plants. Pheridiophytes and Flowering Plants; Kazimierczakowa, R., Zarzycki, K., Eds.; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2001; pp. 73–75. [Google Scholar]
- Pogorzelec, M.; Banach-Albińska, B.; Serafin, A.; Szczurowska, A. Population resources of an endangered species Salix lapponum L. in Polesie Lubelskie Region (eastern Poland). Acta Agrobot. 2014, 67, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Głębocka, K.; Pogorzelec, M. Genetic diversity of the Salix lapponum L. population intended as a source of material for reintroduction. Dendrobiology 2017, 78, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Slazak, B.; Sliwinska, E.; Saługa, M.; Ronikier, M.; Bujak, J.; Słomka, A.; Göransson, U.; Kuta, E. Micropropagation of Viola uliginosa (Violaceae) for endangered species conservation and for somaclonal variation-enhanced cyclotide biosynthesis. Plant Cell Tissue Organ Cult. 2014, 120, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Bunn, E.; Krauss, S.L.; Dixon, K.W. Reproductive success in a reintroduced population of a critically endangered shrub, Symonanthus bancroftii (Solanaceae). Aust. J. Bot. 2007, 55. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, R.; Arya, I.D. An efficient in vitro protocol for important and highly valuable medicinal plant Rauwolfia serpentina: An endangered medicinal plant of India. In In Vitro Cellular and Developmental Biology–Plant; Springer: New York, NY, USA, 2008; Volume 44, pp. 360–361. [Google Scholar]
- Holobiuc, I.; Blindu, R.; Cristea, V. Researches Concerning In Vitro Conservation of the Rare Plant Species Dianthus Nardiformis Janka. Biotechnol. Biotechnol. Equip. 2009, 23, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Marszał-Jagacka, J.; Kromer, K. In Vitro Propagation of Rare and Endangered Serpentine Fern Species. In Working with Ferns; Springer Science and Business Media LLC: New York, NY, USA, 2010; pp. 149–164. [Google Scholar]
- Amo-Marco, J.B.; Lledo, M.D. In vitro propagation of Salix tarraconensis Pau ex Font Quer, an endemic and threatened plant. Vitro Cell. Dev. Biol. Anim. 1996, 32, 42–46. [Google Scholar] [CrossRef]
- Lyyra, S.; Lima, A.; Merkle, S.A. In vitro regeneration of Salix nigra from adventitious shoots. Tree Physiol. 2006, 26, 969–975. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Kim, Y.W.; Moon, H.K.; Murthy, H.N.; Choi, Y.H.; Cho, H.M. Micropropagation of Salix pseudolasiogyne from nodal segments. Plant Cell Tiss. Organ Cult. 2008, 93, 341–346. [Google Scholar] [CrossRef]
- Phillips, R.L.; Kaeppler, S.M.; Olhoft, P. Genetic instability of plant tissue cultures: Breakdown of normal controls. Proc. Natl. Acad. Sci. USA 1994, 91, 5222–5226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endemann, M.; Hristoforoglu, K.; Stauber, T.; Wilhelm, E. Assessment of Age-Related Polyploidy in Quercus robur L. Somatic Embryos and Regenerated Plants Using DNA Flow Cytometry. Biol. Plant. 2001, 44, 339–345. [Google Scholar] [CrossRef]
- Rodrigues, P.H.V. Somaclonal variation in micropropagated Heliconia bihai cv. Lobster Claw I plantlets (Heliconiaceae). Sci. Agricola 2008, 65, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.; Konisho, K.; Minami, M.; Nemoto, K. Somaclonal variation of regenerated plants in chili pepper (Capsicum annuum L.). Euphytica 2003, 130, 233–239. [Google Scholar] [CrossRef]
- Kawiak, A.; Łojkowska, E. Application of rapd in the determination of genetic fidelity in micropropagated Drosera plantlets. Vitro Cell. Dev. Biol. Anim. 2004, 40, 592–595. [Google Scholar] [CrossRef]
- Modgil, M.; Mahajan, K.; Chakrabarti, S.; Sharma, D.; Sobti, R. Molecular analysis of genetic stability in micropropagated apple rootstock MM106. Sci. Hortic. 2005, 104, 151–160. [Google Scholar] [CrossRef]
- Thiem, B.; Śliwińska, E. Flow cytometric analysis of nuclear DNA content in cloudberry (Rubus chamaemorus L.) in vitro cultures. Plant Sci. 2003, 164, 129–134. [Google Scholar] [CrossRef]
- Ochatt, S.J.; Patat-Ochatt, E.M.; Moessner, A. Ploidy level determination within the context of in vitro breeding. Plant Cell Tissue Organ Cult. (PCTOC) 2011, 104, 329–341. [Google Scholar] [CrossRef]
- Singh, S.R.; Dalal, S.; Singh, R.; Dhawan, A.K.; Kalia, R.K. Evaluation of genetic fidelity of in vitro raised plants of Dendrocalamus asper (Schult. & Schult. F.) Backer ex K. Heyne using DNA-based markers. Acta Physiol. Plant. 2012, 35, 419–430. [Google Scholar] [CrossRef]
- Thiem, B.; Kikowska, M.; Krawczyk, A.; Więckowska, B.; Sliwinska, E. Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue Organ Cult. (PCTOC) 2013, 114, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Nybom, H.; Weising, K.; Rotter, B. DNA fingerprinting in botany: Past, present, future. Investig. Genet. 2014, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.G.; Kubelik, A.R.; Livak, K.J.; Rafalski, J.; Tingey, S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18, 6531–6535. [Google Scholar] [CrossRef] [Green Version]
- Zietkiewicz, E.; Rafalski, A.; Labuda, D. Genome Fingerprinting by Simple Sequence Repeat (SSR)-Anchored Polymerase Chain Reaction Amplification. Genomics 1994, 20, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Van De Lee, T.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M.; et al. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [Green Version]
- Bairu, M.W.; Aremu, A.O.; Van Staden, J. Somaclonal variation in plants: Causes and detection methods. Plant Growth Regul. 2010, 63, 147–173. [Google Scholar] [CrossRef]
- Rewers, M.; Kisiala, A.B.; Drouin, J.; Sliwinska, E.; Cholewa, E. In vitro-regenerated wetland sedge Eriophorum vaginatum L. is genetically stable. Acta Physiol. Plant. 2012, 34, 2197–2206. [Google Scholar] [CrossRef]
- Guo, W.; Li, Y.; Gong, L.; Li, F.; Dong, Y.; Liu, B. Efficient micropropagation of Robinia ambigua var. idahoensis (Idaho Locust) and detection of genomic variation by ISSR markers. Plant Cell Tissue Organ Cult. 2006, 84, 343–351. [Google Scholar] [CrossRef]
- Liu, F.; Huang, L.; Li, Y.; Reinhoud, P.; Jongsma, M.A.; Wang, C.-Y. Shoot organogenesis in leaf explants of Hydrangea macrophylla ‘Hyd1’ and assessing genetic stability of regenerants using ISSR markers. Plant Cell Tiss. Organ Cult. 2011, 104, 111–117. [Google Scholar] [CrossRef]
- Saeed, T.; Shahzad, A.; Sharma, S. Studies on single and double layered biocompatible encapsulation of somatic embryos in Albizia lebbeck and genetic homogeneity appraisal among synseed derived lines through ISSR markers. Plant Cell Tissue Organ Cult. 2019, 140, 431–445. [Google Scholar] [CrossRef]
- Kanwar, K.; Bindiya, K. Random amplified polymorphic DNA (RAPDs) markers for genetic analysis in micropropagated plants of Robinia pseudoacacia L. Euphytica 2003, 132, 41–47. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid Flow Cytometric Analysis of the Cell Cycle in Intact Plant Tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef]
- Doležel, J.; Sgorbati, S.; Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 1992, 85, 625–631. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashkina, O.; Tabatskaya, T.M.; Gorobets, A.I.; Shestibratov, K.A. Method of clonal micropropagation of different willow species and hybrids. Appl. Biochem. Microbiol. 2010, 46, 769–775. [Google Scholar] [CrossRef]
- Chalupa, V. In vitro propagation of willows (Salix spp.), European mountain-ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biol. Plant. 1983, 25, 305–307. [Google Scholar] [CrossRef]
- Garg, R.K.; Srivastava, V.; Kaur, K.; Gosal, S.S. Effect of sterilization treatments on culture establishment in Jatropha curcas L. Karnataka J. Agric. Sci. 2014, 27, 190–192. [Google Scholar]
- Ewald, D. Micropropagation of Larix species via organogenesis. In Protocols for Micropropagation of Woody Trees and Fruits; Springer Science and Business Media LLC: Amsterdam, The Netherlands, 2007; pp. 125–136. [Google Scholar]
- Khan, I.; Ahmad, N.; Anis, M. The role of cytokinins on in vitro shoot production in Salix tetrasperma Roxb.: A tree of ecological importance. Trees 2011, 25, 577–584. [Google Scholar] [CrossRef]
- Grendysz, J.; Wróbel, J.; Kulpa, D. Influence of micropropagation with addition of kinetin on development of a willow (Salix viminalis L.). World Sci. News 2017, 70, 201–215. [Google Scholar]
- Brandova, B.; Hrones, M.; Knitl, M.; Richterova, L.; Skálová, D.; Navratilowa, B.; Vasut, R.J. Biotechnologicke in vitro metody u ohrożenych druhu vrb. Opera Corcontica 2011, 48, 79–88. [Google Scholar]
- Babu, G.A.; Vinoth, A.; Ravindhran, R. Direct shoot regeneration and genetic fidelity analysis in finger millet using ISSR markers. Plant Cell Tissue Organ Cult. (PCTOC) 2017, 132, 157–164. [Google Scholar] [CrossRef]
- Sadhu, S.; Jogam, P.; Thampu, R.K.; Abbagani, S.; Penna, S.; Peddaboina, V. High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult. (PCTOC) 2020, 141, 465–477. [Google Scholar] [CrossRef]
- Pogorzelec, M.; Głębocka, K.; Hawrylak-Nowak, B.; Parzymies, M. Reproduction and diversity of the endangered Salix lapponum L. populations in Eastern Poland. Turk. J. Bot. 2014, 38, 1239–1247. [Google Scholar] [CrossRef]
- Pinto, G.; Loureiro, J.; Lopes, T.; Santos, C. Analysis of the genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor. Appl. Genet. 2004, 109, 580–587. [Google Scholar] [CrossRef]
- Loureiro, J.; Pinto, G.; Lopes, T.; Doležel, J.; Santos, C. Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 2005, 221, 815–822. [Google Scholar] [CrossRef]
- Brito, G.; Lopes, T.; Loureiro, J.; Rodriguez, E.; Santos, C. Assessment of genetic stability of two micropropagated wild olive species using flow cytometry and microsatellite markers. Trees 2010, 24, 723–732. [Google Scholar] [CrossRef]
- Escobedo-GraciaMedrano, R.M.; Maldonado-Borges, J.I.; Burgos-Tan, M.J.; Valadez-Gonzalez, N.; Ku-Cauich, J.R. Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell Tissue Organ Cult. (PCTOC) 2013, 116, 175–185. [Google Scholar] [CrossRef]
- Kikowska, M.; Włodarczyk, A.; Rewers, M.; Sliwinska, E.; Studzińska-Sroka, E.; Witkowska-Banaszczak, E.; Stochmal, A.; Żuchowski, J.; Dlugaszewska, J.; Thiem, B. Micropropagation of Chaenomeles japonica: A Step towards Production of Polyphenol-rich Extracts Showing Antioxidant and Antimicrobial Activities. Molecules 2019, 24, 1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitch, I.J.; Johnston, E.; Pellicer, J.; Hidalgo, O.; Bennett, M.D. Plant DNA C-Values Database (Release 7.1, Apr 2019). 2019. Available online: https://cvalues.science.kew.org/ (accessed on 31 December 2019).
Primer | Sequence | Size Range of Bands |
---|---|---|
SR16 | (GA)8C | 250–1700 |
SR22 | (CA)8G | 350–1600 |
SR32 | (AG)8YT | 180–2200 |
SR68 | (AC)8T | 300–2600 |
SR75 | (AT)8C | 750–2000 |
SR77 | (ATG)8C | 500–1800 |
SR78 | (ATG)8G | 400–1700 |
SR84 | (CA)8RG | 510–3000 |
SR85 | (CA)8RT | 420–1800 |
Disinfection Method | Number of Regenerating Explants without Contamination n/N (%) |
---|---|
NaOCl 0.5% | 18/118 (21.7) |
AgNO3 0.5% | 6/132 (4.5) |
HgCl2 0.1% | 42/120 (35.0) |
Two-step disinfection | 41/229 (18.0) |
Growth Regulators | Tip Explants | Nodes | Tips and Nodes Mn Rate | |||||
---|---|---|---|---|---|---|---|---|
Number of Nodes per Explant | Plants with Axillary Shoots (%) | Axillary Shoots/Explant | Mn Rate ** | Plants with Axillary Shoots (%) | Axillary Shoots/Explant | Mn Rate | ||
BA 0.5 | 3.8bc * | 55 | 1.08b | 4.39 | 30 | 1.00a | 0.30 | 4.69 |
BA 1 | 3.0b-e | 30 | 1.00b | 3.30 | 25 | 1.00a | 0.25 | 3.55 |
BA 2.5 | 2.8c-e | 15 | 1.50a | 3.02 | 35 | 1.00a | 0.35 | 3.39 |
BA 0.5 + IBA 0.05 | 2.7c-e | 55 | 1.00b | 3.25 | 25 | 1.00a | 0.25 | 3.53 |
BA 1 + IBA 0.1 | 2.1e | 40 | 1.00b | 2.5 | 40 | 1.00a | 0.40 | 2.9 |
BA 2.5 + IBA 0.25 | 2.5de | 30 | 1.14b | 2.84 | 55 | 1.00a | 0.55 | 3.39 |
KIN 0.5 | 3.9bc | 25 | 1.00b | 4.15 | 65 | 1.00a | 0.65 | 4.8 |
KIN 1 | 4.3ab | 40 | 1.00b | 4.70 | 45 | 1.00a | 0.45 | 5.15 |
KIN 2.5 | 3.6b-d | 23 | 1.00b | 3.83 | 50 | 1.00a | 0.50 | 4.33 |
KIN 0.5 + IAA 0.05 | 5.3a | 55 | 1.00b | 5.85 | 55 | 1.09a | 0.60 | 6.45 |
KIN 1 + IAA 0.1 | 3.7b-d | 45 | 1.00b | 4.15 | 70 | 1.07a | 0.75 | 4.9 |
KIN 2.5 + IAA 0.25 | 2.8c-e | 50 | 1.10b | 3.35 | 39 | 1.00a | 0.39 | 3.74 |
2iP 0.5 | 3.3b-e | 0 | - | 3.30 | 23 | 1.00a | 0.23 | 3.53 |
2iP 1 | 3.5b-d | 5 | 1.00b | 3.55 | 45 | 1.00a | 0.45 | 4.0 |
2iP 2.5 | 2.5de | 0 | - | 2.50 | 40 | 1.00a | 0.40 | 2.5 |
2iP 0.5 + IBA 0.05 | 3.3b-e | 15 | 1.00b | 3.45 | 45 | 1.00a | 0.45 | 3.9 |
2iP 1 + IBA 0.1 | 3.3b-e | 5 | 1.00b | 3.35 | 35 | 1.00a | 0.35 | 3.7 |
2iP 2.5 + IBA 0.25 | 2.9b-e | 15 | 1.00b | 3.05 | 25 | 1.00a | 0.25 | 3.3 |
Growth Regulator | Tip Explants | Nodes | ||
---|---|---|---|---|
Rooted Plantlets (%) | Number of Roots per Plantlet | Rooted Plantlets (%) | Number of Roots per Plantlet | |
BA 0.5 | 0 | - | 0 | - |
BA 1 | 0 | - | 0 | - |
BA 2.5 | 0 | - | 0 | - |
BA 0.5 + IBA 0.05 | 0 | - | 0 | - |
BA 1 + IBA 0.1 | 0 | - | 0 | - |
BA 2.5 + IBA 0.25 | 0 | - | 0 | - |
KIN 0.5 | 40 | 2.75ab* | 55 | 3.45a |
KIN 1 | 50 | 2.80ab | 30 | 2.17ab |
KIN 2.5 | 23 | 2.00ab | 25 | 2.20ab |
KIN 0.5 + IAA 0.05 | 40 | 3.75a | 65 | 2.62ab |
KIN 1 + IAA 0.1 | 35 | 2.29ab | 55 | 2.64ab |
KIN 2.5 + IAA 0.25 | 0 | - | 15 | 3.50a |
2iP 0.5 | 45 | 2.22ab | 0 | - |
2iP 1 | 20 | 1.25b | 0 | - |
2iP 2.5 | 0 | - | 20 | 2.00ab |
2iP 0.5 + IBA 0.05 | 30 | 2.64ab | 30 | 1.83b |
2iP 1 + IBA 0.1 | 17 | 2.14ab | 55 | 1.55b |
2iP 2.5 + IBA 0.25 | 0 | - | 0 | - |
Types of PCR Products | C1 | C2 | C3 | C4 | |
---|---|---|---|---|---|
Unique to wild forms | 19 | - | - | - | - |
Unique to regenerated plants | 10 | 6 | 7 | 4 | 4 |
Wild forms and regenerated plants | 82 | 76 | 71 | 67 | 66 |
Polymorphism (%) | - | 45.05 | 13.51 | 27.93 | 28.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parzymies, M.; Pogorzelec, M.; Głębocka, K.; Śliwińska, E. Genetic Stability of the Endangered Species Salix lapponum L. Regenerated In Vitro during the Reintroduction Process. Biology 2020, 9, 378. https://doi.org/10.3390/biology9110378
Parzymies M, Pogorzelec M, Głębocka K, Śliwińska E. Genetic Stability of the Endangered Species Salix lapponum L. Regenerated In Vitro during the Reintroduction Process. Biology. 2020; 9(11):378. https://doi.org/10.3390/biology9110378
Chicago/Turabian StyleParzymies, Marzena, Magdalena Pogorzelec, Katarzyna Głębocka, and Elwira Śliwińska. 2020. "Genetic Stability of the Endangered Species Salix lapponum L. Regenerated In Vitro during the Reintroduction Process" Biology 9, no. 11: 378. https://doi.org/10.3390/biology9110378
APA StyleParzymies, M., Pogorzelec, M., Głębocka, K., & Śliwińska, E. (2020). Genetic Stability of the Endangered Species Salix lapponum L. Regenerated In Vitro during the Reintroduction Process. Biology, 9(11), 378. https://doi.org/10.3390/biology9110378