Living Organisms Author Their Read-Write Genomes in Evolution
Abstract
:1. Introduction and Goals
2. Parsing the Fundamental Question in Evolution: How Do Heritable Adaptive Novelties and New Groups of Organisms Arise?
3. Biomath: One + One = One [24,25]; Ubiquitous Cell Mergers in Reproduction and Evolution (Reviewed in [26])
3.1. Symbiogenetic Origins of Eukaryotic Cells [26,27,28,29,30,31,32] and Their Photosynthetic Lineages
- (1)
- lineages that arose from primary cyanobacteria endosymbiosis with a non-photosynthetic eukaryotic cell: Arachaeaplastida = red and green algae, Glaucophytes = algae containing peptidoglycans, and green plants = Embryophyta;
- (2)
- a separate lineage of photosynthetic amoebae Paulinella chromatophora that arose from a primary endosymbiosis with photosynthetic bacteria from the Synechococcus-Prochloron clade; and,
- (3)
- highly diverse photosynthetic lineages that arose from a secondary or even tertiary endosymbiosis of a photosynthetic eukaryotic cell with a non-photosynthetic eukaryote.
3.2. Symbiosis as an Adaptive and Evolutionary Stimulus; Speciation by Endosymbiosis and Mating Incompatibility
3.3. Holobiont Evolution: Lamarckian Acquisition and Inheritance of Novel Traits
4. “Cataclysmic Evolution” by Interspecific Hybridization
4.1. Abundant Examples of Speciation and Adaptive Radiations by Interspecific Hybridization and Whole Genome Duplications (WGDs) in Plants and Animals
4.2. Genomic Consequences of Interspecific Hybridization
4.3. The Special Genomic Impacts of Interspecific Hybridization on Evolutionary Innovation
5. Widespread Horizontal DNA Sequence Mobility between Organisms
5.1. Distinct Modes of Intercellular DNA Transfer
5.2. Lessons on Rapid Evolution from the Smallest Living Cells
5.3. Horizontal DNA Transfer across Large Taxonomic Boundaries
6. Genome Writing by Natural Genetic Engineering—Protein Evolution by Natural Genetic Engineering, Exon Rearrangements and Exon Originations
6.1. The Modular Domain-Based Structure of Proteins
- How does a particular domain combination vary as it is transmitted within and between taxonomic groups?
- How do different combinations of domains assemble?
- How does each separate domain originate and enter into its various protein contexts?
6.2. Protein Evolution by Exon Shuffling and Exon Accumulation, Changes to Alternative Splicing Patterns, and Insertion of Reverse-Transcribed Coding Sequences [303]
6.3. Protein Evolution by Domain/Exon Origination
- “Overprinting” of an existing exon by translating the sequence in a new reading frame [387];
- Cooption of the antisense strand from an expressed locus [388];
- Loss of a stop codon at the 3′ end of a terminal exon, thereby extending the protein C terminus by continuing translation into previously non-coding sequence [389];
- Retroposition [356,395,396], frequently from non-coding RNA [391,397], which may account for some ORFans arising from non-coding transcribed regions [390]. The novel coding potential of long non-coding RNAs has been cited as a general phenomenon [398], and we will see in Section 7 how abundant these RNAs are in eukaryotic genomes.
7. Genome Writing by Natural Genetic Engineering: Mobile and Repetitive DNA Elements Actively Contributing to Genome Organization, Organismal Complexity and Genome Regulation
7.1. Regulatory Studies Led to Recognizing the Syntactical Organization of Genomes
7.2. Repetitive DNA Elements Provide Distributed Copies of Each Class of Regulatory Site
7.3. How Do Organisms Use Repetitive DNA for Genome Rewriting in Evolution? Dispersed Mobile DNA Elements
7.4. Rewiring Transcriptional Regulatory Networks in Evolution of Complex Organisms
7.4.1. Embryonic Stem Cells
7.4.2. Early Embryonic Development
7.4.3. Both Sides of the Fetal-Maternal Interface in Viviparous Reproduction
7.4.4. Brain and Nervous System Development
7.4.5. Innate Immunity
7.5. Mobile DNA Elements Are Major Contributors to “Non-Coding” Regulatory RNA Molecules
7.5.1. MicroRNAs
7.5.2. Long Non-Coding lncRNAs
8. Ecological Disruption and Read-Write Genome Modifications
8.1. Ecological Change, Mating Population Decline and Interspecific Hybridization
8.2. Regulated Biochemistry at the Basis of Point Mutations, Deletions, Translocations and Mutational “Storms”
8.3. Diverse Ecological Impacts on Natural Genetic Engineering Functions
- organismal growth conditions (starvation, etc.), growth phase and cellular differentiation;
- interactions with biomolecules, including antibiotics, hormones, nutrients, signals, extracellular products of pathogens (toxins, etc.), as well as biotic stresses, such as bacterial, fungal, and virus infection; and,
- abiotic stresses, including heat, cold, drought, oxidizing agents, heavy metals, wounding, and even space travel.
9. Further Reflections on Genome Rewriting by NGE as a Core Biological Capability
9.1. Natural Genetic Engineering as Part of the Normal Life Cycle
9.1.1. Diversity-Generating Retroelements (DGRs)
9.1.2. Bacterial Phase Variation
9.1.3. Bacterial Antigenic Variation
9.1.4. CRISPR Systems for Adaptive Immunity
9.1.5. Prokaryotic DNA-Targeted Adaptive Immune Defense
9.1.6. Prokaryotic Systems for Aggregating Coding Sequence Cassettes
9.1.7. Yeast Mating-Type Switching
9.1.8. Trypanosome Antigenic Variation
9.1.9. Ciliate Macronucleus Genome Restructuring
9.1.10. Mammalian Adaptive Immune System Rearrangements
9.2. Lessons on the Real Time Potential of Natural Genetic Engineering from Cancer Genomes
9.3. What Factors May Bias Genome Rewriting to Generate Selectively Positive Outcomes?
9.3.1. Do Living Organisms Possess NGE Operators of Clear Evolutionary Utility?
9.3.2. Can the Evolutionarily Useful NGE Operators Be Regulated and/or Targeted in Ways that Could Enhance Their Adaptive Utility?
9.3.3. Are There Generic Features of Cellular Genome Function That Can Favor Evolutionarily Adaptive NGE Outcomes?
9.3.4. Are There Feasible Experimental Approaches to Demonstrating and Dissecting Selectively Advantageous Bias in Complex Evolutionary NGE Events?
9.4. Conclusions
Supplementary Materials
Conflicts of Interest
Abbreviations
Ac | long interspersed nucleotide element |
AID | activation-induced deaminase |
AP | apurinic |
BER | base excision repair |
BFB | breakage-fusion-bridge cycle |
CDS | coding sequence |
CDT | cytolethal distending toxin |
CNV | copy number variation |
CRISPR | clustered regularly interspaced short palindromic repeats |
DDR | DNA damage response |
DGR | diversity-generating retroelement |
dPRL | decidual prolactin |
Ds | Dissociator transposon |
DSB | double-strand break |
ENV | envelope protein (retrovirus) |
ERV | endogenous retrovirus |
ESC | embryonic stem cell |
HERV/hERV | human ERV |
HGT | horizontal gene transfer |
HR | homologous recombination |
Indel | insertion plus deletion |
IPSC | induced pluripotent stem cell |
IR | inverted repeat |
lincRNA | long intergenic non-coding RNA |
LINE | long interspersed nucleotide element |
lncRNA | long non-coding RNA |
LSG | lineage-specific gene |
LTRs | long terminal repeats |
MaLR | mammalian apparent LTR-retrotransposon |
MER | mammalian endogenous repeat |
mERV | mouse endogenous retrovirus |
MIR | mammalian-wide interspersed repeat |
miRNA | microRNA |
MMR | mutagenic mismatch repair |
mRNA | messenger RNA |
MT | mouse transposon |
NAHR | non-allelic homologous recombination |
NCLDV | nucleocytoplasmic large DNA virus |
NEE | novel enriched environment |
NER | nucleotide excision repair |
NGE | natural genetic engineering |
NHEJ | non-homologous end-joining |
ORF | open reading frame |
ORR | origin region repeat |
RAG | recombination-activating gene, transposase activity needed for V(D)J recombination in adaptive immunity |
RIDL | repeat insertion domains of lncRNA |
RLEs | retrovirus-like elements |
ROS | reactive oxygen species |
SINE | short interspersed nucleotide element |
SOS | DNA damage signal-inducible repair response in bacteria |
SSB | single-strand break |
SSR | simple sequence repeat |
SVA | a hominid retrotransposon containing SINE, VNTR and Alu components |
TE | transposable element |
WGD | whole genome duplication |
References and Notes
- Bukhari, A.I.; Shapiro, J.A.; Adhya, S.L. DNA Insertion Elements, Plasmids and Episomes; Cold Spring Harbor Press: Cold Spring Harbor, NY, USA, 1977. [Google Scholar]
- Shapiro, J.A. Mobile Genetic Elements; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Shapiro, J.A. Evolution: A View from the 21st Century; FT Press Science: Upper Saddle River, NJ, USA, 2011; p. 272. [Google Scholar]
- Berg, D.E.; Howe, M.M. (Eds.) Mobile DNA; American Society for Microbiology: Washington, DC, USA, 1989; p. 972. [Google Scholar]
- Craig, N.; Craigie, R.; Gellert, M.; Lambowitz, A.M. Mobile DNA II; American Society for Microbiology Press: Washington, DC, USA, 2002. [Google Scholar]
- Craig, N.L.; Chandler, M.; Gellert, M.; Lambowitz, A.L.; Rice, P.A.; Sandmeyer, S.B. (Eds.) Mobile DNA III; American Society for Microbiology: Washington, DC, USA, 2015. [Google Scholar]
- Kazazian, H.H. Mobile DNA: Finding Treasure in Junk; FT Press Science: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Haber, J.E. Genome Stability: DNA Repair and Recombination, 1st ed.; Garland Scientific: New York, NY, USA, 2013. [Google Scholar]
- Shapiro, J.A. How life changes itself: The Read-Write (RW) genome. Phys. Life Rev. 2013, 10, 287–323. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Exploring the read-write genome: Mobile DNA and mammalian adaptation. Crit. Rev. Biochem. Mol. Biol. 2017, 52, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. Biology 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Biological action in Read-Write genome evolution. Interface Focus 2017, 7, 20160115. [Google Scholar] [CrossRef] [PubMed]
- Crick, F. On protein synthesis. Symp. Soc. Exp. Biol. 1958, 12, 138–163. [Google Scholar] [PubMed]
- Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. Turing centenary: Life’s code script. Nature 2012, 482, 461. [Google Scholar] [CrossRef] [PubMed]
- Darwin, C. Origin of Species; John Russel: London, UK, 1859. [Google Scholar]
- Darwin, C. The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 6th ed.; John Murray: London, UK, 1872. [Google Scholar]
- Richardson, L.A. Evolving as a holobiont. PLoS Biol. 2017, 15, e2002168. [Google Scholar] [CrossRef] [PubMed]
- Zrzavy, J.; Skala, Z. Holobionts, hybrids, and cladistic classification. Biosystems 1993, 31, 127–130, discussion 130–133. [Google Scholar] [CrossRef]
- Rosenberg, E.; Sharon, G.; Zilber-Rosenberg, I. The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ. Microbiol. 2009, 11, 2959–2962. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.R.; Grant, P.R. Watching speciation in action. Science 2017, 355, 910–911. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.R.; Grant, B.R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 2002, 296, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.R.; Grant, P.R. Evolution of Darwin’s finches caused by a rare climatic event. Proc. R. Soc. B 1993, 251, 111–117. [Google Scholar] [CrossRef]
- Margulis, L. Symbiogenesis. A new principle of evolution rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957). Paleontol. J. 2010, 44, 1525–1539. [Google Scholar] [CrossRef]
- Kozo-Polyansky, B.M. Symbiogenesis: A New Principle of Evolution (1924); Harvard University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Archibald, J. One Plus One Equals One: Symbiosis and the Evolution of Complex Life; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Harold, F.M. In Search of Cell History: The Evolution of Life’s Building Blocks; University Of Chicago Press: Chicago, IL, USA, 2014. [Google Scholar]
- Knoll, A.H.; Javaux, E.J.; Hewitt, D.; Cohen, P. Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1023–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allwood, A.C.; Grotzinger, J.P.; Knoll, A.H.; Burch, I.W.; Anderson, M.S.; Coleman, M.L.; Kanik, I. Controls on development and diversity of Early Archean stromatolites. Proc. Natl. Acad. Sci. USA 2009, 106, 9548–9555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margulis, L. Origin of Eukaryotic Cells; Yale University Press: New Haven, CT, USA, 1970. [Google Scholar]
- Margulis, L. The origin of plant and animal cells. Am. Sci. 1971, 59, 230–235. [Google Scholar] [PubMed]
- One of the great mysteries of evolution is how eukaryotic organisms suddenly appeared in the paleontological record in the Proterozoic era between 1.6 to 2.1 billion years ago [28], about 1.3–1.8 billion years after the oldest prokaryotic fossils [29]. Eukaryotic cells contain many cell structures and systems that are not present in prokaryotes [27]. These include the nucleus, endoplasmic reticulum, lysosomes, vacuoles, centrioles, kinetoplasts, cytoskeleton, and eukaryotic flagella that are quite distinct from prokaryotic flagella. How such structures evolved without any evidence for intermediate cellular precursors is a major unsolved problem. As the text shows, there is compelling DNA evidence that two eukaryotic organelles, the mitochondrion and the plastid, arose through bacterial and cyanobacterial endosymbiogenesis. Lynn Margulis has built upon these cases and direct observations of close associations between eukaryotic and prokaryotic cells to put forward the serial endosymbiotic theory [30,31]. This theory hypothesizes that many (perhaps all) characteristic eukaryotic cell structures evolved from various endosymbiotic prokaryotic ancestors. Unfortunately, most eukaryotic cell organelles lack DNA and a protein synthesis apparatus; so direct evidence for connection to a prokaryotic ancestry is lacking. However, if there is merit to the serial endosymbiotic theory, then active cell mergers would have played an even greater role in early eukaryotic cell evolution than we are currently able to substantiate.
- Dyall, S.D.; Brown, M.T.; Johnson, P.J. Ancient invasions: From endosymbionts to organelles. Science 2004, 304, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Archibald, J.M.; Weber, A.P.; Reyes-Prieto, A. How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 2007, 29, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.A.; Embley, T.M. Changing ideas about eukaryotic origins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140318. [Google Scholar] [CrossRef] [PubMed]
- Embley, T.M. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Van der Giezen, M. Hydrogenosomes and mitosomes: Conservation and evolution of functions. J. Eukaryot. Microbiol. 2009, 56, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Makiuchi, T.; Nozaki, T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014, 100, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Embley, T.M.; Martin, W. Eukaryotic evolution, changes and challenges. Nature 2006, 440, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Esser, C.; Ahmadinejad, N.; Wiegand, C.; Rotte, C.; Sebastiani, F.; Gelius-Dietrich, G.; Henze, K.; Kretschmann, E.; Richly, E.; Leister, D.; et al. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol. Biol. Evol 2004, 21, 1643–1660. [Google Scholar] [CrossRef] [PubMed]
- Thrash, J.C.; Boyd, A.; Huggett, M.J.; Grote, J.; Carini, P.; Yoder, R.J.; Robbertse, B.; Spatafora, J.W.; Rappe, M.S.; Giovannoni, S.J. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci. Rep. 2011, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Keeling, P.J. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 729–748. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Prieto, A.; Yoon, H.S.; Moustafa, A.; Yang, E.C.; Andersen, R.A.; Boo, S.M.; Nakayama, T.; Ishida, K.; Bhattacharya, D. Differential gene retention in plastids of common recent origin. Mol. Biol. Evol. 2010, 27, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- McFadden, G.I. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 2014, 6, a016105. [Google Scholar] [CrossRef] [PubMed]
- Gavelis, G.S.; Hayakawa, S.; White Iii, R.A.; Gojobori, T.; Suttle, C.A.; Keeling, P.J.; Leander, B.S. Eye-like ocelloids are built from different endosymbiotically acquired components. Nature 2015, 523, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.L.; Palmer, J.D. Evolution of mitochondrial gene content: Gene loss and transfer to the nucleus. Mol. Phylogenet. Evol. 2003, 29, 380–395. [Google Scholar] [CrossRef]
- Gandini, C.L.; Sanchez-Puerta, M.V. Foreign Plastid Sequences in Plant Mitochondria are Frequently Acquired Via Mitochondrion-to-Mitochondrion Horizontal Transfer. Sci. Rep. 2017, 7, 43402. [Google Scholar] [CrossRef] [PubMed]
- Shutt, T.E.; Gray, M.W. Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 2006, 22, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Lang, B.F.; Burger, G.; O’Kelly, C.J.; Cedergren, R.; Golding, G.B.; Lemieux, C.; Sankoff, D.; Turmel, M.; Gray, M.W. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 1997, 387, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Boussau, B.; Karlberg, E.O.; Frank, A.C.; Legault, B.A.; Andersson, S.G. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA 2004, 101, 9722–9727. [Google Scholar] [CrossRef] [PubMed]
- “The size and structure of the mitochondrial genome varies greatly in different eukaryotes. It is highly reduced in gene content compared with its bacterial ancestor. For example, “there are 97 genes in the most gene-rich mitochondrial genome (the heterotrophic flagellate Reclinomonas americana [49]) compared with 835 genes in the smallest α-proteobacterial genome sequenced so far (Rickettsia prowazekii [50])” [48].
- Gray, M.W. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 2012, 4, a011403. [Google Scholar] [CrossRef] [PubMed]
- Howe, C.J.; Nisbet, R.E.; Barbrook, A.C. The remarkable chloroplast genome of dinoflagellates. J. Exp. Bot. 2008, 59, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, R.; Huynen, M.A. Mosaic origin of the mitochondrial proteome. Proteomics 2010, 10, 4012–4024. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.W. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria. Proc. Natl. Acad. Sci. USA 2015, 112, 10133–10138. [Google Scholar] [CrossRef] [PubMed]
- Wallin, I.E. Symbionticism and the Origin of Species; Williams & Wilkins: Baltimore, MD, USA, 1927. [Google Scholar]
- Zook, D. Symbiosis—Evolution’s Co-Author. In Reticulate Evolution, Interdisciplinary Evolution Research 3; Gontier, N., Ed.; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Crespi, M.; Frugier, F. De novo organ formation from differentiated cells: Root nodule organogenesis. Sci. Signal. 2008, 1, re11. [Google Scholar] [CrossRef] [PubMed]
- Masson-Boivin, C.; Giraud, E.; Perret, X.; Batut, J. Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends Microbiol. 2009, 17, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Finlay, R.D. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot. 2008, 59, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P.; Anca, I.A. Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Pais, R.; Lohs, C.; Wu, Y.; Wang, J.; Aksoy, S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly. Appl. Environ. Microbiol. 2008, 74, 5965–5974. [Google Scholar] [CrossRef] [PubMed]
- Leser, T.D.; Molbak, L. Better living through microbial action: The benefits of the mammalian gastrointestinal microbiota on the host. Environ. Microbiol. 2009, 11, 2194–2206. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T. Termite-microbe symbiotic system and its efficient degradation of lignocellulose. BioSci. Biotechnol. Biochem. 2009, 73, 2561–2567. [Google Scholar] [CrossRef] [PubMed]
- Suen, G.; Scott, J.J.; Aylward, F.O.; Adams, S.M.; Tringe, S.G.; Pinto-Tomas, A.A.; Foster, C.E.; Pauly, M.; Weimer, P.J.; Barry, K.W.; et al. An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 2010, 6, e1001129. [Google Scholar] [CrossRef] [PubMed]
- Blackall, L.L.; Wilson, B.; van Oppen, M.J. Coral-the world’s most diverse symbiotic ecosystem. Mol. Ecol. 2015, 24, 5330–5347. [Google Scholar] [CrossRef] [PubMed]
- Rumpho, M.E.; Pelletreau, K.N.; Moustafa, A.; Bhattacharya, D. The making of a photosynthetic animal. J. Exp. Biol. 2011, 214, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Kerney, R.; Kim, E.; Hangarter, R.P.; Heiss, A.A.; Bishop, C.D.; Hall, B.K. Intracellular invasion of green algae in a salamander host. Proc. Natl. Acad. Sci. USA 2011, 108, 6497–6502. [Google Scholar] [CrossRef] [PubMed]
- Angelard, C.; Tanner, C.J.; Fontanillas, P.; Niculita-Hirzel, H.; Masclaux, F.; Sanders, I.R. Rapid genotypic change and plasticity in arbuscular mycorrhizal fungi is caused by a host shift and enhanced by segregation. ISME J. 2014, 8, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Torres-Cortes, G.; Ghignone, S.; Bonfante, P.; Schussler, A. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association. Proc. Natl. Acad. Sci. USA 2015, 112, 7785–7790. [Google Scholar] [CrossRef] [PubMed]
- Symbiotic associations can have more than purely physiological consequences. For example, the shift of a mycorrhizal partner to a novel plant has been reported to trigger rapid change in the fungal genome [69]. It is also interesting to note that mycorrhizal fungi harbor their own prokaryotic endosymbionts [70].
- Shin, S.C.; Kim, S.H.; You, H.; Kim, B.; Kim, A.C.; Lee, K.A.; Yoon, J.H.; Ryu, J.H.; Lee, W.J. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011, 334, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Coon, K.L.; Valzania, L.; McKinney, D.A.; Vogel, K.J.; Brown, M.R.; Strand, M.R. Bacteria-mediated hypoxia functions as a signal for mosquito development. Proc. Natl. Acad. Sci. USA 2017, 114, E5362–E5369. [Google Scholar] [CrossRef] [PubMed]
- Benoit, J.B.; Vigneron, A.; Broderick, N.A.; Wu, Y.; Sun, J.S.; Carlson, J.R.; Aksoy, S.; Weiss, B.L. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 2017, 6, e19535. [Google Scholar] [CrossRef] [PubMed]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Molloy, M.J.; Bouladoux, N.; Belkaid, Y. Intestinal microbiota: Shaping local and systemic immune responses. Semin. Immunol. 2012, 24, 58–66. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M.; Heath-Heckman, E.A.; Gillette, A.A.; Peyer, S.M.; Harvie, E.A. The secret languages of coevolved symbioses: Insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 2012, 24, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bian, G.; Joshi, D.; Dong, Y.; Lu, P.; Zhou, G.; Pan, X.; Xu, Y.; Dimopoulos, G.; Xi, Z. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 2013, 340, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffery, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Bordenstein, S.R.; Marshall, M.L.; Fry, A.J.; Kim, U.; Wernegreen, J.J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog. 2006, 2, e43. [Google Scholar]
- Serbus, L.R.; Sullivan, W. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog. 2007, 3, e190. [Google Scholar] [CrossRef] [PubMed]
- Stouthamer, R.; Breeuwer, J.A.; Hurst, G.D. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 1999, 53, 71–102. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.H.; Barr, A.R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 1971, 232, 657–658. [Google Scholar] [CrossRef] [PubMed]
- White, J.A.; Kelly, S.E.; Perlman, S.J.; Hunter, M.S. Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: Disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 2009, 102, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.L.; Braig, H.R. Sperm chromatin remodelling and Wolbachia-induced cytoplasmic incompatibility in Drosophila. Biochem. Cell Biol. 2003, 81, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Dobson, S.L. Evolution of Wolbachia cytoplasmic incompatibility types. Evolution 2004, 58, 2156–2166. [Google Scholar] [CrossRef] [PubMed]
- Kutschera, U.; Niklas, K.J. Macroevolution via secondary endosymbiosis: A Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory BioSci. 2008, 127, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Shropshire, J.D.; Bordenstein, S.R. Speciation by Symbiosis: The Microbiome and Behavior. MBio 2016, 7, e01785. [Google Scholar] [CrossRef] [PubMed]
- LePage, D.P.; Metcalf, J.A.; Bordenstein, S.R.; On, J.; Perlmutter, J.I.; Shropshire, J.D.; Layton, E.M.; Funkhouser-Jones, L.J.; Beckmann, J.F.; Bordenstein, S.R. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 2017, 543, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.R.; Rivera, H.E.; Closek, C.J.; Medina, M. Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front. Cell. Infect. Microbiol. 2014, 4, 176. [Google Scholar] [CrossRef] [PubMed]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.W.; Kohl, K.D.; Brucker, R.M.; van Opstal, E.J.; Bordenstein, S.R. Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLoS Biol. 2016, 14, e2000225. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.K.; Rio, R.V. Interwoven biology of the tsetse holobiont. J. Bacteriol. 2013, 195, 4322–4330. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, M.; Hu, H.; Li, C.; Chen, Z.; Xu, L.; Otani, S.; Nygaard, S.; Nobre, T.; Klaubauf, S.; Schindler, P.M.; et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc. Natl. Acad. Sci. USA 2014, 111, 14500–14505. [Google Scholar] [CrossRef] [PubMed]
- Husseneder, C. Symbiosis in subterranean termites: A review of insights from molecular studies. Environ. Entomol. 2010, 39, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Balmand, S.; Lohs, C.; Aksoy, S.; Heddi, A. Tissue distribution and transmission routes for the tsetse fly endosymbionts. J. Invertebr. Pathol. 2013, 112, S116–S122. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.F. A holobiont birth narrative: The epigenetic transmission of the human microbiome. Front. Genet. 2014, 5, 282. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.A.; Goh, F.; Burns, B.P.; Neilan, B.A. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 2009, 7, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Goh, F.; Allen, M.A.; Leuko, S.; Kawaguchi, T.; Decho, A.W.; Burns, B.P.; Neilan, B.A. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 2009, 3, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.E.; Sogin, M.L.; Baross, J.A. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS ONE 2014, 9, e109696. [Google Scholar] [CrossRef] [PubMed]
- McCliment, E.A.; Voglesonger, K.M.; O’Day, P.A.; Dunn, E.E.; Holloway, J.R.; Cary, S.C. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage. Environ. Microbiol. 2006, 8, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Ahmadjian, V. Lichens. Annu. Rev. Microbiol. 1965, 19, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Grube, M.; Cardinale, M.; de Castro, J.V., Jr.; Muller, H.; Berg, G. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 2009, 3, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Lucking, R.; Dal-Forno, M.; Sikaroodi, M.; Gillevet, P.M.; Bungartz, F.; Moncada, B.; Yanez-Ayabaca, A.; Chaves, J.L.; Coca, L.F.; Lawrey, J.D. A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. USA 2014, 111, 11091–11096. [Google Scholar] [CrossRef] [PubMed]
- Honegger, R. Simon Schwendener (1829–1919) and the dual hypothesis in lichens. Bryologist 2000, 103, 307–313. [Google Scholar] [CrossRef]
- Kohl, K.D.; Sadowska, E.T.; Rudolf, A.M.; Dearing, M.D.; Koteja, P. Experimental Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial Communities. Front. Microbiol. 2016, 7, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, K.M.; Degnan, P.H.; Burke, G.R.; Moran, N.A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 2010, 55, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.M.; Russell, J.A.; Moran, N.A.; Hunter, M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 2003, 100, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Dunning Hotopp, J.C.; Clark, M.E.; Oliveira, D.C.; Foster, J.M.; Fischer, P.; Munoz Torres, M.C.; Giebel, J.D.; Kumar, N.; Ishmael, N.; Wang, S.; et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 2007, 317, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
- Timmis, J.N.; Ayliffe, M.A.; Huang, C.Y.; Martin, W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 2004, 5, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Nikoh, N.; Nakabachi, A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 2009, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Woolfit, M.; Iturbe-Ormaetxe, I.; McGraw, E.A.; O’Neill, S.L. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol. Biol. Evol. 2009, 26, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Klasson, L.; Kambris, Z.; Cook, P.E.; Walker, T.; Sinkins, S.P. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genom. 2009, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Brelsfoard, C.; Tsiamis, G.; Falchetto, M.; Gomulski, L.M.; Telleria, E.; Alam, U.; Doudoumis, V.; Scolari, F.; Benoit, J.B.; Swain, M.; et al. Presence of Extensive Wolbachia Symbiont Insertions Discovered in the Genome of Its Host Glossina morsitans morsitans. PLoS Negl. Trop. Dis. 2014, 8, e2728. [Google Scholar] [CrossRef] [PubMed]
- Aikawa, T.; Anbutsu, H.; Nikoh, N.; Kikuchi, T.; Shibata, F.; Fukatsu, T. Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome. Proc. Biol. Sci. 2009, 276, 3791–3798. [Google Scholar] [CrossRef] [PubMed]
- Nikoh, N.; Tanaka, K.; Shibata, F.; Kondo, N.; Hizume, M.; Shimada, M.; Fukatsu, T. Wolbachia genome integrated in an insect chromosome: Evolution and fate of laterally transferred endosymbiont genes. Genome Res. 2008, 18, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Salzberg, S.L.; Hotopp, J.C.; Delcher, A.L.; Pop, M.; Smith, D.R.; Eisen, M.B.; Nelson, W.C. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol. 2005, 6, R23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klasson, L.; Kumar, N.; Bromley, R.; Sieber, K.; Flowers, M.; Ott, S.H.; Tallon, L.J.; Andersson, S.G.; Dunning Hotopp, J.C. Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae. BMC Genom. 2014, 15, 1097. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Bubnell, J.E.; Aquadro, C.F. Population Genomics of Infectious and Integrated Wolbachia pipientis Genomes in Drosophila ananassae. Genome Biol. Evol. 2015, 7, 2362–2382. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, J.G.L. Cataclysmic Evolution. Sci. Am. 1951, 184, 54–59. [Google Scholar] [CrossRef]
- Pennisi, E. Shaking up the Tree of Life. Science 2016, 354, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, M.J.; Barker, G.L.; Wilson, I.D.; Abbott, R.J.; Edwards, K.J.; Hiscock, S.J. Transcriptome shock after interspecific hybridization in senecio is ameliorated by genome duplication. Curr. Biol. 2006, 16, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Tayale, A.; Parisod, C. Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet. Genome Res. 2013, 140, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Jaillon, O.; Aury, J.M.; Wincker, P. “Changing by doubling”, the impact of Whole Genome Duplications in the evolution of eukaryotes. C. R. Biol. 2009, 332, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Marcet-Houben, M.; Gabaldon, T. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLoS Biol. 2015, 13, e1002220. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.H. Origin of the Yeast Whole-Genome Duplication. PLoS Biol. 2015, 13, e1002221. [Google Scholar] [CrossRef] [PubMed]
- Albertin, W.; Marullo, P. Polyploidy in fungi: Evolution after whole-genome duplication. Proc. Biol. Sci. 2012, 279, 2497–2509. [Google Scholar] [CrossRef] [PubMed]
- Aury, J.M. Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 2006, 444, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.G.; Xiong, Y.Q.; Liu, T.Y.; Sun, S.H.; Chen, L.B.; Chen, M.S. Evidence for an ancient whole-genome duplication event in rice and other cereals. Yi Chuan Xue Bao 2005, 32, 519–527. [Google Scholar] [PubMed]
- Jiao, Y.; Wickett, N.J.; Ayyampalayam, S.; Chanderbali, A.S.; Landherr, L.; Ralph, P.E.; Tomsho, L.P.; Hu, Y.; Liang, H.; Soltis, P.S.; et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Nossa, C.W.; Havlak, P.; Yue, J.X.; Lv, J.; Vincent, K.Y.; Brockmann, H.J.; Putnam, N.H. Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. Gigascience 2014, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Dehal, P.; Boore, J.L. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005, 3, e314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufton, A.L.; Groth, D.; Vingron, M.; Lehrach, H.; Poustka, A.J.; Panopoulou, G. Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res. 2008, 18, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.S.; Braasch, I.; Frickey, T.; Meyer, A.; Van de Peer, Y. Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res. 2003, 13, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Hoegg, S.; Brinkmann, H.; Taylor, J.S.; Meyer, A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J. Mol. Evol. 2004, 59, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Glasauer, S.M.; Neuhauss, S.C. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genom. 2014, 289, 1045–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, E.D., III. How an ancient genome duplication electrified modern fish. Proc. Natl. Acad. Sci. USA 2010, 107, 21953–21954. [Google Scholar] [CrossRef] [PubMed]
- Veron, A.S.; Kaufmann, K.; Bornberg-Bauer, E. Evidence of interaction network evolution by whole-genome duplications: A case study in MADS-box proteins. Mol. Biol. Evol. 2007, 24, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Kassahn, K.S.; Dang, V.T.; Wilkins, S.J.; Perkins, A.C.; Ragan, M.A. Evolution of gene function and regulatory control after whole-genome duplication: Comparative analyses in vertebrates. Genome Res. 2009, 19, 1404–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusco, D.; Grassi, L.; Bassetti, B.; Caselle, M.; Cosentino Lagomarsino, M. Ordered structure of the transcription network inherited from the yeast whole-genome duplication. BMC Syst. Biol. 2010, 4, 77. [Google Scholar] [CrossRef] [PubMed]
- Conant, G.C. Rapid reorganization of the transcriptional regulatory network after genome duplication in yeast. Proc. Biol. Sci. 2010, 277, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lin, Z.; Nakhleh, L. Evolution after whole-genome duplication: A network perspective. G3 (Bethesda) 2013, 3, 2049–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, R.; Van de Peer, Y. Redundancy and rewiring of genetic networks following genome-wide duplication events. Curr. Opin. Plant Biol. 2012, 15, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Lamichhaney, S.; Berglund, J.; Almen, M.S.; Maqbool, K.; Grabherr, M.; Martinez-Barrio, A.; Promerova, M.; Rubin, C.J.; Wang, C.; Zamani, N.; et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 2015, 518, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Almen, M.S.; Lamichhaney, S.; Berglund, J.; Grant, B.R.; Grant, P.R.; Webster, M.T.; Andersson, L. Adaptive radiation of Darwin’s finches revisited using whole genome sequencing. Bioessays 2016, 38, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.H.; Kronforst, M.R. Divergence and gene flow among Darwin’s finches: A genome-wide view of adaptive radiation driven by interspecies allele sharing. Bioessays 2015, 37, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Kocher, T.D. Adaptive evolution and explosive speciation: The cichlid fish model. Nat. Rev. Genet. 2004, 5, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Meyer, A. Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes. Front. Genet. 2014, 5, 163. [Google Scholar] [CrossRef] [PubMed]
- Svensson, O.; Smith, A.; Garcia-Alonso, J.; van Oosterhout, C. Hybridization generates a hopeful monster: A hermaphroditic selfing cichlid. R. Soc. Open Sci. 2016, 3, 150684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brawand, D.; Wagner, C.E.; Li, Y.I.; Malinsky, M.; Keller, I.; Fan, S.; Simakov, O.; Ng, A.Y.; Lim, Z.W.; Bezault, E.; et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 2014, 513, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heliconius, G.C. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 2012, 487, 94–98. [Google Scholar]
- Pardo-Diaz, C.; Salazar, C.; Baxter, S.W.; Merot, C.; Figueiredo-Ready, W.; Joron, M.; McMillan, W.O.; Jiggins, C.D. Adaptive Introgression across Species Boundaries in Heliconius Butterflies. PLoS Genet. 2012, 8, e1002752. [Google Scholar] [CrossRef] [PubMed]
- Brower, A.V. Introgression of wing pattern alleles and speciation via homoploid hybridization in Heliconius butterflies: A review of evidence from the genome. Proc. Biol. Sci. 2013, 280, 20122302. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.V.; Potter, S.; Schmitt, C.J.; Bragg, J.G.; Moritz, C. Reticulation, divergence, and the phylogeography-phylogenetics continuum. Proc. Natl. Acad. Sci. USA 2016, 113, 8025–8032. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Yu, Y.; Hahn, M.W.; Nakhleh, L. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis. Mol. Ecol. 2016, 25, 2361–2372. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.E.; Riehle, M.M.; Guelbeogo, W.M.; Gneme, A.; Sagnon, N.; Vernick, K.D.; Nielsen, R.; Lazzaro, B.P. Reticulate Speciation and Barriers to Introgression in the Anopheles gambiae Species Complex. Genome Biol. Evol. 2015, 7, 3116–3131. [Google Scholar] [CrossRef] [PubMed]
- Lotsy, J.P. Evolution by Means of Hybridization; Martinus Nijhoff: The Hague, The Netherlands, 1916. [Google Scholar]
- Barton, N.H. The role of hybridization in evolution. Mol. Ecol. 2001, 10, 551–568. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Stebbins, G.L., Jr. Hybridization as an evolutionary stimulus. Evolution 1954, 8, 378–388. [Google Scholar] [CrossRef]
- Arnold, M.L. Transfer and origin of adaptations through natural hybridization: Were Anderson and Stebbins right? Plant Cell 2004, 16, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Payseur, B.A.; Rieseberg, L.H. A genomic perspective on hybridization and speciation. Mol. Ecol. 2016, 25, 2337–2360. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J.W.; Baird, S.J.; Bierne, N.; Boughman, J.; Brelsford, A.; Buerkle, C.A.; Buggs, R.; et al. Hybridization and speciation. J. Evol. Biol. 2013, 26, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Parisod, C.; Alix, K.; Just, J.; Petit, M.; Sarilar, V.; Mhiri, C.; Ainouche, M.; Chalhoub, B.; Grandbastien, M.A. Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol. 2010, 186, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Epigenetic control of mobile DNA as an interface between experience and genome change. Front. Genet. 2014, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, R. The Material Basis of Evolution, Reissued (The Silliman Memorial Lectures Series), 1982; Yale University Press: New Haven, CT, USA, 1940. [Google Scholar]
- Dittrich-Reed, D.R.; Fitzpatrick, B.M. Transgressive Hybrids as Hopeful Monsters. Evol. Biol. 2013, 40, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.R. Richard Goldschmidt: Hopeful monsters and other ‘heresies’. Nat. Rev. Genet. 2003, 4, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Theissen, G. Saltational evolution: Hopeful monsters are here to stay. Theory BioSci. 2009, 128, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Theissen, G. The proper place of hopeful monsters in evolutionary biology. Theory BioSci. 2006, 124, 349–369. [Google Scholar] [CrossRef] [PubMed]
- Syvanen, M. Evolutionary implications of horizontal gene transfer. Annu. Rev. Genet. 2012, 46, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Fournier, G.P.; Huang, J.; Gogarten, J.P. Horizontal gene transfer from extinct and extant lineages: Biological innovation and the coral of life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2229–2239. [Google Scholar] [CrossRef] [PubMed]
- Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal gene transfer: Building the web of life. Nat. Rev. Genet. 2015, 16, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Hayes, W. The Genetics of Bacteria and their Viruses, 2nd ed.; Blackwell: London, UK, 1968. [Google Scholar]
- Alvarez-Martinez, C.E.; Christie, P.J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 2009, 73, 775–808. [Google Scholar] [CrossRef] [PubMed]
- Cascales, E.; Christie, P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 2003, 1, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Averhoff, B.; Friedrich, A. Type IV pili-related natural transformation systems: DNA transport in mesophilic and thermophilic bacteria. Arch. Microbiol. 2003, 180, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Juhas, M.; Crook, D.W.; Hood, D.W. Type IV secretion systems: Tools of bacterial horizontal gene transfer and virulence. Cell. Microbiol. 2008, 10, 2377–2386. [Google Scholar] [CrossRef] [PubMed]
- Zupan, J.R.; Zambryski, P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 1995, 107, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Chilton, M.D. A Vector for Introducing New Genes into Plants. Sci. Am. 1983, 248, 50–59. [Google Scholar] [CrossRef]
- Chilton, M.D. Agrobacterium. A memoir. Plant Physiol. 2001, 125, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Mitrikeski, P.T. Ecologically driven competence for exogenous DNA uptake in yeast. Curr. Microbiol. 2015, 70, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Koontz, L. Explanatory chapter: Introducing exogenous DNA into cells. Methods Enzymol. 2013, 529, 29–34. [Google Scholar] [PubMed]
- Cai, J.; Han, Y.; Ren, H.; Chen, C.; He, D.; Zhou, L.; Eisner, G.M.; Asico, L.D.; Jose, P.A.; Zeng, C. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J. Mol. Cell. Biol. 2013, 5, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Cornils, K.; Speiseder, T.; Badbaran, A.; Reimer, R.; Indenbirken, D.; Grundhoff, A.; Brunswig-Spickenheier, B.; Alawi, M.; Lange, C. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles. PLoS ONE 2016, 11, e0163665. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, M.; Wang, L.; Li, Y.; Fan, J.; Yang, Q.; Jin, Y. Spontaneous uptake of exogenous DNA by goat spermatozoa and selection of donor bucks for sperm-mediated gene transfer. Mol. Biol. Rep. 2012, 39, 2659–2664. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.E.; Sanchez-Villalba, E.; Delgado, A.; Felmer, R. Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer. Zygote 2017, 25, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Horizontal gene transfer in eukaryotes: The weak-link model. Bioessays 2013, 35, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, A.A.; Faleye, A.C.; Singh, G.; Stenstrom, T.A. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016, 22, 29. [Google Scholar] [CrossRef] [PubMed]
- Mazel, D.; Davies, J. Antibiotic resistance in microbes. Cell. Mol. Life Sci. 1999, 56, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Toprak, E.; Veres, A.; Michel, J.B.; Chait, R.; Hartl, D.L.; Kishony, R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat. Genet. 2011, 44, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Gupta, P.; Singh, P.; Chauhan, D.S.; Katoch, K.; Katoch, V.M. Association of mutations in rpsL gene with high degree of streptomycin resistance in clinical isolates of Mycobacterium tuberculosis in India. Indian J. Med. Res. 2009, 129, 108–110. [Google Scholar] [PubMed]
- Watanabe, T.; Fukasawa, T. Episome-mediated transfer of drug resistance in Enterobacteriaceae. III. Transduotion of resistance factors. J. Bacteriol. 1961, 82, 202–209. [Google Scholar] [PubMed]
- Morar, M.; Wright, G.D. The genomic enzymology of antibiotic resistance. Annu. Rev. Genet. 2010, 44, 25–51. [Google Scholar] [CrossRef] [PubMed]
- Ravi, A.; Avershina, E.; Ludvigsen, J.; L’Abee-Lund, T.M.; Rudi, K. Integrons in the intestinal microbiota as reservoirs for transmission of antibiotic resistance genes. Pathogens 2014, 3, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Andam, C.P.; Fournier, G.P.; Gogarten, J.P. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol. Rev. 2011, 35, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Bardaji, L.; Echeverria, M.; Rodriguez-Palenzuela, P.; Martinez-Garcia, P.M.; Murillo, J. Four genes essential for recombination define GInts, a new type of mobile genomic island widespread in bacteria. Sci. Rep. 2017, 7, 46254. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S.; Aravind, L. Horizontal gene transfer in prokaryotes: Quantification and classification. Annu. Rev. Microbiol. 2001, 55, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Horizontal gene transfer: Essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Research 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Aravind, L.; Tatusov, R.L.; Wolf, Y.I.; Walker, D.R.; Koonin, E.V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 1998, 14, 442–444. [Google Scholar] [CrossRef]
- Dodsworth, J.A.; Li, L.; Wei, S.; Hedlund, B.P.; Leigh, J.A.; de Figueiredo, P. Inter-domain conjugal transfer of DNA from Bacteria to Archaea. Appl. Environ. Microbiol. 2010, 76, 5644–5647. [Google Scholar] [CrossRef] [PubMed]
- Kanhere, A.; Vingron, M. Horizontal Gene Transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 2009, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Little, C.A.; Tweats, D.J.; Pinney, R.J. Relevance of plasmid pKM101-mediated mutagenicity in bacteria to genotoxicity in mammalian cells. Mutagenesis 1989, 4, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Okubo, T.; Piromyou, P.; Tittabutr, P.; Teaumroong, N.; Minamisawa, K. Origin and Evolution of Nitrogen Fixation Genes on Symbiosis Islands and Plasmid in Bradyrhizobium. Microbes Environ. 2016, 31, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, M.; Martin, W. Interspecific evolution: Microbial symbiosis, endosymbiosis and gene transfer. Environ. Microbiol. 2003, 5, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Nakatsukasa, H.; Uchiumi, T.; Kucho, K.; Suzuki, A.; Higashi, S.; Abe, M. Transposon mediation allows a symbiotic plasmid of Rhizobium leguminosarum bv. trifolii to become a symbiosis island in Agrobacterium and Rhizobium. J. Gen. Appl. Microbiol. 2008, 54, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Clewell, D.B. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 2007, 58, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Moreno Switt, A.I.; den Bakker, H.C.; Cummings, C.A.; Rodriguez-Rivera, L.D.; Govoni, G.; Raneiri, M.L.; Degoricija, L.; Brown, S.; Hoelzer, K.; Peters, J.E.; et al. Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS ONE 2012, 7, e41247. [Google Scholar] [CrossRef] [PubMed]
- Penades, J.R.; Chen, J.; Quiles-Puchalt, N.; Carpena, N.; Novick, R.P. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol. 2015, 23, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, G.R.; Boland, A.; Boyd, A.P.; Geuijen, C.; Iriarte, M.; Neyt, C.; Sory, M.P.; Stainier, I. The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 1998, 62, 1315–1352. [Google Scholar] [PubMed]
- Nelson-Sathi, S.; Dagan, T.; Landan, G.; Janssen, A.; Steel, M.; McInerney, J.O.; Deppenmeier, U.; Martin, W.F. Acquisition of 1000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl. Acad. Sci. USA 2012, 109, 20537–20542. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Garcia, P.; Zivanovic, Y.; Deschamps, P.; Moreira, D. Bacterial gene import and mesophilic adaptation in archaea. Nat. Rev. Microbiol. 2015, 13, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, P.; Zivanovic, Y.; Moreira, D.; Rodriguez-Valera, F.; Lopez-Garcia, P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol. Evol. 2014, 6, 1549–1563. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.M.; Stokes, H.W. Integrons: Novel DNA elements which capture genes by site-specific recombination. Genetica 1993, 90, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.M. Integrons and gene cassettes: Hotspots of diversity in bacterial genomes. Ann. N. Y. Acad. Sci. 2012, 1267, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; Grossman, A.D. Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annu. Rev. Genet. 2015, 49, 577–601. [Google Scholar] [CrossRef] [PubMed]
- Juhas, M.; van der Meer, J.R.; Gaillard, M.; Harding, R.M.; Hood, D.W.; Crook, D.W. Genomic islands: Tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 2009, 33, 376–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daccord, A.; Ceccarelli, D.; Rodrigue, S.; Burrus, V. Comparative analysis of mobilizable genomic islands. J. Bacteriol. 2013, 195, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Carraro, N.; Rivard, N.; Burrus, V.; Ceccarelli, D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob. Genet. Elem. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bellanger, X.; Payot, S.; Leblond-Bourget, N.; Guedon, G. Conjugative and mobilizable genomic islands in bacteria: Evolution and diversity. FEMS Microbiol. Rev. 2014, 38, 720–760. [Google Scholar] [CrossRef] [PubMed]
- Groth, A.C.; Calos, M.P. Phage integrases: Biology and applications. J. Mol. Biol. 2004, 335, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Nesmelova, I.V.; Hackett, P.B. DDE transposases: Structural similarity and diversity. Adv. Drug Deliv. Rev. 2010, 62, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Guerillot, R.; Siguier, P.; Gourbeyre, E.; Chandler, M.; Glaser, P. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol. Evol. 2014, 6, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Rowe-Magnus, D.A.; Guérout, A.M.; Mazel, D. Super-integrons. Res. Microbiol. 1999, 150, 641–651. [Google Scholar] [CrossRef]
- Ramsay, J.P.; Sullivan, J.T.; Stuart, G.S.; Lamont, I.L.; Ronson, C.W. Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol. Microbiol. 2006, 62, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Kers, J.A.; Cameron, K.D.; Joshi, M.V.; Bukhalid, R.A.; Morello, J.E.; Wach, M.J.; Gibson, D.M.; Loria, R. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol. Microbiol. 2005, 55, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Huguet-Tapia, J.C.; Badger, J.H.; Loria, R.; Pettis, G.S. Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmid 2011, 65, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Bapteste, E. Les Gènes Voyageurs: L’odyssée de L’évolution; Belin: Paris, France, 2013. [Google Scholar]
- Crisp, A.; Boschetti, C.; Perry, M.; Tunnacliffe, A.; Micklem, G. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol. 2015, 16, 50. [Google Scholar] [CrossRef] [PubMed]
- Hirt, R.P.; Alsmark, C.; Embley, T.M. Lateral gene transfers and the origins of the eukaryote proteome: A view from microbial parasites. Curr. Opin. Microbiol. 2015, 23, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Ren, X.; Mason, A.S.; Liu, H.; Xiao, M.; Li, J.; Fu, D. Horizontal gene transfer in plants. Funct. Integr. Genom. 2014, 14, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Andersson, J.O. Gene transfer and diversification of microbial eukaryotes. Annu. Rev. Microbiol. 2009, 63, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Boto, L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. Biol. Sci. 2014, 281, 20132450. [Google Scholar] [CrossRef] [PubMed]
- Daubin, V.; Szollosi, G.J. Horizontal Gene Transfer and the History of Life. Cold Spring Harb. Perspect. Biol. 2016, 8, a018036. [Google Scholar] [CrossRef] [PubMed]
- Grassi, L.; Grilli, J.; Lagomarsino, M.C. Large-scale dynamics of horizontal transfers. Mob. Genet. Elem. 2012, 2, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Grilli, J.; Romano, M.; Bassetti, F.; Cosentino Lagomarsino, M. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers. Nucleic Acids Res. 2014, 42, 6850–6860. [Google Scholar] [CrossRef] [PubMed]
- Haegeman, A.; Jones, J.T.; Danchin, E.G. Horizontal gene transfer in nematodes: A catalyst for plant parasitism? Mol. Plant-Microbe Interact. 2011, 24, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Wybouw, N.; Pauchet, Y.; Heckel, D.G.; Van Leeuwen, T. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory. Genome Biol. Evol. 2016, 8, 1785–1801. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.D.; Scully, E.D.; Pauchet, Y.; Hoover, K.; Kirsch, R.; Geib, S.M.; Mitchell, R.F.; Waterhouse, R.M.; Ahn, S.J.; Arsala, D.; et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle-plant interface. Genome Biol. 2016, 17, 227. [Google Scholar] [CrossRef] [PubMed]
- Forterre, P. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 2006, 117, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Viruses and mobile elements as drivers of evolutionary transitions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Filee, J. Route of NCLDV evolution: The genomic accordion. Curr. Opin. Virol. 2013, 3, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Valero, L.; Buchrieser, C. Genome dynamics in Legionella: The basis of versatility and adaptation to intracellular replication. Cold Spring Harb. Perspect. Med. 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Harrison, C.F.; Hilbi, H. The natural alternative: Protozoa as cellular models for Legionella infection. Cell. Microbiol. 2014, 16, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, F.A.; Siddiqui, R.; Khan, N.A. Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasit Vectors 2013, 6, 169. [Google Scholar] [CrossRef] [PubMed]
- Moliner, C.; Fournier, P.E.; Raoult, D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol. Rev. 2010, 34, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.; Yutin, N.; Pagnier, I.; Barrassi, L.; Fournous, G.; Espinosa, L.; Robert, C.; Azza, S.; Sun, S.; Rossmann, M.G.; et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc. Natl. Acad. Sci. USA 2009, 106, 21848–21853. [Google Scholar] [CrossRef] [PubMed]
- Schaack, S.; Gilbert, C.; Feschotte, C. Promiscuous DNA: Horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol. Evol. 2010, 25, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Panaud, O. Horizontal transfers of transposable elements in eukaryotes: The flying genes. C. R. Biol. 2016, 339, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Walsh, A.M.; Kortschak, R.D.; Gardner, M.G.; Bertozzi, T.; Adelson, D.L. Widespread horizontal transfer of retrotransposons. Proc. Natl. Acad. Sci. USA 2013, 110, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.; Cordaux, R. Horizontal transfer and evolution of prokaryote transposable elements in eukaryotes. Genome Biol. Evol. 2013, 5, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Parisot, N.; Pelin, A.; Gasc, C.; Polonais, V.; Belkorchia, A.; Panek, J.; El Alaoui, H.; Biron, D.G.; Brasset, E.; Vaury, C.; et al. Microsporidian genomes harbor a diverse array of transposable elements that demonstrate an ancestry of horizontal exchange with metazoans. Genome Biol. Evol. 2014, 6, 2289–2300. [Google Scholar] [CrossRef] [PubMed]
- Suh, A.; Witt, C.C.; Menger, J.; Sadanandan, K.R.; Podsiadlowski, L.; Gerth, M.; Weigert, A.; McGuire, J.A.; Mudge, J.; Edwards, S.V.; et al. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes. Nat. Commun. 2016, 7, 11396. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.; Schaack, S.; Pace, J.K., II; Brindley, P.J.; Feschotte, C. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature 2010, 464, 1347–1350. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, H.H.; Huang, K.; Zhang, X.G.; Han, M.J.; Zhang, Z. Repeated horizontal transfers of four DNA transposons in invertebrates and bats. Mob. DNA 2015, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.G.; Bao, W.; Martins, C.; Jurka, J. Horizontal transfers of Mariner transposons between mammals and insects. Mob. DNA 2012, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Dupeyron, M.; Leclercq, S.; Cerveau, N.; Bouchon, D.; Gilbert, C. Horizontal transfer of transposons between and within crustaceans and insects. Mob. DNA 2014, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Carareto, C.M. Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus. Mob. Genet. Elem. 2011, 1, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Ivancevic, A.M.; Walsh, A.M.; Kortschak, R.D.; Adelson, D.L. Jumping the fine LINE between species: Horizontal transfer of transposable elements in animals catalyses genome evolution. Bioessays 2013, 35, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Kordis, D.; Gubensek, F. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc. Natl. Acad. Sci. USA 1998, 95, 10704–10709. [Google Scholar] [CrossRef] [PubMed]
- Novick, P.; Smith, J.; Ray, D.; Boissinot, S. Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. Gene 2010, 449, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Pace, J.K., II; Gilbert, C.; Clark, M.S.; Feschotte, C. Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc. Natl. Acad. Sci. USA 2008, 105, 17023–17028. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Faridi, N.; Casola, C. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers. Genome Biol. Evol. 2016, 8, 1252–1266. [Google Scholar] [PubMed]
- Roulin, A.; Piegu, B.; Fortune, P.M.; Sabot, F.; D’Hont, A.; Manicacci, D.; Panaud, O. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae. BMC Evol. Biol. 2009, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- El Baidouri, M.; Carpentier, M.C.; Cooke, R.; Gao, D.; Lasserre, E.; Llauro, C.; Mirouze, M.; Picault, N.; Jackson, S.A.; Panaud, O. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res. 2014, 24, 831. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Schaack, S.; Pritham, E.J. Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol. Evol. 2010, 2, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.H.; Feschotte, C.; Han, M.J.; Zhang, Z. Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals. Genome Biol. Evol. 2014, 6, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.; Chateigner, A.; Ernenwein, L.; Barbe, V.; Bezier, A.; Herniou, E.A.; Cordaux, R. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nat. Commun. 2014, 5, 3348. [Google Scholar] [CrossRef] [PubMed]
- Gontier, N. (Ed.) Reticulate Evolution: Symbiogenesis, Lateral Gene Transfer, Hybridization and Infectious Heredity; Springer International Publishing AG: Cham, Switzerland, 2015. [Google Scholar]
- Doolittle, R.F. The multiplicity of domains in proteins. Annu. Rev. Biochem. 1995, 64, 287–314. [Google Scholar] [CrossRef] [PubMed]
- Bornberg-Bauer, E.; Beaussart, F.; Kummerfeld, S.K.; Teichmann, S.A.; Weiner, J., III. The evolution of domain arrangements in proteins and interaction networks. Cell. Mol. Life Sci. 2005, 62, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Caetano-Anolles, G. The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure 2009, 17, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Nacher, J.C.; Kuma, K.; Goto, S.; Kanehisa, M. Evolutionary history and functional implications of protein domains and their combinations in eukaryotes. Genome Biol. 2007, 8, R121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Sol, A.; Carbonell, P. The modular organization of domain structures: Insights into protein-protein binding. PLoS Comput. Biol. 2007, 3, e239. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Fu, Z.; Hou, L.; Han, J.D. Impacts of protein-protein interaction domains on organism and network complexity. Genome Res. 2008, 18, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Schuster-Bockler, B.; Bateman, A. Reuse of structural domain-domain interactions in protein networks. BMC Bioinform. 2007, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Peisajovich, S.G.; Garbarino, J.E.; Wei, P.; Lim, W.A. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 2010, 328, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Kuriyan, J.; Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 259–288. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.J. The discovery of modular binding domains: Building blocks of cell signalling. Nat. Rev. Mol. Cell Biol. 2015, 16, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, R.P.; Remenyi, A.; Yeh, B.J.; Lim, W.A. Domains, motifs, and scaffolds: The role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 2006, 75, 655–680. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Doolittle, R.F.; Bourne, P.E. Phylogeny determined by protein domain content. Proc. Natl. Acad. Sci. USA 2005, 102, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Coin, L.; Durbin, R.; Finn, R.D.; Hollich, V.; Griffiths-Jones, S.; Khanna, A.; Marshall, M.; Moxon, S.; Sonnhammer, E.L.; et al. The Pfam protein families database. Nucleic Acids Res. 2004, 32, D138–D141. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.W.; Pearson, W.R. RefProtDom: A Protein Database with Improved Domain Boundaries and Homology Relationships. Bioinformatics 2010, 26, 2361–2362. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M. Nature of the protein universe. Proc. Natl. Acad. Sci. USA 2009, 106, 11079–11084. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Bourne, P.E. The evolutionary history of protein domains viewed by species phylogeny. PLoS ONE 2009, 4, e8378. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Kim, K.M.; Caetano-Anolles, G. Global patterns of protein domain gain and loss in superkingdoms. PLoS Comput. Biol. 2014, 10, e1003452. [Google Scholar] [CrossRef] [PubMed]
- Buljan, M.; Bateman, A. The evolution of protein domain families. Biochem. Soc. Trans. 2009, 37, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Eichler, E.E. Recent duplication, domain accretion and the dynamic mutation of the human genome. Trends Genet. 2001, 17, 661–669. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Ekman, D.; Bjorklund, A.K.; Elofsson, A. Quantification of the elevated rate of domain rearrangements in metazoa. J. Mol. Biol. 2007, 372, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, T.; Kawashima, S.; Tanaka, C.; Murai, M.; Yoneda, M.; Putnam, N.H.; Rokhsar, D.S.; Kanehisa, M.; Satoh, N.; Wada, H. Domain shuffling and the evolution of vertebrates. Genome Res. 2009, 19, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Wang, Z.; Zhang, X.; Le, M.H.; Sun, J.; Xu, D.; Cheng, J.; Stacey, G. Evolutionary dynamics of protein domain architecture in plants. BMC Evol. Biol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.X.; Darling, A.E.; Beiko, R.G.; Ragan, M.A. Are protein domains modules of lateral genetic transfer? PLoS ONE 2009, 4, e4524. [Google Scholar] [CrossRef] [PubMed]
- Basu, M.K.; Poliakov, E.; Rogozin, I.B. Domain mobility in proteins: Functional and evolutionary implications. Brief. Bioinform. 2009, 10, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.D.; Bjorklund, A.K.; Ekman, D.; Bornberg-Bauer, E.; Elofsson, A. Arrangements in the modular evolution of proteins. Trends Biochem. Sci. 2008, 33, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zmasek, C.M.; Godzik, A. Domain architecture evolution of pattern-recognition receptors. Immunogenetics 2010, 62, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Rastinejad, F. Structural characterization of mammalian bHLH-PAS transcription factors. Curr. Opin. Struct. Biol. 2016, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, A.K.; Ekman, D.; Elofsson, A. Expansion of protein domain repeats. PLoS Comput. Biol. 2006, 2, e114. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, K.K.; Bordenstein, S.R. Tandem-repeat protein domains across the tree of life. PeerJ 2015, 3, e732. [Google Scholar] [CrossRef] [PubMed]
- Franca, G.S.; Cancherini, D.V.; de Souza, S.J. Evolutionary history of exon shuffling. Genetica 2012, 140, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W. Why genes in pieces? Nature 1978, 271, 501. [Google Scholar] [CrossRef] [PubMed]
- Patthy, L. Modular assembly of genes and the evolution of new functions. Genetica 2003, 118, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.A. Split genes and RNA splicing. Cell 1994, 77, 805–815. [Google Scholar] [CrossRef]
- Liu, M.; Grigoriev, A. Protein domains correlate strongly with exons in multiple eukaryotic genomes–evidence of exon shuffling? Trends Genet. 2004, 20, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Kornblihtt, A.R. Coupling transcription and alternative splicing. Adv. Exp. Med. Biol. 2007, 623, 175–189. [Google Scholar] [PubMed]
- Xing, Y.; Lee, C. Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes. Nat. Rev. Genet. 2006, 7, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Koralewski, T.E.; Krutovsky, K.V. Evolution of exon-intron structure and alternative splicing. PLoS ONE 2011, 6, e18055. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Coulombe-Huntington, J.; Kang, S.; Sheynkman, G.M.; Hao, T.; Richardson, A.; Sun, S.; Yang, F.; Shen, Y.A.; Murray, R.R.; et al. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing. Cell 2016, 164, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.M.; Marone, D.; Laido, G.; De Leonardis, A.M.; De Vita, P. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity. Plant Sci. 2012, 185–186, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Seo, P.J.; Park, M.J.; Park, C.M. Alternative splicing of transcription factors in plant responses to low temperature stress: Mechanisms and functions. Planta 2013, 237, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; You, C.; Chang, F.; Wang, Y.; Wang, L.; Qi, J.; Ma, H. Alternative splicing during Arabidopsis flower development results in constitutive and stage-regulated isoforms. Front. Genet. 2014, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Staiger, D.; Brown, J.W. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 2013, 25, 3640–3656. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Gu, X. Revisit on the evolutionary relationship between alternative splicing and gene duplication. Gene 2012. [Google Scholar] [CrossRef] [PubMed]
- Bush, S.J.; Chen, L.; Tovar-Corona, J.M.; Urrutia, A.O. Alternative splicing and the evolution of phenotypic novelty. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef] [PubMed]
- Varagona, M.J.; Purugganan, M.; Wessler, S.R. Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 1992, 4, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Lev-Maor, G.; Ram, O.; Kim, E.; Sela, N.; Goren, A.; Levanon, E.Y.; Ast, G. Intronic Alus influence alternative splicing. PLoS Genet. 2008, 4, e1000204. [Google Scholar] [CrossRef] [PubMed]
- Tarrio, R.; Ayala, F.J.; Rodriguez-Trelles, F. Alternative splicing: A missing piece in the puzzle of intron gain. Proc. Natl. Acad. Sci. USA 2008, 105, 7223–7228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Moshgabadi, N.; Adams, K.L. Extensive changes to alternative splicing patterns following allopolyploidy in natural and resynthesized polyploids. Proc. Natl. Acad. Sci. USA 2011, 108, 16122–16127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.G.; Huang, S.Z.; Pin, A.L.; Adams, K.L. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis. Mol. Biol. Evol. 2010, 27, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Grassi, L.; Fusco, D.; Sellerio, A.; Cora, D.; Bassetti, B.; Caselle, M.; Lagomarsino, M.C. Identity and divergence of protein domain architectures after the yeast whole-genome duplication event. Mol. Biosyst. 2010, 6, 2305–2315. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Rasmussen, M.D.; Kellis, M. Evolution at the subgene level: Domain rearrangements in the Drosophila phylogeny. Mol. Biol. Evol. 2012, 29, 689–705. [Google Scholar] [CrossRef] [PubMed]
- Carretero-Paulet, L.; Fares, M.A. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications. Mol. Biol. Evol. 2012, 29, 3541–3551. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Magen, A.; Ast, G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res. 2007, 35, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.G.; Opazo, J.C.; Storz, J.F. Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates. Mol. Biol. Evol. 2011, 29, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Hade, M.D.; Kaur, J.; Chakraborti, P.K.; Dikshit, K.L. Multidomain truncated hemoglobins: New members of the globin family exhibiting tandem repeats of globin units and domain fusion. IUBMB Life 2017, 69, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.S.; Lerma-Ortiz, C.; Gerdes, S.Y.; Mullen, J.D.; Colasanti, R.; Zhukov, A.; Frelin, O.; Thiaville, J.J.; Zallot, R.; Niehaus, T.D.; et al. Systematic identification and analysis of frequent gene fusion events in metabolic pathways. BMC Genom. 2016, 17, 473. [Google Scholar] [CrossRef] [PubMed]
- Durrens, P.; Nikolski, M.; Sherman, D. Fusion and fission of genes define a metric between fungal genomes. PLoS Comput. Biol. 2008, 4, e1000200. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.L.; Hartl, D.L. Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol. Biol. Evol. 2012, 29, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.A.; Teichmann, S.A. How do proteins gain new domains? Genome Biol. 2010, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- Cromar, G.; Wong, K.C.; Loughran, N.; On, T.; Song, H.; Xiong, X.; Zhang, Z.; Parkinson, J. New tricks for “old” domains: How novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM. Genome Biol. Evol. 2014, 6, 2897–2917. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.A.; Eichler, E.E. Primate segmental duplications: Crucibles of evolution, diversity and disease. Nat. Rev. Genet. 2006, 7, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Kaessmann, H.; Zollner, S.; Nekrutenko, A.; Li, W.H. Signatures of domain shuffling in the human genome. Genome Res. 2002, 12, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Jachiet, P.A.; Colson, P.; Lopez, P.; Bapteste, E. Extensive gene remodeling in the viral world: New evidence for nongradual evolution in the mobilome network. Genome Biol. Evol. 2014, 6, 2195–2205. [Google Scholar] [CrossRef] [PubMed]
- Abroi, A. A protein domain-based view of the virosphere-host relationship. Biochimie 2015, 119, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Arguello, J.R.; Fan, C.; Wang, W.; Long, M. Origination of chimeric genes through DNA-level recombination. Genome Dyn. 2007, 3, 131–146. [Google Scholar] [PubMed]
- Yang, S.; Arguello, J.R.; Li, X.; Ding, Y.; Zhou, Q.; Chen, Y.; Zhang, Y.; Zhao, R.; Brunet, F.; Peng, L.; et al. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet. 2008, 4, e3. [Google Scholar] [CrossRef] [PubMed]
- Van Rijk, A.; Bloemendal, H. Molecular mechanisms of exon shuffling: Illegitimate recombination. Genetica 2003, 118, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Bennardo, N.; Cheng, A.; Huang, N.; Stark, J.M. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 2008, 4, e1000110. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.R.; Gu, J.; Lu, H.; Shimazaki, N.; Tsai, A.G. Nonhomologous DNA end joining (NHEJ) and chromosomal translocations in humans. Subcell. Biochem. 2010, 50, 279–296. [Google Scholar] [PubMed]
- Fu, B.; Chen, M.; Zou, M.; Long, M.; He, S. The rapid generation of chimerical genes expanding protein diversity in zebrafish. BMC Genom. 2010, 11, 657. [Google Scholar] [CrossRef] [PubMed]
- Damert, A.; Raiz, J.; Horn, A.V.; Lower, J.; Wang, H.; Xing, J.; Batzer, M.A.; Lower, R.; Schumann, G.G. 5′-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res. 2009, 19, 1992–2008. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, E.A.; Arkhipova, I.R. A widespread class of reverse transcriptase-related cellular genes. Proc. Natl. Acad. Sci. USA 2011, 108, 20311–20316. [Google Scholar] [CrossRef] [PubMed]
- Kazazian, H.H., Jr. Genetics. L1 retrotransposons shape the mammalian genome. Science 2000, 289, 1152–1153. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Perez, J.L.; Doucet, A.J.; Bucheton, A.; Moran, J.V.; Gilbert, N. Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res. 2007, 17, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Beck, C.R.; Collier, P.; Macfarlane, C.; Malig, M.; Kidd, J.M.; Eichler, E.E.; Badge, R.M.; Moran, J.V. LINE-1 retrotransposition activity in human genomes. Cell 2010, 141, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.R.; Doucet, A.J.; Kopera, H.C.; Moldovan, J.B.; Garcia-Perez, J.L.; Moran, J.V. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.V.; DeBerardinis, R.J.; Kazazian, H.H., Jr. Exon shuffling by L1 retrotransposition. Science 1999, 283, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Boissinot, S. Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene 2007, 390, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Tubio, J.M.; Li, Y.; Ju, Y.S.; Martincorena, I.; Cooke, S.L.; Tojo, M.; Gundem, G.; Pipinikas, C.P.; Zamora, J.; Raine, K.; et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 2014, 345, 1251343. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.R.; Salvador-Palomeque, C.; Faulkner, G.J. Diversity through duplication: Whole-genome sequencing reveals novel gene retrocopies in the human population. Bioessays 2014, 36, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Cell-encoded reverse transcriptases capable of copying RNA into cDNA are found in both prokaryotes and eukaryotes [345]. In eukaryotes, LINE retrotransposons encode the biochemical activities necessary for reverse transcription and genome insertion of all the classes of nuclear RNA-templated cDNAs [346,347,348,349]. Moreover, mobilization of both 3′ and 5′ adjacent exons by both LINE and SINE retrotransposons (“retrotransduction”) are well-documented phenomena [344,350,351]. “Extensive” LINE-mediated retrotransduction has been observed to occur in real time in cancer cells [352], and somatic retrocopies have been detected in tissue samples from the human population [353].
- Zou, M.; Wang, G.; He, S. Evolutionary patterns of RNA-based gene duplicates in Caenorhabditis nematodes coincide with their genomic features. BMC Res. Notes 2012, 5, 398. [Google Scholar] [CrossRef] [PubMed]
- Jakalski, M.; Takeshita, K.; Deblieck, M.; Koyanagi, K.O.; Makalowska, I.; Watanabe, H.; Makalowski, W. Comparative genomic analysis of retrogene repertoire in two green algae Volvox carteri and Chlamydomonas reinhardtii. Biol. Direct 2016, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, H.; Fan, C.; Li, J.; Shi, J.; Cai, Z.; Zhang, G.; Liu, D.; Zhang, J.; Vang, S.; et al. High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 2006, 18, 1791–1802. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Long, M.; Vibranovski, M.D. Retrogenes moved out of the z chromosome in the silkworm. J. Mol. Evol. 2012, 74, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zou, M.; Fu, B.; Li, X.; Vibranovski, M.D.; Gan, X.; Wang, D.; Wang, W.; Long, M.; He, S. Evolutionary Patterns of RNA-Based Duplication in Non-Mammalian Chordates. PLoS ONE 2011, 6, e21466. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Yang, L.; Zhang, Y.E.; Xue, Y.; He, S. Correlated expression of retrocopies and parental genes in zebrafish. Mol. Genet. Genom. 2016, 291, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Carelli, F.N.; Hayakawa, T.; Go, Y.; Imai, H.; Warnefors, M.; Kaessmann, H. The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res. 2016, 26, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Vinckenbosch, N.; Dupanloup, I.; Kaessmann, H. Evolutionary fate of retroposed gene copies in the human genome. Proc. Natl. Acad. Sci. USA 2006, 103, 3220–3225. [Google Scholar] [CrossRef] [PubMed]
- Baertsch, R.; Diekhans, M.; Kent, W.J.; Haussler, D.; Brosius, J. Retrocopy contributions to the evolution of the human genome. BMC Genom. 2008, 9, 466. [Google Scholar] [CrossRef] [PubMed]
- McLysaght, A. Evolutionary steps of sex chromosomes are reflected in retrogenes. Trends Genet. 2008, 24, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Zhang, L. Burst of young retrogenes and independent retrogene formation in mammals. PLoS ONE 2009, 4, e5040. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Dupanloup, I.; Vinckenbosch, N.; Reymond, A.; Kaessmann, H. Emergence of young human genes after a burst of retroposition in primates. PLoS Biol. 2005, 3, e357. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.C.; Galante, P.A. A Genome-Wide Landscape of Retrocopies in Primate Genomes. Genome Biol. Evol. 2015, 7, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Walsh, C.E. Spliceosome-mediated RNA trans-splicing. Mol. Ther. 2005, 12, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Lasda, E.L.; Blumenthal, T. Trans-splicing. Wiley Interdiscip. Rev. RNA 2011, 2, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Douris, V.; Telford, M.J.; Averof, M. Evidence for multiple independent origins of trans-splicing in Metazoa. Mol. Biol. Evol. 2010, 27, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Jividen, K.; Li, H. Chimeric RNAs generated by intergenic splicing in normal and cancer cells. Genes Chromosomes Cancer 2014, 53, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Imai-Matsushima, A.; Paul, L.; Seitz, A.; Meyer, T.F.; Garcia-Alcalde, F. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data. PLoS ONE 2016, 11, e0167417. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.P. Expression of evolutionarily novel genes in tumors. Infect. Agent Cancer 2016, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Kumar-Sinha, C.; Kalyana-Sundaram, S.; Chinnaiyan, A.M. Landscape of gene fusions in epithelial cancers: Seq and ye shall find. Genome Med. 2015, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Annala, M.J.; Parker, B.C.; Zhang, W.; Nykter, M. Fusion genes and their discovery using high throughput sequencing. Cancer Lett. 2013, 340, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Xie, Z.; Li, H. Intergenically Spliced Chimeric RNAs in Cancer. Trends Cancer 2016, 2, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Seki, Y.; Mizukami, T.; Kohno, T. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks. Biomolecules 2015, 5, 2464–2476. [Google Scholar] [CrossRef] [PubMed]
- Lawson, A.R.; Hindley, G.F.; Forshew, T.; Tatevossian, R.G.; Jamie, G.A.; Kelly, G.P.; Neale, G.A.; Ma, J.; Jones, T.A.; Ellison, D.W.; et al. RAF gene fusion breakpoints in pediatric brain tumors are characterized by significant enrichment of sequence microhomology. Genome Res. 2011, 21, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Advanced sequencing techniques document the abundance of recombinant RNA molecules in cellular transcriptomes [371,372]. The generation of DNA and RNA encoding novel chimeric protein fusions occurs commonly in real time in tumor cells [373,374,375]. RNA trans-splicing appears to be involved in some cases [371,376], while microhomologies, DS breaks and NHEJ may be responsible in others [377,378].
- Frenkel-Morgenstern, M.; Valencia, A. Novel domain combinations in proteins encoded by chimeric transcripts. Bioinformatics 2012, 28, i67–i74. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Langley, C.H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 1993, 260, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Li, C.; Zuo, Z.; Huang, C.; Cheng, H.; Zhou, R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol. Evol. 2016, 8, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Eisenberg, D. Finding families for genomic ORFans. Bioinformatics 1999, 15, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Tautz, D.; Domazet-Loso, T. The evolutionary origin of orphan genes. Nat. Rev. Genet. 2011, 12, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Siew, N.; Azaria, Y.; Fischer, D. The ORFanage: An ORFan database. Nucleic Acids Res. 2004, 32, D281–D283. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Fischer, D. On the origin of microbial ORFans: Quantifying the strength of the evidence for viral lateral transfer. BMC Evol. Biol. 2006, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Sabath, N.; Wagner, A.; Karlin, D. Evolution of viral proteins originated de novo by overprinting. Mol. Biol. Evol. 2012, 29, 3767–3780. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.N.; McLysaght, A. De novo origin of protein-coding genes in murine rodents. PLoS ONE 2012, 7, e48650. [Google Scholar] [CrossRef] [PubMed]
- Andreatta, M.E.; Levine, J.A.; Foy, S.G.; Guzman, L.D.; Kosinski, L.J.; Cordes, M.H.; Masel, J. The Recent De Novo Origin of Protein C-Termini. Genome Biol. Evol. 2015, 7, 1686–1701. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhao, R.; Jiang, H.; Wang, W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 2008, 179, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zhang, Y.E.; Chen, J.Y.; Liu, C.J.; Zhou, W.Z.; Li, Y.; Zhang, M.; Zhang, R.; Wei, L.; Li, C.Y. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet. 2012, 8, e1002942. [Google Scholar] [CrossRef] [PubMed]
- Toll-Riera, M.; Castelo, R.; Bellora, N.; Alba, M.M. Evolution of primate orphan proteins. Biochem. Soc. Trans. 2009, 37, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Casola, C.; Lawing, A.M.; Betran, E.; Feschotte, C. PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes. Mol. Biol. Evol. 2007, 24, 1872–1888. [Google Scholar] [CrossRef] [PubMed]
- Philippsen, G.S.; Avaca-Crusca, J.S.; Araujo, A.P.; DeMarco, R. Distribution patterns and impact of transposable elements in genes of green algae. Gene 2016, 594, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, G.; Zhang, Y.; Xu, S.; Zhao, R.; Zhan, Z.; Li, X.; Ding, Y.; Yang, S.; Wang, W. On the origin of new genes in Drosophila. Genome Res. 2008, 18, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.K.; Okada, N. mRNA retrotransposition coupled with 5′ inversion as a possible source of new genes. Mol. Biol. Evol. 2009, 26, 1405–1420. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, J.A.; Wanjiru, B.M.; Brant, A.T.; Saelao, P.; Begun, D.J.; Jones, C.D. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences. PLoS Genet. 2013, 9, e1003860. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Orera, J.; Messeguer, X.; Subirana, J.A.; Alba, M.M. Long non-coding RNAs as a source of new peptides. eLife 2014, 3, e03523. [Google Scholar] [CrossRef] [PubMed]
- Nekrutenko, A.; Li, W.H. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 2001, 17, 619–621. [Google Scholar] [CrossRef]
- Britten, R.J. Transposable elements have contributed to thousands of human proteins. Proc. Nat. Acad. Sci. USA 2006, 103, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Kaer, K.; Branovets, J.; Hallikma, A.; Nigumann, P.; Speek, M. Intronic L1 retrotransposons and nested genes cause transcriptional interference by inducing intron retention, exonization and cryptic polyadenylation. PLoS ONE 2011, 6, e26099. [Google Scholar] [CrossRef] [PubMed]
- Vorechovsky, I. Transposable elements in disease-associated cryptic exons. Hum. Genet. 2010, 127, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Krull, M.; Brosius, J.; Schmitz, J. Alu-SINE exonization: En route to protein-coding function. Mol. Biol. Evol. 2005, 22, 1702–1711. [Google Scholar] [CrossRef] [PubMed]
- Moller-Krull, M.; Zemann, A.; Roos, C.; Brosius, J.; Schmitz, J. Beyond DNA: RNA editing and steps toward Alu exonization in primates. J. Mol. Biol. 2008, 382, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Sela, N.; Mersch, B.; Hotz-Wagenblatt, A.; Ast, G. Characteristics of transposable element exonization within human and mouse. PLoS ONE 2010, 5, e10907. [Google Scholar] [CrossRef] [PubMed]
- Lev-Maor, G.; Sorek, R.; Levanon, E.Y.; Paz, N.; Eisenberg, E.; Ast, G. RNA-editing-mediated exon evolution. Genome Biol. 2007, 8, R29. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.R.; Schneider, A.M.; Lu, Y.; Niranjan, T.; Shen, P.; Robinson, M.A.; Steranka, J.P.; Valle, D.; Civin, C.I.; Wang, T.; et al. Mobile interspersed repeats are major structural variants in the human genome. Cell 2010, 141, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- De Koning, A.P.; Gu, W.; Castoe, T.A.; Batzer, M.A.; Pollock, D.D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011, 7, e1002384. [Google Scholar] [CrossRef] [PubMed]
- Cordaux, R.; Batzer, M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 2009, 10, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Dridi, S. Alu mobile elements: From junk DNA to genomic gems. Scientifica (Cairo) 2012, 2012, 545328. [Google Scholar] [PubMed]
- Ponicsan, S.L.; Kugel, J.F.; Goodrich, J.A. Genomic gems: SINE RNAs regulate mRNA production. Curr. Opin. Genet. Dev. 2010, 20, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Huxley, J. Evolution: The Modern Synthesis; Allen & Unwin: London, UK, 1942. [Google Scholar]
- Avery, O.T.; MacLeod, C.M.; McCarty, M. Studies on the chemical nature of the substance inducing transformation of Pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated prom Pneumococcus Type III. J. Exp. Med. 1944, 79, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [Google Scholar] [CrossRef]
- McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.D.; Crick, F.H. Genetical implications of the structure of deoxyribonucleic acid. Nature 1953, 171, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Collado-Vides, J. A linguistic representation of the regulation of transcription initiation. I. An ordered array of complex symbols with distinctive features. Biosystems 1993, 29, 87–104. [Google Scholar] [CrossRef]
- Andersson, R.; Gebhard, C.; Miguel-Escalada, I.; Hoof, I.; Bornholdt, J.; Boyd, M.; Chen, Y.; Zhao, X.; Schmidl, C.; Suzuki, T.; et al. An atlas of active enhancers across human cell types and tissues. Nature 2014, 507, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Bondos, S.E.; Tan, X.X. Combinatorial transcriptional regulation: The interaction of transcription factors and cell signaling molecules with homeodomain proteins in Drosophila development. Crit. Rev. Eukaryot. Gene Expr. 2001, 11, 145–171. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.; Zhou, T.; Yang, L.; Dantas Machado, A.C.; Gordan, R.; Rohs, R. Absence of a simple code: How transcription factors read the genome. Trends Biochem. Sci. 2014, 39, 381–399. [Google Scholar] [CrossRef] [PubMed]
- Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016, 17, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Thurman, R.E.; Rynes, E.; Humbert, R.; Vierstra, J.; Maurano, M.T.; Haugen, E.; Sheffield, N.C.; Stergachis, A.B.; Wang, H.; Vernot, B.; et al. The accessible chromatin landscape of the human genome. Nature 2012, 489, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, J.; Rippe, K.; Dekker, M.; Kleckner, N. Capturing chromosome conformation. Science 2002, 295, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Cheng, J. Deciphering the association between gene function and spatial gene-gene interactions in 3D human genome conformation. BMC Genom. 2015, 16, 880. [Google Scholar] [CrossRef] [PubMed]
- Phillips-Cremins, J.E.; Sauria, M.E.; Sanyal, A.; Gerasimova, T.I.; Lajoie, B.R.; Bell, J.S.; Ong, C.T.; Hookway, T.A.; Guo, C.; Sun, Y.; et al. Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment. Cell 2013, 153, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.; Kohne, D.E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 1968, 161, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.J.; Kohne, D.E. Repeated Segments of DNA. Sci. Am. 1970, 222, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.J.; Davidson, E.H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q. Rev. Biol. 1971, 46, 111–138. [Google Scholar] [CrossRef] [PubMed]
- Kodama, Y.; Shumway, M.; Leinonen, R. The Sequence Read Archive: Explosive growth of sequencing data. Nucleic Acids Res. 2012, 40, D54–D56. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2015, 43, D30–D35. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.R.; Nicol, J.A.; Tamm, H.; Kullman, B.; Kullman, K.; Leitch, I.J.; Murray, B.G.; Kapraun, D.F.; Greilhuber, J.; Bennett, M.D. Eukaryotic genome size databases. Nucleic Acids Res. 2007, 35, D332–D338. [Google Scholar] [CrossRef] [PubMed]
- Hubley, R.; Finn, R.D.; Clements, J.; Eddy, S.R.; Jones, T.A.; Bao, W.; Smit, A.F.; Wheeler, T.J. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016, 44, D81–D89. [Google Scholar] [CrossRef] [PubMed]
- Jurka, J.; Kapitonov, V.V.; Kohany, O.; Jurka, M.V. Repetitive sequences in complex genomes: Structure and evolution. Annu. Rev. Genom. Hum. Genet. 2007, 8, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Shepard, D.B.; Chong, R.A.; Lopez Arriaza, J.; Hall, K.; Castoe, T.A.; Feschotte, C.; Pollock, D.D.; Mueller, R.L. LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol. Evol. 2012, 4, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Macas, J.; Neumann, P.; Navratilova, A. Repetitive DNA in the pea (Pisum sativum L.) genome: Comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genom. 2007, 8, 427. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.H.; Zhang, H.B.; Sheng, J.; Li, K.; Zhang, Q.J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W.; et al. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Mol. Plant 2017, 10, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- There is by no means a strict correlation of repetitive DNA content with either genome size or taxonomic status. Birds (1–1.2 GB total DNA) are relatively low in repeats (6–12%), while the more primitive vertebrate lamprey (0.65 GB total DNA) has 36% repeats, and a chordate lancelet (0.48 GB) has 13.6%. Insects (0.16–0.26 GB) range from 6–28% repeats, and a relatively simple tunicate (C. intestinalis, 0.14 GB total DNA) has over 16% repeats. Among vertebrates, certain groups are exceptional in genome content. Salamander genomes are very large and range from ~14 to ~120 Gb total DNA, but, like other vertebrates, these giant genomes contain 24–47% interspersed repetitive mobile DNA [436]. Plants have relatively large genomes, comparable in size to those of mammals (2–3 GB total DNA), generally with comparable repetitive DNA contents (~40% in peas [437]). But there are exceptions among plant genomes. Among the exceptions are the recently sequenced 3.02–GB genome of the cultivated tea tree Camellia sinensis (80.9% repetitive DNA) [438] and the 2.3 GB Maize strain B73 genome (>84% mobile DNA elements) [439].
- Ohno, S. So Much “Junk DNA” in Our Genome; Smith, H.H., Ed.; Gordon and Breach: New York, NY, USA, 1972; pp. 366–370. [Google Scholar]
- Orgel, L.E.; Crick, F.H. Selfish DNA: The ultimate parasite. Nature 1980, 284, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, E. ENCODE project writes eulogy for junk DNA. Science 2012, 337, 1159. [Google Scholar] [CrossRef] [PubMed]
- Buchler, N.E.; Gerland, U.; Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl. Acad. Sci. USA 2003, 100, 5136–5141. [Google Scholar] [CrossRef] [PubMed]
- Zinzen, R.P.; Girardot, C.; Gagneur, J.; Braun, M.; Furlong, E.E. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 2009, 462, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Guet, C.C.; Elowitz, M.B.; Hsing, W.; Leibler, S. Combinatorial synthesis of genetic networks. Science 2002, 296, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A.; von Sternberg, R. Why repetitive DNA is essential to genome function. Biol. Revs. Camb. Philos. Soc. 2005, 80, 227–250. [Google Scholar] [CrossRef]
- Shapiro, J.A. A 21st century view of evolution: Genome system architecture, repetitive DNA, and natural genetic engineering. Gene 2005, 345, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.N.; Bailey, C.C.; Jensen, J.S.; Borre, M.B.; King, E.S.; Bott, K.F.; Hutchison, C.A., III. Characterization of repetitive DNA in the Mycoplasma genitalium genome: Possible role in the generation of antigenic variation. Proc. Natl. Acad. Sci. USA 1995, 92, 11829–11833. [Google Scholar] [CrossRef] [PubMed]
- Taft, R.J.; Pheasant, M.; Mattick, J.S. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 2007, 29, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Mattick, J.S.; Taft, R.J. A meta-analysis of the genomic and transcriptomic composition of complex life. Cell Cycle 2013, 12, 2061–2072. [Google Scholar] [CrossRef] [PubMed]
- McClintock, B. Induction of Instability at Selected Loci in Maize. Genetics 1953, 38, 579–599. [Google Scholar] [PubMed]
- McClintock, B. Discovery and Characterization of Transposable Elements: The Collected Papers of Barbara McClintock; Garland: New York, NY, USA, 1987. [Google Scholar]
- McClintock, B. Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 1952, 21, 197–216. [Google Scholar] [CrossRef]
- McClintock, B. Some parallels between gene control systems in maize and in bacteria. Am. Nat. 1961, 95, 265–277. [Google Scholar] [CrossRef]
- McClintock, B. Intranuclear systems controlling gene action and mutation. Brookhaven Symp. Biol. 1956, 58–74. [Google Scholar]
- Marino-Ramirez, L.; Jordan, I.K. Transposable element derived DNaseI-hypersensitive sites in the human genome. Biol. Direct 2006, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Jordan, I.K.; Rogozin, I.B.; Glazko, G.V.; Koonin, E.V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003, 19, 68–72. [Google Scholar] [CrossRef]
- Glinsky, G.V. Transposable Elements and DNA Methylation Create in Embryonic Stem Cells Human-Specific Regulatory Sequences Associated with Distal Enhancers and Noncoding RNAs. Genome Biol. Evol. 2015, 7, 1432–1454. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.R.; Hendrickson, D.G.; Tenen, D.; Rinn, J.L. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol. 2014, 15, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huda, A.; Bushel, P.R. Widespread Exonization of Transposable Elements in Human Coding Sequences is Associated with Epigenetic Regulation of Transcription. Transcr. Open Access 2013, 1. [Google Scholar] [CrossRef]
- Kunarso, G.; Chia, N.Y.; Jeyakani, J.; Hwang, C.; Lu, X.; Chan, Y.S.; Ng, H.H.; Bourque, G. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 2010, 42, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Chuong, E.B.; Elde, N.C.; Feschotte, C. Regulatory activities of transposable elements: From conflicts to benefits. Nat. Rev. Genet. 2017, 18, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Harris, R.A.; Gnerre, S.; Veeramah, K.R.; Lorente-Galdos, B.; Huddleston, J.; Meyer, T.J.; Herrero, J.; Roos, C.; Aken, B.; et al. Gibbon genome and the fast karyotype evolution of small apes. Nature 2014, 513, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Hollister, J.D.; Smith, L.M.; Guo, Y.L.; Ott, F.; Weigel, D.; Gaut, B.S. Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc. Natl. Acad. Sci. USA 2011, 108, 2322–2327. [Google Scholar] [CrossRef] [PubMed]
- Symonova, R.; Majtanova, Z.; Sember, A.; Staaks, G.B.; Bohlen, J.; Freyhof, J.; Rabova, M.; Rab, P. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Santolamazza, F.; Mancini, E.; Simard, F.; Qi, Y.; Tu, Z.; della Torre, A. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 2008, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Craddock, E.M. Profuse evolutionary diversification and speciation on volcanic islands: Transposon instability and amplification bursts explain the genetic paradox. Biol. Direct 2016, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Kazazian, H.H., Jr. Mobile elements: Drivers of genome evolution. Science 2004, 303, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Deininger, P.L.; Moran, J.V.; Batzer, M.A.; Kazazian, H.H., Jr. Mobile elements and mammalian genome evolution. Curr. Opin. Genet. Dev. 2003, 13, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Lippman, Z.; Gendrel, A.V.; Black, M.; Vaughn, M.W.; Dedhia, N.; McCombie, W.R.; Lavine, K.; Mittal, V.; May, B.; Kasschau, K.D.; et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 2004, 430, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Roman, A.C.; Gonzalez-Rico, F.J.; Fernandez-Salguero, P.M. B1-SINE retrotransposons: Establishing genomic insulatory networks. Mob. Genet. Elem. 2011, 1, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, Z.; Jang, M.; Burge, C.B. Coevolutionary networks of splicing cis-regulatory elements. Proc. Natl. Acad. Sci. USA 2007, 104, 18583–18588. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, V.; Cheng, Y.; Ma, Z.; Li, D.; Xing, X.; Edge, P.; Snyder, M.P.; Wang, T. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 2014, 24, 1963–1976. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, M.P. Interspecific hybridization as a genomic stressor inducing mobilization of transposable elements in Drosophila. Mob. Genet. Elem. 2014, 4, e34394. [Google Scholar] [CrossRef] [PubMed]
- Miousse, I.R.; Chalbot, M.C.; Lumen, A.; Ferguson, A.; Kavouras, I.G.; Koturbash, I. Response of transposable elements to environmental stressors. Mutat. Res. Rev. Mutat. Res. 2015, 765, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, P.; Richardson, S.R.; Mager, D.L.; Faulkner, G.J. Transposable elements in the mammalian embryo: Pioneers surviving through stealth and service. Genome Biol. 2016, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Goke, J.; Ng, H.H. CTRL+INSERT: Retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Rep. 2016, 17, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.J.; Macfarlan, T.S.; Lorincz, M.C. Long Terminal Repeats: From Parasitic Elements to Building Blocks of the Transcriptional Regulatory Repertoire. Mol. Cell 2016, 62, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Jacques, P.E.; Jeyakani, J.; Bourque, G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 2013, 9, e1003504. [Google Scholar] [CrossRef] [PubMed]
- Garazha, A.; Ivanova, A.; Suntsova, M.; Malakhova, G.; Roumiantsev, S.; Zhavoronkov, A.; Buzdin, A. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome. Cell Cycle 2015, 14, 1476–1484. [Google Scholar] [CrossRef] [PubMed]
- “A total of 4094 candidate HSRL (human-specific regulatory loci) display selective and site-specific binding of critical regulators (NANOG {Nanog homeobox}, POU5F1 {POU class 5 homeobox 1}, CCCTC-binding factor {CTCF}, Lamin B1), and are preferentially located within the matrix of transcriptionally active DNA segments that are hypermethylated in hESC. hESC-specific NANOG-binding sites are enriched near the protein-coding genes regulating brain size, pluripotency long noncoding RNAs, hESC enhancers, and 5-hydroxymethylcytosine-harboring regions immediately adjacent to binding sites. Sequences of only 4.3% of hESC-specific NANOG-binding sites are present in Neanderthals’ genome, suggesting that a majority of these regulatory elements emerged in Modern Humans. Comparisons of estimated creation rates of novel TF-binding sites revealed that there was a 49.7-fold acceleration of creation rates of NANOG-binding sites in genomes of Chimpanzees when compared with the mouse genomes and further 5.7-fold acceleration in genomes of Modern Humans compared with the Chimpanzees genomes” [459].
- Muramoto, H.; Yagi, S.; Hirabayashi, K.; Sato, S.; Ohgane, J.; Tanaka, S.; Shiota, K. Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions. Genes Cells 2010, 15, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Castro-Diaz, N.; Ecco, G.; Coluccio, A.; Kapopoulou, A.; Yazdanpanah, B.; Friedli, M.; Duc, J.; Jang, S.M.; Turelli, P.; Trono, D. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 2014, 28, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Robbez-Masson, L.; Rowe, H.M. Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 2015, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, V.; Choudhary, M.N.; Pehrsson, E.; Xing, X.; Fiore, C.; Pandey, M.; Maricque, B.; Udawatta, M.; Ngo, D.; Chen, Y.; et al. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nat. Commun. 2017, 8, 14550. [Google Scholar] [CrossRef] [PubMed]
- Friedli, M.; Turelli, P.; Kapopoulou, A.; Rauwel, B.; Castro-Diaz, N.; Rowe, H.M.; Ecco, G.; Unzu, C.; Planet, E.; Lombardo, A.; et al. Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Res. 2014, 24, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X. Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genom. 2017, 18, 200. [Google Scholar] [CrossRef] [PubMed]
- Goke, J.; Lu, X.; Chan, Y.S.; Ng, H.H.; Ly, L.H.; Sachs, F.; Szczerbinska, I. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 2015, 16, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Dupressoir, A.; Lavialle, C.; Heidmann, T. From ancestral infectious retroviruses to bona fide cellular genes: Role of the captured syncytins in placentation. Placenta 2012, 33, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, E.C.; Weeks, R.J.; Andrews, S.; Morison, I.M. Hypomethylation of functional retrotransposon-derived genes in the human placenta. Mamm. Genome 2011, 22, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Chuong, E.B.; Rumi, M.A.; Soares, M.J.; Baker, J.C. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 2013, 45, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Lynch, V.J.; Leclerc, R.D.; May, G.; Wagner, G.P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 2011, 43, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Lynch, V.J.; Nnamani, M.C.; Kapusta, A.; Brayer, K.; Plaza, S.L.; Mazur, E.C.; Emera, D.; Sheikh, S.Z.; Grutzner, F.; Bauersachs, S.; et al. Ancient Transposable Elements Transformed the Uterine Regulatory Landscape and Transcriptome during the Evolution of Mammalian Pregnancy. Cell Rep. 2015, 10, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Emera, D.; Wagner, G.P. Transformation of a transposon into a derived prolactin promoter with function during human pregnancy. Proc. Natl. Acad. Sci. USA 2012, 109, 11246–11251. [Google Scholar] [CrossRef] [PubMed]
- Emera, D.; Casola, C.; Lynch, V.J.; Wildman, D.E.; Agnew, D.; Wagner, G.P. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol. Biol. Evol. 2012, 29, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Nishihara, H.; Hirakawa, M.; Fujimura, K.; Tanaka, M.; Kokubo, N.; Kimura-Yoshida, C.; Matsuo, I.; Sumiyama, K.; Saitou, N.; et al. Possible involvement of SINEs in mammalian-specific brain formation. Proc. Natl. Acad. Sci. USA 2008, 105, 4220–4225. [Google Scholar] [CrossRef] [PubMed]
- Notwell, J.H.; Chung, T.; Heavner, W.; Bejerano, G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 2015, 6, 6644. [Google Scholar] [CrossRef] [PubMed]
- Emera, D.; Yin, J.; Reilly, S.K.; Gockley, J.; Noonan, J.P. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc. Natl. Acad. Sci. USA 2016, 113, E2617–E2626. [Google Scholar] [CrossRef] [PubMed]
- Crepaldi, L.; Policarpi, C.; Coatti, A.; Sherlock, W.T.; Jongbloets, B.C.; Down, T.A.; Riccio, A. Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories. PLoS Genet. 2013, 9, e1003699. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.M.; Lomvardas, S. Nuclear architecture as an epigenetic regulator of neural development and function. Neuroscience 2014, 264, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Under normal circumstances, acetylation of SINE heterochromatin is inhibited by the transcription factor TFIIIC. TFIIIC binding to SINE elements is well-documented and contributes to their role as epigenetic insulator elements [472]. Silencing of TFIIIC expression in non-stimulated neurons mimics NEE exposure and chronic neural depolarization, leads to uncontrolled SINE acetylation and transcription, and induces a dramatic increase in dendrite length and branching [500].
- Watson, L.A.; Tsai, L.H. In the loop: How chromatin topology links genome structure to function in mechanisms underlying learning and memory. Curr. Opin. NeuroBiol. 2017, 43, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kaang, B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017, 49, e281. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.A.; Paquola, A.C.; Muotri, A.R. LINE-1 retrotransposition in the nervous system. Annu. Rev. Cell Dev. Biol. 2012, 28, 555–573. [Google Scholar] [CrossRef] [PubMed]
- Kapitonov, V.V.; Koonin, E.V. Evolution of the RAG1-RAG2 locus: Both proteins came from the same transposon. Biol. Direct 2015, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Tao, X.; Yuan, S.; Zhang, Y.; Li, P.; Beilinson, H.A.; Zhang, Y.; Yu, W.; Pontarotti, P.; Escriva, H.; et al. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J Recombination. Cell 2016, 166, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Zak, D.E.; Aderem, A. Systems biology of innate immunity. Immunol. Rev. 2009, 227, 264–282. [Google Scholar] [CrossRef] [PubMed]
- Nurnberger, T.; Brunner, F.; Kemmerling, B.; Piater, L. Innate immunity in plants and animals: Striking similarities and obvious differences. Immunol. Rev. 2004, 198, 249–266. [Google Scholar] [CrossRef] [PubMed]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Chuong, E.B.; Elde, N.C.; Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 2016, 351, 1083–1087. [Google Scholar] [CrossRef] [PubMed]
- The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57–74. [Google Scholar]
- Ecker, J.R.; Bickmore, W.A.; Barroso, I.; Pritchard, J.K.; Gilad, Y.; Segal, E. Genomics: ENCODE explained. Nature 2012, 489, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Birney, E. The making of ENCODE: Lessons for big-data projects. Nature 2012, 489, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Skipper, M.; Dhand, R.; Campbell, P. Presenting ENCODE. Nature 2012, 489, 45. [Google Scholar] [CrossRef] [PubMed]
- Glinsky, G.V. Phenotype-defining functions of multiple non-coding RNA pathways. Cell Cycle 2008, 7, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S. Non-coding RNAs: The architects of eukaryotic complexity. EMBO Rep. 2001, 2, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigo, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447, 799–816. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, E. DNA study forces rethink of what it means to be a gene. Science 2007, 316, 1556–1557. [Google Scholar] [CrossRef] [PubMed]
- Kapranov, P.; Cheng, J.; Dike, S.; Nix, D.A.; Duttagupta, R.; Willingham, A.T.; Stadler, P.F.; Hertel, J.; Hackermuller, J.; Hofacker, I.L.; et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316, 1484–1488. [Google Scholar] [CrossRef] [PubMed]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Alexander, R.; Min, R.; Leng, J.; Yip, K.Y.; Rozowsky, J.; Yan, K.K.; Dong, X.; Djebali, S.; Ruan, Y.; et al. Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome Res. 2012, 22, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Alexander, K.; Clark, A.G.; Grimson, A.; Yu, H. Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs. RNA 2016, 22, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Hao, Y.J.; Zhang, Y.; Li, M.M.; Wang, M.; Han, W.; Wu, Y.; Lv, Y.; Hao, J.; Wang, L.; et al. m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 2015, 16, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xiang, J.F.; Zhu, S.; Chen, S.; Yin, Q.F.; Zhang, X.O.; Zhang, J.; Feng, H.; Dong, R.; Li, X.J.; et al. ADAR1 is required for differentiation and neural induction by regulating microRNA processing in a catalytically independent manner. Cell Res. 2015, 25, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.X.; Crabtree, G.R.; Yoo, A.S. MicroRNAs: Regulators of neuronal fate. Curr. Opin. Cell Biol. 2013, 25, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Wouters, M.D.; van Gent, D.C.; Hoeijmakers, J.H.; Pothof, J. MicroRNAs, the DNA damage response and cancer. Mutat. Res. 2011, 717, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Kruszka, K.; Pacak, A.; Swida-Barteczka, A.; Nuc, P.; Alaba, S.; Wroblewska, Z.; Karlowski, W.; Jarmolowski, A.; Szweykowska-Kulinska, Z. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J. Exp. Bot. 2014, 65, 6123–6135. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Pignatta, D.; Bendix, C.; Brunkard, J.O.; Cohn, M.M.; Tung, J.; Sun, H.; Kumar, P.; Baker, B. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, J.J.; Bailey, L.J.; Mai, Q.-A.; Wu, S.L.; Hon, C.T.; Chapman, E.J.; Ditta, G.S.; Estelle, M.; Yanofsky, M.F. microRNA regulation of fruit growth. Nat. Plants 2015, 1, 15036. [Google Scholar] [CrossRef] [PubMed]
- Boon, R.A.; Vickers, K.C. Intercellular transport of microRNAs. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Ajit, S.K. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors 2012, 12, 3359–3369. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Messina, L.; Gutierrez-Vazquez, C.; Rivas-Garcia, E.; Sanchez-Madrid, F.; de la Fuente, H. Immunomodulatory role of microRNAs transferred by extracellular vesicles. Biol. Cell 2015, 107, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, C.; Williams, C.E.; El Bouhssini, M.; Whitworth, R.J.; Richards, S.; Stuart, J.J.; Chen, M.S. Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor. BMC Genom. 2013, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Londin, E.; Loher, P.; Telonis, A.G.; Quann, K.; Clark, P.; Jing, Y.; Hatzimichael, E.; Kirino, Y.; Honda, S.; Lally, M.; et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc. Natl. Acad. Sci. USA 2015, 112, E1106–E1115. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.Q.; Yang, C.X.; Rothschild, M.F.; Ross, J.W. Novel microRNA families expanded in the human genome. BMC Genom. 2013, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Tarver, J.E.; Hiscock, S.J.; Donoghue, P.C. Evolutionary history of plant microRNAs. Trends Plant. Sci. 2014, 19, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Loh, Y.H.; Yi, S.V.; Streelman, J.T. Evolution of microRNAs and the diversification of species. Genome Biol. Evol. 2011, 3, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Berezikov, E. Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 2011, 12, 846–860. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, L.; Knisbacher, B.A.; Xu, Q.; Levanon, E.Y.; Wang, H.; Frenkel-Morgenstern, M.; Tagore, S.; Fang, X.; Bazak, L.; et al. Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax. Proc. Natl. Acad. Sci. USA 2016, 113, 7584–7589. [Google Scholar] [CrossRef] [PubMed]
- Gim, J.A.; Ha, H.S.; Ahn, K.; Kim, D.S.; Kim, H.S. Genome-Wide Identification and Classification of MicroRNAs Derived from Repetitive Elements. Genom. Inform. 2014, 12, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Piriyapongsa, J.; Marino-Ramirez, L.; Jordan, I.K. Origin and evolution of human microRNAs from transposable elements. Genetics 2007, 176, 1323–1337. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Jin, P.; Zhou, X.; Chen, L.; Ma, F. The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human. PLoS ONE 2015, 10, e0131365. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.T.; Cardin, S.E.; Borchert, G.M. Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences. Mob. Genet. Elem. 2014, 4, e29255. [Google Scholar] [CrossRef] [PubMed]
- Platt, R.N., II; Vandewege, M.W.; Kern, C.; Schmidt, C.J.; Hoffmann, F.G.; Ray, D.A. Large numbers of novel miRNAs originate from DNA transposons and are coincident with a large species radiation in bats. Mol. Biol. Evol. 2014, 31, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Spengler, R.M.; Oakley, C.K.; Davidson, B.L. Functional microRNAs and target sites are created by lineage-specific transposition. Hum. Mol. Genet. 2014, 23, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Devor, E.J.; Peek, A.S.; Lanier, W.; Samollow, P.B. Marsupial-specific microRNAs evolved from marsupial-specific transposable elements. Gene 2009, 448, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.G.; McGuire, L.P.; Counterman, B.A.; Ray, D.A. Transposable elements and small RNAs: Genomic fuel for species diversity. Mob. Genet. Elem. 2015, 5, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Smalheiser, N.R.; Torvik, V.I. Alu elements within human mRNAs are probable microRNA targets. Trends Genet. 2006, 22, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ai, G.; Zhang, C.; Cui, L.; Wang, J.; Li, H.; Zhang, J.; Ye, Z. Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. New Phytol. 2016, 209, 1442–1455. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, A.; Feschotte, C. Volatile evolution of long noncoding RNA repertoires: Mechanisms and biological implications. Trends Genet. 2014, 30, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, A.P.; Pei, D. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci. Bull. 2015, 60, 1722–1733. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Chernikova, D.; Rogozin, I.B.; Poliakov, E.; Managadze, D.; Koonin, E.V.; Milanesi, L. Transposable Element Insertions in Long Intergenic Non-Coding RNA Genes. Front. Bioeng. Biotechnol. 2015, 3, 71. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.; Rinn, J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol. 2012, 13, R107. [Google Scholar] [CrossRef] [PubMed]
- St Laurent, G., III; Shtokalo, D.; Dong, B.; Tackett, M.R.; Fan, X.; Lazorthes, S.; Nicolas, E.; Sang, N.; Triche, T.J.; McCaffrey, T.A.; et al. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol. 2013, 14, R73. [Google Scholar] [CrossRef] [PubMed]
- Durruthy-Durruthy, J.; Sebastiano, V.; Wossidlo, M.; Cepeda, D.; Cui, J.; Grow, E.J.; Davila, J.; Mall, M.; Wong, W.H.; Wysocka, J.; et al. The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat. Genet. 2016, 48, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Fort, A.; Hashimoto, K.; Yamada, D.; Salimullah, M.; Keya, C.A.; Saxena, A.; Bonetti, A.; Voineagu, I.; Bertin, N.; Kratz, A.; et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 2014, 46, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Zucchelli, S.; Fasolo, F.; Russo, R.; Cimatti, L.; Patrucco, L.; Takahashi, H.; Jones, M.H.; Santoro, C.; Sblattero, D.; Cotella, D.; et al. SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front. Cell. NeuroSci. 2015, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.; Guigo, R. The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs. RNA 2014, 20, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Hadjiargyrou, M.; Delihas, N. The Intertwining of Transposable Elements and Non-Coding RNAs. Int. J. Mol. Sci. 2013, 14, 13307–13328. [Google Scholar] [CrossRef] [PubMed]
- Arthanari, Y.; Heintzen, C.; Griffiths-Jones, S.; Crosthwaite, S.K. Natural Antisense Transcripts and Long Non-Coding RNA in Neurospora crassa. PLoS ONE 2014, 9, e91353. [Google Scholar] [CrossRef] [PubMed]
- Woehle, C.; Kusdian, G.; Radine, C.; Graur, D.; Landan, G.; Gould, S.B. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genom. 2014, 15, 906. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.M.; Waterhouse, R.M.; Muskavitch, M.A. Long non-coding RNA discovery across the genus Anopheles reveals conserved secondary structures within and beyond the Gambiae complex. BMC Genom. 2015, 16, 337. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Cheng, T.; Liu, C.; Liu, D.; Zhang, Q.; Long, R.; Zhao, P.; Xia, Q. Systematic Identification and Characterization of Long Non-Coding RNAs in the Silkworm, Bombyx mori. PLoS ONE 2016, 11, e0147147. [Google Scholar] [CrossRef] [PubMed]
- Szczesniak, M.W.; Rosikiewicz, W.; Makalowska, I. CANTATAdb: A Collection of Plant Long Non-Coding RNAs. Plant Cell Physiol. 2016, 57, e8. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.H.; Wang, M.B. Molecular Functions of Long Non-Coding RNAs in Plants. Genes 2012, 3, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Gaiti, F.; Fernandez-Valverde, S.L.; Nakanishi, N.; Calcino, A.D.; Yanai, I.; Tanurdzic, M.; Degnan, B.M. Dynamic and Widespread lncRNA Expression in a Sponge and the Origin of Animal Complexity. Mol. Biol. Evol. 2015, 32, 2367–2382. [Google Scholar] [CrossRef] [PubMed]
- Al-Tobasei, R.; Paneru, B.; Salem, M. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout. PLoS ONE 2016, 11, e0148940. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol. 2013, 10, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Hon, C.C.; Ramilowski, J.A.; Harshbarger, J.; Bertin, N.; Rackham, O.J.; Gough, J.; Denisenko, E.; Schmeier, S.; Poulsen, T.M.; Severin, J.; et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 2017, 543, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Ernst, C.; Morton, C.C. Identification and function of long non-coding RNA. Front. Cell. NeuroSci. 2013, 7, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet. 2015, 31, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Eldredge, N.; Gould, S.J. Punctuated equilibria: An alternative to phyletic gradualism. In Models in Paleobiology; Schopf, T.J.M., Ed.; Freeman, Cooper and Company: San Francisco, CA, USA, 1972; pp. 82–115. [Google Scholar]
- Grant, B.R.; Grant, P.R. Fission and fusion of Darwin’s finches populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 2821–2829. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.; Grant, B.R. Hybridization of bird species. Science 1992, 256, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.R.; Grant, B.R. 40 Years of Evolution. Darwin’s Finches on Daphne Major Island; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Romero-Soriano, V.; Burlet, N.; Vela, D.; Fontdevila, A.; Vieira, C.; Garcia Guerreiro, M.P. Drosophila Females Undergo Genome Expansion after Interspecific Hybridization. Genome Biol. Evol. 2016, 8, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Feiner, N. Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards. Proc. Biol. Sci. 2016, 283. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.R.; McComb, J.A.; Greene, W.K. Transposable elements: Powerful contributors to angiosperm evolution and diversity. Genome Biol. Evol. 2013, 5, 1886–1901. [Google Scholar] [CrossRef] [PubMed]
- Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 2013, 14, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Parisod, C.; Salmon, A.; Zerjal, T.; Tenaillon, M.; Grandbastien, M.A.; Ainouche, M. Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol. 2009, 184, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Stapley, J.; Santure, A.W.; Dennis, S.R. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol. Ecol. 2015, 24, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.L.; Meyer, A. Natural hybridization in primates: One evolutionary mechanism. Zoology 2006, 109, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Oliver, K.R.; Greene, W.K. Mobile DNA and the TE-Thrust hypothesis: Supporting evidence from the primates. Mob. DNA 2011, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Witkin, E.M. Radiation-induced mutations and their repair. Science 1966, 152, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, R.; Janel-Bintz, R.; Wagner, J.; Fuchs, R.P. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 2000, 19, 6259–6265. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.D.; Smith, B.T.; Godoy, V.G.; Walker, G.C. The SOS response: Recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu. Rev. Genet. 2000, 34, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.F. Purposeful mutations. Nature 1998, 395, 221–223. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Ann. Rev. Biochem. 2002, 71, 17–50. [Google Scholar] [CrossRef] [PubMed]
- Sakofsky, C.J.; Ayyar, S.; Deem, A.K.; Chung, W.H.; Ira, G.; Malkova, A. Translesion Polymerases Drive Microhomology-Mediated Break-Induced Replication Leading to Complex Chromosomal Rearrangements. Mol. Cell 2015, 60, 860–872. [Google Scholar] [CrossRef] [PubMed]
- Lada, A.G.; Dhar, A.; Boissy, R.J.; Hirano, M.; Rubel, A.A.; Rogozin, I.B.; Pavlov, Y.I. AID/APOBEC cytosine deaminase induces genome-wide kataegis. Biol. Direct 2012, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J.; Nik-Zainal, S.; Wu, Y.L.; Stebbings, L.A.; Raine, K.; Campbell, P.J.; Rada, C.; Stratton, M.R.; Neuberger, M.S. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. eLife 2013, 2, e00534. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, A.L.; Schar, P. DNA glycosylases: In DNA repair and beyond. Chromosoma 2012, 121, 1–20. [Google Scholar] [CrossRef] [PubMed]
- The nucleotide substitution mutations that are induced by cytosine deaminase are not exclusively C-to-T transitions because some of the uracil bases that are produced by deamination are removed from the affected DNA strand by uracil-N-glycosylase activity and are replaced by any of the four DNA bases, producing other transition and transversion substitutions, or erasing mutagenesis altogether [597].
- Casellas, R.; Basu, U.; Yewdell, W.T.; Chaudhuri, J.; Robbiani, D.F.; Di Noia, J.M. Mutations, kataegis and translocations in B cells: Understanding AID promiscuous activity. Nat. Rev. Immunol. 2016, 16, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Leibowitz, M.L.; Zhang, C.Z.; Pellman, D. Chromothripsis: A New Mechanism for Rapid Karyotype Evolution. Annu Rev. Genet. 2015, 49, 183–211. [Google Scholar] [CrossRef] [PubMed]
- Poot, M. Of Simple and Complex Genome Rearrangements, Chromothripsis, Chromoanasynthesis, and Chromosome Chaos. Mol. Syndromol. 2017, 8, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Erez, A.; Nagamani, S.C.; Dhar, S.U.; Kolodziejska, K.E.; Dharmadhikari, A.V.; Cooper, M.L.; Wiszniewska, J.; Zhang, F.; Withers, M.A.; et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011, 146, 889–903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Spektor, A.; Cornils, H.; Francis, J.M.; Jackson, E.K.; Liu, S.; Meyerson, M.; Pellman, D. Chromothripsis from DNA damage in micronuclei. Nature 2015, 522, 179–184. [Google Scholar] [CrossRef] [PubMed]
- De Pagter, M.S.; van Roosmalen, M.J.; Baas, A.F.; Renkens, I.; Duran, K.J.; van Binsbergen, E.; Tavakoli-Yaraki, M.; Hochstenbach, R.; van der Veken, L.T.; Cuppen, E.; et al. Chromothripsis in Healthy Individuals Affects Multiple Protein-Coding Genes and Can Result in Severe Congenital Abnormalities in Offspring. Am. J. Hum. Genet. 2015. [Google Scholar] [CrossRef]
- Goodman, M.F. Better living with hyper-mutation. Environ. Mol. Mutagen. 2016, 57, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Teng, G.; Papavasiliou, F.N. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 2007, 41, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Lada, A.G.; Stepchenkova, E.I.; Waisertreiger, I.S.; Noskov, V.N.; Dhar, A.; Eudy, J.D.; Boissy, R.J.; Hirano, M.; Rogozin, I.B.; Pavlov, Y.I. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genet. 2013, 9, e1003736. [Google Scholar] [CrossRef] [PubMed]
- Lada, A.G.; Kliver, S.F.; Dhar, A.; Polev, D.E.; Masharsky, A.E.; Rogozin, I.B.; Pavlov, Y.I. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes. PLoS Genet. 2015, 11, e1005217. [Google Scholar] [CrossRef] [PubMed]
- Saini, N.; Roberts, S.A.; Sterling, J.F.; Malc, E.P.; Mieczkowski, P.A.; Gordenin, D.A. APOBEC3B cytidine deaminase targets the non-transcribed strand of tRNA genes in yeast. DNA Repair (Amst) 2017, 53, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Pellestor, F.; Gatinois, V.; Puechberty, J.; Genevieve, D.; Lefort, G. Chromothripsis: Potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil. Steril. 2014, 102, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Weckselblatt, B.; Hermetz, K.E.; Rudd, M.K. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res. 2015, 25, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp, S.; van Heesch, S.; Braat, A.K.; de Ligt, J.; van Iterson, M.; Simonis, M.; van Roosmalen, M.J.; Kelder, M.J.; Kruisselbrink, E.; Hochstenbach, R.; et al. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med. 2017, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Leibowitz, M.L.; Pellman, D. Chromothripsis and beyond: Rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 2013, 27, 2513–2530. [Google Scholar] [CrossRef] [PubMed]
- Fukami, M.; Shima, H.; Suzuki, E.; Ogata, T.; Matsubara, K.; Kamimaki, T. Catastrophic Cellular Events Leading to Complex Chromosomal Rearrangements in the Germline. Clin. Genet. 2016, 91, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Nazaryan-Petersen, L.; Bertelsen, B.; Bak, M.; Jonson, L.; Tommerup, N.; Hancks, D.C.; Tumer, Z. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination. Hum. Mutat. 2016, 37, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Farkash, E.A.; Kao, G.D.; Horman, S.R.; Prak, E.T. Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay. Nucleic Acids Res. 2006, 34, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Stribinskis, V.; Ramos, K.S. Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. Cancer Res. 2006, 66, 2616–2620. [Google Scholar] [CrossRef] [PubMed]
- Teneng, I.; Stribinskis, V.; Ramos, K.S. Context-specific regulation of LINE-1. Genes Cells 2007, 12, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Kale, S.P.; Moore, L.; Deininger, P.L.; Roy-Engel, A.M. Heavy metals stimulate human LINE-1 retrotransposition. Int. J. Environ. Res. Public Health 2005, 2, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Kale, S.P.; Carmichael, M.C.; Harris, K.; Roy-Engel, A.M. The L1 retrotranspositional stimulation by particulate and soluble cadmium exposure is independent of the generation of DNA breaks. Int. J. Environ. Res. Public Health 2006, 3, 121–128. [Google Scholar] [CrossRef] [PubMed]
- El-Sawy, M.; Kale, S.P.; Dugan, C.; Nguyen, T.Q.; Belancio, V.; Bruch, H.; Roy-Engel, A.M.; Deininger, P.L. Nickel stimulates L1 retrotransposition by a post-transcriptional mechanism. J. Mol. Biol. 2005, 354, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Al Mamun, A.A.; Lombardo, M.J.; Shee, C.; Lisewski, A.M.; Gonzalez, C.; Lin, D.; Nehring, R.B.; Saint-Ruf, C.; Gibson, J.L.; Frisch, R.L.; et al. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 2012, 338, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Giglia-Mari, G.; Zotter, A.; Vermeulen, W. DNA damage response. Cold Spring Harb. Perspect. Biol. 2011, 3, a000745. [Google Scholar] [CrossRef] [PubMed]
- Lamb, B.C.; Mandaokar, S.; Bahsoun, B.; Grishkan, I.; Nevo, E. Differences in spontaneous mutation frequencies as a function of environmental stress in soil fungi at “Evolution Canyon,” Israel. Proc. Natl. Acad. Sci. USA 2008, 105, 5792–5796. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Fahima, T.; Roder, M.S.; Kirzhner, V.M.; Beiles, A.; Korol, A.B.; Nevo, E. Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel. Heredity (Edinb) 2003, 90, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Roder, M.S.; Fahima, T.; Kirzhner, V.M.; Beiles, A.; Korol, A.B.; Nevo, E. Climatic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel. Heredity (Edinb) 2002, 89, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Hübner, S.; Rashkovetsky, E.; Kim, Y.B.; Oh, J.H.; Michalak, K.; Weiner, D.; Korol, A.B.; Nevo, E.; Michalak, P. Genome differentiation of Drosophila melanogaster from a microclimate contrast in Evolution Canyon, Israel. Proc. Natl. Acad. Sci. USA 2013, 110, 21059–21064. [Google Scholar] [CrossRef] [PubMed]
- Beiles, A.; Raz, S.; Ben-Abu, Y.; Nevo, E. Putative adaptive inter-slope divergence of transposon frequency in fruit flies (Drosophila melanogaster) at “Evolution Canyon”, Mount Carmel, Israel. Biol. Direct 2015, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.B.; Oh, J.H.; McIver, L.J.; Rashkovetsky, E.; Michalak, K.; Garner, H.R.; Kang, L.; Nevo, E.; Korol, A.B.; Michalak, P. Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel. Proc. Natl. Acad. Sci. USA 2014, 111, 10630–10635. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Tanskanen, J.; Immonen, S.; Nevo, E.; Schulman, A.H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 2000, 97, 6603–6607. [Google Scholar] [CrossRef] [PubMed]
- A good illustration of the interplay between ecology and NGE functions emerges from the divergences that are observed in several genome parameters between climatically distinct zones at the Evolution Canyon (Yehudiyya) microsite in Israel: Spontaneous mutation in soil fungi [624], microsatellite expansion in wild emmer wheat [625,626], transposition in Drosophila [627,628,629], and retrotransposition in wild barley [630].
- Blount, Z.D.; Barrick, J.E.; Davidson, C.J.; Lenski, R.E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 2012, 489, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, H.; Rainey, P.B. Evolution: How the unicorn got its horn. Nature 2012, 489, 504–505. [Google Scholar] [CrossRef] [PubMed]
- Kahrstrom, C.T. Bacterial evolution: Decoding fossil records. Nat. Rev. Genet. 2012, 13, 757. [Google Scholar] [CrossRef] [PubMed]
- Maenhaut-Michel, G.; Shapiro, J.A. The roles of starvation and selective substrates in the emergence of araB-lacZ fusion clones. EMBO J. 1994, 13, 5229–5239. [Google Scholar] [PubMed]
- Van Hofwegen, D.J.; Hovde, C.J.; Minnich, S.A. Rapid Evolution of Citrate Utilization by Escherichia coli by Direct Selection Requires citT and dctA. J. Bacteriol. 2016, 198, 1022–1034. [Google Scholar] [CrossRef] [PubMed]
- To quote the authors of the direct selection experiment: “Long-term evolution experiments (LTEE) that were performed by Blount et al. [632] found a single aerobic, citrate-utilizing E. coli strain after 33,000 generations (15 years). This was interpreted as a speciation event. Here, we show why it probably was not a speciation event. Using similar media, 46 independent citrate-utilizing mutants were isolated in as few as 12 to 100 generations. Genomic DNA sequencing revealed an amplification of the citT and dctA loci and DNA rearrangements to capture a promoter to express CitT, aerobically. These are members of the same class of mutations identified by the LTEE. We conclude that the rarity of the LTEE mutant was an artifact of the experimental conditions and not a unique evolutionary event. No new genetic information (novel gene function) evolved” [636].
- Guo, H.; Arambula, D.; Ghosh, P.; Miller, J.F. Diversity-generating Retroelements in Phage and Bacterial Genomes. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y. Identification of diversity-generating retroelements in human microbiomes. Int. J. Mol. Sci. 2014, 15, 14234–14246. [Google Scholar] [CrossRef] [PubMed]
- Sometimes the terms phase variation and antigenic variation are used interchangeably. The distinction that is made here is intended to clarify the effects on protein expression and set them apart from effects on protein structure.
- Patel, S. Drivers of bacterial genomes plasticity and roles they play in pathogen virulence, persistence and drug resistance. Infect. Genet. Evol. 2016, 45, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Foley, J. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens. Comput. Struct. Biotechnol. J. 2015, 13, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski-Dye, F.; Vial, L. Phase and antigenic variation mediated by genome modifications. Antonie Van Leeuwenhoek 2008, 94, 493–515. [Google Scholar] [CrossRef] [PubMed]
- Kutsukake, K.; Nakashima, H.; Tominaga, A.; Abo, T. Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J. Bacteriol. 2006, 188, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Horino, A.; Kenri, T.; Sasaki, Y.; Okamura, N.; Sasaki, T. Identification of a site-specific tyrosine recombinase that mediates promoter inversions of phase-variable mpl lipoprotein genes in Mycoplasma penetrans. Microbiology 2009, 155, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Anjuwon-Foster, B.R.; Tamayo, R. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet. 2017, 13, e1006701. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Vergara-Irigaray, M.; Merino, N.; Penades, J.R.; Lasa, I. sigmaB regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation. J. Bacteriol. 2007, 189, 2886–2896. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.L.; Jefferson, K.K. Phase variation of poly-N-acetylglucosamine expression in Staphylococcus aureus. PLoS Pathog. 2014, 10, e1004292. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, C.D.; Palmer, M.E. Evolution of simple sequence repeat-mediated phase variation in bacterial genomes. Ann. N. Y. Acad. Sci. 2012, 1267, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Komano, T. Shufflons: Multiple inversion systems and integrons. Annu. Rev. Genet. 1999, 33, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Hanada, K.; Yamaoka, Y. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells. Microbes Infect. 2014, 16, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, L.A.; Seifert, H.S. Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS Pathog. 2013, 9, e1003074. [Google Scholar] [CrossRef] [PubMed]
- Vink, C.; Rudenko, G.; Seifert, H.S. Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol. Rev. 2012, 36, 917–948. [Google Scholar] [CrossRef] [PubMed]
- Modell, J.W.; Jiang, W.; Marraffini, L.A. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 2017, 544, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Viral target DNA appears to be acquired during the injection process itself, before the virus has a chance to reproduce [654].
- Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Nature 2015, 526, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Nunez, J.K.; Lee, A.S.; Engelman, A.; Doudna, J.A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 2015. [Google Scholar] [CrossRef]
- Vestergaard, G.; Garrett, R.A.; Shah, S.A. CRISPR adaptive immune systems of Archaea. RNA Biol. 2014, 11, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Rollie, C.; Schneider, S.; Brinkmann, A.S.; Bolt, E.L.; White, M.F. Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition. eLife 2015, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternberg, S.H.; LaFrance, B.; Kaplan, M.; Doudna, J.A. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 2015, 527, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R. RNA events. Cas9 targeting and the CRISPR revolution. Science 2014, 344, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Beguin, P.; Koonin, E.V. Casposons: Mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr. Opin. Microbiol. 2017, 38, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Koonin, E.V. Self-synthesizing transposons: Unexpected key players in the evolution of viruses and defense systems. Curr. Opin. Microbiol. 2016, 31, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Zhao, H.; Wang, J.; Rao, Y.; Tian, W.; Swarts, D.C.; van der Oost, J.; Patel, D.J.; Wang, Y. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. USA 2014, 111, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Swarts, D.C.; Jore, M.M.; Westra, E.R.; Zhu, Y.; Janssen, J.H.; Snijders, A.P.; Wang, Y.; Patel, D.J.; Berenguer, J.; Brouns, S.J.; et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 2014. [Google Scholar] [CrossRef] [PubMed]
- Swarts, D.C.; Hegge, J.W.; Hinojo, I.; Shiimori, M.; Ellis, M.A.; Dumrongkulraksa, J.; Terns, R.M.; Terns, M.P.; van der Oost, J. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. 2015, 43, 5120–5129. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: Common ancestry vs convergence. Biol. Direct 2017, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Hanson, S.J.; Wolfe, K.H. An Evolutionary Perspective on Yeast Mating-Type Switching. Genetics 2017, 206, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Hanson, S.J.; Byrne, K.P.; Wolfe, K.H. Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. Proc. Natl. Acad. Sci. USA 2014, 111, E4851–E4858. [Google Scholar] [CrossRef] [PubMed]
- Devlin, R.; Marques, C.A.; McCulloch, R. Does DNA replication direct locus-specific recombination during host immune evasion by antigenic variation in the African trypanosome? Curr. Genet. 2017, 63, 441–449. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, R.; Morrison, L.J.; Hall, J.P. DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Horn, D. Antigenic variation in African trypanosomes. Mol. Biochem. Parasitol. 2014, 195, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcello, L.; Barry, J.D. Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res. 2007, 17, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Bracht, J.R.; Fang, W.; Goldman, A.D.; Dolzhenko, E.; Stein, E.M.; Landweber, L.F. Genomes on the edge: Programmed genome instability in ciliates. Cell 2013, 152, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, K. Developmentally programmed, RNA-directed genome rearrangement in Tetrahymena. Dev. Growth Differ. 2012, 54, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Nowacki, M.; Shetty, K.; Landweber, L.F. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu. Rev. Genom. Hum. Genet. 2011, 12, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Yerlici, V.T.; Landweber, L.F. Programmed Genome Rearrangements in the Ciliate Oxytricha. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Swart, E.C.; Bracht, J.R.; Magrini, V.; Minx, P.; Chen, X.; Zhou, Y.; Khurana, J.S.; Goldman, A.D.; Nowacki, M.; Schotanus, K.; et al. The Oxytricha trifallax macronuclear genome: A complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol. 2013, 11, e1001473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollenbeck, M.; Zhou, Y.; Cavalcanti, A.R.; Jonsson, F.; Higgins, B.P.; Chang, W.J.; Juranek, S.; Doak, T.G.; Rozenberg, G.; Lipps, H.J.; et al. The pathway to detangle a scrambled gene. PLoS ONE 2008, 3, e2330. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jung, S.; Beh, L.Y.; Eddy, S.R.; Landweber, L.F. Combinatorial DNA Rearrangement Facilitates the Origin of New Genes in Ciliates. Genome Biol. Evol. 2015, 7, 2859–2870. [Google Scholar] [CrossRef] [PubMed]
- Alt, F.W.; Zhang, Y.; Meng, F.L.; Guo, C.; Schwer, B. Mechanisms of programmed DNA lesions and genomic instability in the immune system. Cell 2013, 152, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Schatz, D.G.; Ji, Y. Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 2011, 11, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Chaumeil, J.; Micsinai, M.; Ntziachristos, P.; Deriano, L.; Wang, J.M.; Ji, Y.; Nora, E.P.; Rodesch, M.J.; Jeddeloh, J.A.; Aifantis, I.; et al. Higher-order looping and nuclear organization of Tcra facilitate targeted rag cleavage and regulated rearrangement in recombination centers. Cell Rep. 2013, 3, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Fugmann, S.D.; Schatz, D.G. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. J. Exp. Med. 2006, 203, 2919–2928. [Google Scholar] [CrossRef] [PubMed]
- Buerstedde, J.M.; Alinikula, J.; Arakawa, H.; McDonald, J.J.; Schatz, D.G. Targeting Of Somatic Hypermutation By immunoglobulin Enhancer And Enhancer-Like Sequences. PLoS Biol. 2014, 12, e1001831. [Google Scholar] [CrossRef] [PubMed]
- Longerich, S.; Basu, U.; Alt, F.; Storb, U. AID in somatic hypermutation and class switch recombination. Curr. Opin. Immunol. 2006, 18, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, J.; Basu, U.; Zarrin, A.; Yan, C.; Franco, S.; Perlot, T.; Vuong, B.; Wang, J.; Phan, R.T.; Datta, A.; et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv. Immunol. 2007, 94, 157–214. [Google Scholar] [PubMed]
- Kass, E.M.; Moynahan, M.E.; Jasin, M. When Genome Maintenance Goes Badly Awry. Mol. Cell 2016, 62, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Markowetz, F. A saltationist theory of cancer evolution. Nat. Genet. 2016, 48, 1102–1103. [Google Scholar] [CrossRef] [PubMed]
- Touati, E. When bacteria become mutagenic and carcinogenic: Lessons from H. pylori. Mutat. Res. 2010, 703, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Chumduri, C.; Gurumurthy, R.K.; Zietlow, R.; Meyer, T.F. Subversion of host genome integrity by bacterial pathogens. Nat. Rev. Mol. Cell Biol. 2016, 17, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, O.; Walz, P.; Kovalchuk, I. Does bacterial infection cause genome instability and cancer in the host cell? Mutat. Res. 2014, 761, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kasar, S.; Kim, J.; Improgo, R.; Tiao, G.; Polak, P.; Haradhvala, N.; Lawrence, M.S.; Kiezun, A.; Fernandes, S.M.; Bahl, S.; et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 2015, 6, 8866. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, H.S.; Galashevskaya, A.; Doseth, B.; Sousa, M.M.; Sarno, A.; Visnes, T.; Aas, P.A.; Liabakk, N.B.; Slupphaug, G.; Saetrom, P.; et al. AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature. DNA Repair (Amst) 2015, 25, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Shivarov, V.; Strout, M.P. The role of activation-induced cytidine deaminase in lymphomagenesis. Curr. Opin. Hematol. 2012, 19, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, J.; Akagi, K.; Misawa, R.; Kokubu, C.; Takeda, J.; Horie, K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci. Rep. 2017, 7, 43613. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H., Jr.; Kukita, C.; Zhang, Z. Transposon-mediated directed mutation in bacteria and eukaryotes. Front. BioSci. (Landmark Ed.) 2017, 22, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Saier, M.H., Jr. Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J. Mol. Microbiol. Biotechnol. 2011, 21, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Baller, J.A.; Gao, J.; Stamenova, R.; Curcio, M.J.; Voytas, D.F. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res. 2012, 22, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S. Evolution by Gene Duplication; George Allen and Unwin: London, UK, 1970. [Google Scholar]
- Toll-Riera, M.; San Millan, A.; Wagner, A.; MacLean, R.C. The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa. PLoS Genet. 2016, 12, e1006005. [Google Scholar] [CrossRef] [PubMed]
- Keane, O.M.; Toft, C.; Carretero-Paulet, L.; Jones, G.W.; Fares, M.A. Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae. Genome Res. 2014, 24, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Mattenberger, F.; Sabater-Munoz, B.; Toft, C.; Fares, M.A. The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3 (Bethesda) 2017, 7, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene duplication as a major force in evolution. J. Genet. 2013, 92, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Castagnone-Sereno, P.; Danchin, E.G. Parasitic success without sex—The nematode experience. J. Evol. Biol. 2014, 27, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Blanc-Mathieu, R.; Perfus-Barbeoch, L.; Aury, J.M.; Da Rocha, M.; Gouzy, J.; Sallet, E.; Martin-Jimenez, C.; Bailly-Bechet, M.; Castagnone-Sereno, P.; Flot, J.F.; et al. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genet. 2017, 13, e1006777. [Google Scholar] [CrossRef] [PubMed]
- Duplications have been well-recognized evolutionary facilitators for over four decades [700]. Some papers in the last few years emphasize the evolutionary importance of duplications in bacteria [701], yeast [702,703], and plants [325,704], while whole genome duplications (WGDs) have been cited as facilitators of diversity in plant-parasitic nematodes that reproduce without sex [705,706].
- Muller, G.B. Evo-devo: Extending the evolutionary synthesis. Nat. Rev. Genet. 2007, 8, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Kouvaris, K.; Clune, J.; Kounios, L.; Brede, M.; Watson, R.A. How evolution learns to generalise: Using the principles of learning theory to understand the evolution of developmental organisation. PLoS Comput. Biol. 2017, 13, e1005358. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.F.; Bosch, T.C.; Ledon-Rettig, C. Eco-Evo-Devo: Developmental symbiosis and developmental plasticity as evolutionary agents. Nat. Rev. Genet. 2015, 16, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Hull, R.M.; Cruz, C.; Jack, C.V.; Houseley, J. Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biol. 2017, 15, e2001333. [Google Scholar] [CrossRef] [PubMed]
- Fares, M.A.; Sabater-Munoz, B.; Toft, C. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biol. Evol. 2017, 9, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Steinrueck, M.; Guet, C.C. Complex chromosomal neighborhood effects determine the adaptive potential of a gene under selection. eLife 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Detailed studies of individual traits provide insights into how intricately genomes may be structured for adaptive mutation. A very recent paper on copy number variation (CNV) of the CUP1 copper resistance locus in Saccharomyces budding yeast, for example, highlights how ancestral CUP1 repeat arrays, chromatin formatting (H3K56 acetylation), appropriately positioned replication pause sites and bidirectional promoters are all conditions for copper-induced, DSB recombination-dependent CNVs to emerge under the experimental conditions that are imposed [711]. Similar genome architectural features are observed in other Saccharomyces adaptive changes that involve duplications [712]. Another recent paper in E. coli demonstrates that genome location has a significant effect on contributions to fitness of adaptive mutations to antibiotic resistance, as well as on the spectrum of mutations that are obtained following selection [713]. In this E. coli example, adaptive mutations occur by nucleotide substitutions, different activating IS element (DNA transposon) insertions, or NAHR between flanking IS5 DNA transposons to duplicate the resistance locus.
- Reyes, L.H.; Winkler, J.; Kao, K.C. Visualizing evolution in real-time method for strain engineering. Front. Microbiol. 2012, 3, 198. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.A. Observations on the formation of clones containing araB-lacZ cistron fusions. Mol. Gen. Genet. 1984, 194, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 2017, 168, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.; Paulish, T.; Stanbery, A.; Piotrowski, J.; Koniges, G.; Kroll, E.; Louis, E.J.; Liti, G.; Sherlock, G.; Rosenzweig, F. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet. 2013, 9, e1003366. [Google Scholar] [CrossRef] [PubMed]
- Salvucci, E. Microbiome, holobiont and the net of life. Crit. Rev. Microbiol. 2014, 42, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Ryan, F.P. Viral symbiosis and the holobiontic nature of the human genome. APMIS 2016, 124, 11–19. [Google Scholar] [CrossRef] [PubMed]
Evolutionist | Non-Gradual Evolutionary Process |
---|---|
William Bateson (1861–1926) | Discontinuous variation |
Hugo de Vries (1848–1935) | Abrupt mutational variation |
Konstantin Mereschkowsky (1855–1921) | Evolution by symbiogenesis |
Ivan E. Wallin (1883–1969) | Evolution by symbiogenesis (“Symbionticism”) |
Boris Mikhailovich Kozo-Polyansky, (1890–1957) | Evolution by symbiogenesis |
George Gaylord Simpson (1902–1984) | Quantum evolution |
Richard Goldschmidt (1878–1958) | “Hopeful monsters” formed by redirecting developmental programs |
George Ledyard Stebbins (1906–2000) | Hybrid Speciation (“Cataclysmic Evolution”) |
Niles Eldredge (b. 1943) and Stephen J. Gould (1941–2002) | Punctuated equilibrium |
Lynn Margulis (1938–2011) | Evolution by symbiogenesis |
Symbiosis, Symbiogenesis and “Holobiont” Modifications by Cell Mergers (Section 3) |
Interspecific hybridization (hybrid speciation) (Section 4) |
Horizontal DNA transfers (Section 5) |
Protein evolution by domain rearrangements and coding region innovation (Section 6) |
Mobile DNA activity to restructure genomes, rewire developmental regulatory networks and form regulatory long non-coding RNA molecules (Section 7) |
Taxonomic Group | Symbiogenetic Origin |
---|---|
Archaeaplastida | |
Green algae (Chlorophyta) | Primary cyanobacterial endosymbiosis |
Glaucophytes (order Chlorococcales) | Primary cyanobacterial endosymbiosis |
Red algae (Rhodophyta) | Primary cyanobacterial endosymbiosis |
Land plants (Embryophyta) | Primary cyanobacterial endosymbiosis |
Euglyphid amoeba Paulinella chromatophora | Primary cyanobacterial endosymbiosis (Synechococcus-Prochloron clade) |
Euglenids (flagellated algae) | Secondary green algal endosymbiosis |
Chlorarachniophytes (marine algae) | Secondary green algal endosymbiosis |
Chromalveolates (multiple lineages including organisms responsible for a large fraction of atmospheric oxygen, such as brown algae, coccolithotrphs, cryptophytes and diatoms) | Secondary red algal endosymbiosis |
Dinoflagellates (flagellated marine and fresh water protists) | Tertiary chromalveolate endosymbiosis or serial green or red alga endosymbioses |
Warnowiid dinoflagellates with camera eye-like “ocelloids” | Ocelloid “cornea” formed by mitochondria and “retina” formed by red algae-derived plastids |
Fungi: Saccharomyces Yeast |
Ciliated Protozoa |
Plants: Tragopogon (Asteraceae), Pinus densata, Primula, Sunflowers (Helianthus anomalus), Irises (Iris fulva, I. hexagona, and I. nelsonii), Nicotiana (Solanaceae), Orchidaceae, Brassica napus, Arabidopsis, Potatoes (Solanum stoloniferum and S. hjertingii), Wheats (Aegilops-Triticum group), Cotton (Gossypium) |
Animals: Tephritid fruitflies, Mosquitoes, Tiger Swallowtail Butterflies, Heliconius butterflies, Ants, Sculpins (Cottus sp., Teleostei), Sailfin silversides (Teleostei), East African Cichlids, Sparrows, Yellow-rumped (Audubon’s) warbler, Galapagos finches (Geospiza), Clymene dolphin (Delphininae (Cetacea, Mammalia)), Bats, Chinese hares (genus Lepus), Cats (Felidae), Colobine monkeys, Southern African baboons |
Genome Effect |
---|
Changes in ploidy (mostly WGD) |
Alteration of epigenetic modifications to the genome |
Alterations in expression patterns across the genome |
Activation and spread of mobile DNA elements |
Genome restructuring involving mobile DNA elements |
Changes in chromosome structure and karyotype |
Alteration of tandem repetitive DNA arrays and centromeres |
DNA Transfer Mode | Donor-Recipient Taxa |
---|---|
Liberation and uptake of extracellular DNA (“Transformation”) | Archaea-archaea; Bacteria-bacteria; Yeast-yeast; Stramenopile red alga-alga; Plant-bacteria |
Encapsidation in and delivery by a virus or virus-like particle (“Transduction”) | Archaea-archaea; Bacteria-bacteria; Insect-insect; Bacteria-mammal; Mammal-mammal |
Establishment of a DNA transport pore between two cell envelopes (“Conjugation”) | Archaea-archaea; Bacteria-bacteria; Bacteria-yeast; Bacteria-fungi and mushrooms; Bacteria-plant; Bacteria-mammalian cells; Bacteria-diverse eukaryotes |
Cell fusion | Archaea-archaea |
Phagotrophism | Bacteria-protist |
Additional DNA transfer modes within taxa: | |
Protoplast fusion | Bacteria, Yeast, Fungi, Plants |
Liposomal or membrane vesicle-mediated transfer | Archaea, Mammalian cells |
Sperm-mediated DNA transfer | Insect larva, Mammals |
Parasite- and endosymbiont-mediated transfer (inferred) | Red algae; Aphids, parasitoid wasps; a beetle; Drosophila; Butterflies; Vertebrates; Reptile-mammal; Mammals |
Donor | Recipient | Function(s) |
---|---|---|
Prokaryote-Prokaryote | ||
Bacteria | Methanogenic Archaea | Aerobic metabolic activities |
Bacteria | Thermophilic Archaea | Mesophilic metabolic activities |
Prokaryote-Eukaryote microbe | ||
Bacteria | Plant pathogenic fungi | Extracellular proteins, interference with plant defense-response, degradation of plant cell walls, carbohydrate metabolism |
Bacteria and Archaea | Red alga Galdieria sulphuraria | Growth in high temperature, toxic metal-rich, acidic environments |
Proteobacteria, cyanobacteria and archaea | Diatom Phaeodactylum tricornutum | 7.5% of genetic loci (784 loci); metabolic and biosynthetic activities |
Bacteria, archaea | Rumen ciliates | Catabolism of complex carbohydrates |
β, γ-Proteobacteria, Chlamydiae, other bacteria | Red alga Cyanidioschyzon | Biosynthetic activities |
Rumen bacteria Fibrobacter succinogenes | Rumen fungus Orpinomyces joyonii | Endoglucanase (polysaccharide digestion) |
Eukaryote microbe-Eukaryote microbe | ||
Fungi | Plant parasitic oomycetes | Plant cell wall digestion, resisting plant defenses |
Algae, bacteria | Choanoflagellate (unicellular animal precursor) | 405 genetic loci (4.4% nuclear genome); metabolic activities |
Prokaryote-metazoa | ||
Bacteria | Sponge | Metabolic and biosynthetic activities |
Bacteria | Sponge | Biomineralization |
Bacteria | Starlet sea anemone | Biosynthetic activities |
Bacteria | Hydra | Metabolic and biosynthetic activities |
Bacteria | Plant parasitic nematodes | Cellulose and phytopolymer digestion |
Bacteria | Stick and Leaf Insects | Pectinases |
Bacteria | Phytophagous mites and Lepidoptera | Detoxification of plant defense molecules |
Bacteria | Coffee berry borer beetle | Digestion of coffee storage polymer |
Bacteria | Silkworm Bombyx mori and related Lepidoptera | Glycosyl hydrolase family, oxidoreductase family, and amino acid metabolism |
Bacteria | Arthropods, echinoderms, and vertebrates, including platypus and opossum, but not in placental mammals | Glyoxylate cycle enzymes |
Bacteria | Urochordate Ciona intestinalis | Cellulose synthase |
Eukaryote microbe-metazoa | ||
Fungi | Plant parasitic nematodes | Cellulose and phytopolymer digestion |
Fungi | Pea aphid, spider mite | Carotenoid pigment biosynthesis, cyanate metabolism |
Algae | Tunicate Ciona intestinalis | Molecule transport, cellular regulation and methylation signaling |
Microbe-plants | ||
Bacteria, Archaea, viruses, and sea anemones | Moss Physcomitrella patens (primitive land plant) | Xylem formation, plant defense, nitrogen recycling, plus biosynthesis of starch, polyamines, hormones and glutathione; water stress adaptation |
Bacteria, fungi | Plants | Biosynthetic activities |
Fungi | Plants (Bryophyte moss) | Metabolic activities |
Plants-microbes | ||
Plants | Bacteria, fungi, amoebozoa | Expansins (plant cell-wall loosening proteins) |
Plants | Fungi | Regulatory proteins |
Plant-plant | ||
Parasitic plant (Cuscuta sp.) | Host plant (Plantago sp.) | Mitochondrial loci atp1, atp6 and matR |
Rafflesiae host plant | Parasitic flowering plant Rafflesia cantleyi | Metabolic and mitochondrial activities |
Grasses | Barley (Hordeum) | Ribosomal RNA (rDNA) sequences |
Bryophyte hornworts | Fern | Novel chimeric photoreceptor—neochrome |
Animal-animal | ||
Fish (herring or sea raven) | Rainbow smelt, Osmerus mordax | Type II anti-freeze protein |
Eukaryote-prokaryote | ||
Eukaryotic cells (Impossible to identify donor because Legionella infects and grows in amoebae, protozoa, Paramecium, macrophages, and many other eukaryotic cells) | Bacteria Legionella pneumophila | Eukaryote-like regulatory “effector” proteins injected in the course of infecting eukaryotic cells |
Virus-host cell | ||
Halovirus | Halobacterium salinarum (Archaea) | B-type DNA polymerase B1 |
T3/T7 family bacteriophage (bacterial virus) | Ancestral eukaryote nuclear and mitochondrial genomes | Mitochondrial replication and transcription activities |
Double-stranded RNA viruses (totiviruses and partitiviruses) | Eukaryote nuclear genomes (plants, arthropods, fungi, nematodes, and protozoa) | Capsid protein and RNA-dependent RNA polymerases |
Circular single-stranded DNA viruses (geminiviruses, nanoviruses and circoviruses) | Eukaryotic nuclear genomes (plants, fungi, animals and protists) | Replication initiation protein (Rep)-related sequences |
Host cell-virus | ||
Bacteria | Temperate bacteriophages (capable of insertion into bacterial genome in repressed “prophage” state) | Host infectivity and virulence activities expressed in prophage state |
Bacteria (primarily, endosymbionts and parasites), bacteriophages, protists, animals | Nucleocytoplasmic large DNA viruses (NCLDVs), including Poxviruses and Iridoviruses infecting insects and vertebrates, Mimiviruses and Phycodnaviruses infecting amoebae, protists and algae | Diverse functions including rDNAs, nucleic acid metabolism, signaling and regulatory activities, defenses against apoptosis, immune response, growth factors, and resistance of cells to oxidative stress |
Mammal | Influenza virus | 28S rDNA insert in hemagglutinin sequence increases pathogenicity |
γ-proteobacteria and insects (viral hosts) | Baculovirus | DNA ligase, ribonucleotide reductase 1, SNF2 global transactivator, inhibitor of apoptosis, chitinase, and UDP-glucosyltransferase |
Marine phytoplankton prasinophytes | Prasinovirus | Glycosyltransferases, methyltransferases and amino acid synthesis enzymes |
Domain | Function |
---|---|
Kinase domain | Catalytic (phosphorylation) |
Transmembrane domain | Subcellular localization |
PDZ domain | Protein-protein interaction module |
SH3 domain | Proline-rich protein-protein interaction module |
DNA binding domain | Molecular recognition |
PAS domain | Sequence-specific DNA binding |
WW domain | Protein-protein interaction module |
PH domain | Phosphatidylinositol binding in membranes |
SET domain | Binding methylated DNA |
SH2 domain | Binding proteins containing phosphor-tyrosine residues |
Rearrangements | Taxa |
---|---|
Group II intron retrotransposition and exon shuffling | Yeast |
Chimeric LINE-mediated retrogene formation | Rice blast fungus Magnaporthe grisea |
DNA “splicing” by transposase-related excision functions | Ciliated protists |
Exon shuffling by DNA transposons (Pack-MULE, Ac/Ds, CACTA, Helitron) | Plants, including beans and maize |
LINE-mediated duplications | Dicots |
Retrotransposon-mediated exon shuffling | Maize, Medicago sativa |
Exon shuffling by DNA transposons (Helitron, FB transposon) | Lepidoptera, Drosophila |
Retrotransduction by LINEs and SINEs | Drosophila |
Exon shuffling by retrotransposition | Mammals |
Retrotransposon exon shuffling | Primates |
TRIM5-Cyclophilin A (TRIMCyp) fusion by retrotransposition | Tree shrews and owl monkeys |
Exon shuffling by retrotransposition | Humans |
L1/LINE mediated retrotransduction | Humans |
Alu or SVA SINE-mediated retrotransduction | Humans |
Chimeric “retrogenes”, by LINE-mediated template switches at the RNA level | Humans |
Organism(s) | Characterization of Orphan Coding Sequences |
---|---|
Viruses (bacteriophages) | “Almost one-third of all ORFs in 1456 complete virus genomes correspond to ORFans…38.4% of phage ORFs have no homologs in other phages, and 30.1% have no homologs neither in the viral nor in the prokaryotic world…” |
Viruses | “de novo genes…in which an existing gene has been “overprinted” by a new open reading frame, a process that generates a new protein-coding gene overlapping the ancestral gene” |
Prokaryotes (Archaea and Eubacteria) | 20,000 orphan sequences: “…only 2.8% of all microbial ORFans have detectable homologs in viruses, while the percentage of non-ORFans with detectable homologs in viruses is 7.9%, a significantly higher figure.” |
Escherichia coli O157:H7 (EHEC), Escherichia coli K12 | “72 genes are taxonomically restricted and, therefore, appear to have evolved relatively recently de novo”…“origin of a new gene through overprinting in Escherichia coli K12” |
Saccharomyces cerevisiae | “BSC4 …encoding a 132-amino-acid-long peptide… no homologous ORF in…closely related species…Because the corresponding noncoding sequences in S. paradoxus, S. mikatae, and S. bayanus also transcribe, we propose that a new de novo protein-coding gene may have evolved from a previously expressed noncoding sequence.” |
Yeast (Saccharomyces cerevisiae) and Drosophila | Protein C-termini: the co-option of short segments of noncoding sequence into the C-termini of existing proteins via the loss of a stop codon: “…54 examples of C-terminal extensions in Saccharomyces and 28 in Drosophila…Four of the Saccharomyces C-terminal extensions (to ADH1, ARP8, TPM2, and PIS1)…are predicted to lead to significant modification of a protein domain structure.” |
Green multicellular algae Chlamydomonas and Volvox carteri | PHD domain added to condensin II by exonization of mobile DNA sequences; “141 retrogene candidates in total in both genomes, with their fraction being significantly higher in the multicellular Volvox.” |
Plasmodium vivax | “…recent de novo origin of at least 13 protein-coding genes in the genome of Plasmodium vivax… five of the genes identified in our analysis contain introns…likely evolved from previously intergenic regions together with the coding sequences.” |
Nematode Pristionchus pacificus | “3818–7545 (39–76%) of orphan genes are under negative selection” |
Drosophila melanogaster | “…a significant excess of retrogenes that originate from the X chromosome and retropose to autosomes; new genes retroposed from autosomes are scarce…most of these X-derived autosomal retrogenes had evolved a testis expression pattern.” |
Drosophila melanogaster | “142 segregating and 106 fixed testis-expressed de novo genes in a population sample of Drosophila melanogaster…appear to derive primarily from ancestral intergenic, unexpressed open reading frames (ORFs), with natural selection playing a significant role in their spread.” |
Drosophila melanogaster | “…six putatively protein-coding de novo genes…two de novo genes emerged from novel long non-coding RNAs…four other de novo genes evolved a translated open reading frame and transcription…suggesting that nascent open reading frames (proto-ORFs)…can contribute to the emergence of a new de novo gene” |
Insects: arthropod genomes, focusing on seven recently sequenced ant genomes…comparison between social Hymenoptera (ants and bees) and nonsocial Diptera (flies and mosquitoes)… | “…between the two insect orders Hymenoptera and Diptera, orphan genes are more abundant and emerge more rapidly in Hymenoptera, in particular, in leaf-cutter ants. With respect to intragenomic localization, we find that ant orphan genes show little clustering…” |
Entelegyne spiders (Araneae, Entelegynae) | “…transcriptomes of six entelegyne spider species from three genera (Cicurina travisae, C. vibora, Habronattus signatus, H. ustulatus, Nesticus bishopi, and N. cooperi)… between ~550 and 1100 unique orphan genes were found in each genus.” |
Rodents | “75 murine genes (69 mouse genes and 6 rat genes)…good evidence of de novo origin since the divergence of mouse and rat. Each of these genes is only found in either the mouse or rat lineages, with no candidate orthologs nor evidence for potentially-unannotated orthologs in the other lineage…For 11 of the 75 candidate novel genes we could identify a mouse-specific mutation that led to the creation of the open reading frame (ORF) specifically in mouse…A large number of them (51 out of 69 mouse genes and 3 out of 6 rat genes) also overlap with other genes, either within introns, or on the opposite strand.” |
Mouse and human | “…over 5000 new genes were integrated into the ancestral GGI {gene-gene interaction} networks of human and mouse” |
Primates | “an unexpected important role of transposable elements in the formation of novel protein-coding genes in the genomes of primates.” |
Human and Chimpanzee | “…retrocopies of coding transcripts to generate proteins with novel N-terminal domains. Examples include thymopoietin beta (TMPO), eukaryotic translation initiation factor 3 subunit 5 (EIF3F), and the 5′-inverted retrocopy of small nuclear ribonucleoprotein polypeptide N (SNRPN). |
Humans | “…human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203)…originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids.” |
Humans | “…60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee…highest expression levels in the cerebral cortex and testes…” |
Humans | “24 hominoid-specific de novo protein-coding genes with precise origination timing in vertebrate phylogeny… most of the hominoid-specific de novo protein-coding genes encoded polyadenylated non-coding RNAs in rhesus macaque or chimpanzee with a similar transcript structure and correlated tissue expression profile…” |
Humans | “…de novo origin of at least three human protein-coding genes since the divergence with chimp…chimp, gorilla, gibbon, and macaque share the same disabling sequence difference, supporting the inference that the ancestral sequence was noncoding.” |
Humans | “… 426 different annotated young domains, totaling 995 domain occurrences, which represent about 12.3% of all human domains. We have observed that 61.3% of them arose in newly formed genes, while the remaining 38.7% are found combined with older domains…Young domains are preferentially located at the N-terminus of the protein…” |
Arabidopsis | “…lineage-specific genes within the nuclear (1761 genes) and mitochondrial (28 genes) genomes are identified…Almost a quarter of lineage-specific genes originate from non-lineage-specific paralogs, while the origins of ~10% of lineage-specific genes are partly derived from DNA exapted from transposable elements (twice the proportion observed for non-lineage-specific genes). Lineage-specific genes are also enriched in genes that have overlapping CDS, which is consistent with such novel genes arising from overprinting. Over half…of the 958 lineage-specific genes (LSGs)…in Arabidopsis thaliana have alignments to intergenic regions in Arabidopsis lyrata, consistent with either de novo origination or differential gene loss and retention…LSGs are enriched for genes responsive to a wide range of abiotic stresses…” |
Arabidopsis | :“… new genes…show a bias in expression to mature pollen… Transposable elements are significantly enriched in the new genes…high activity of transposable elements in the vegetative nucleus, compared with the germ cells, suggests that new genes…generated in the vegetative nucleus in the mature pollen. We propose an “out of pollen” hypothesis for the origin of new genes in flowering plants. |
Taxa | Mobile DNA Exonized |
---|---|
Green algae | Transposable elements (TEs) |
Plants (coffee, rice, Arabidopsis, etc.) | Ds transposons and other transposable elements |
Ancestral vertebrate | “…a more than 200-base-pair ultraconserved region, 100% identical in mammals, and 80% identical to the coelacanth SINE, contains a 31-amino-acid-residue alternatively spliced exon of the messenger RNA processing gene PCBP2…” |
Mammal | “Although…not evolutionarily related, mammalian TMPO and ZNF451…both code for splice isoforms that contain LAP2alpha domains…related to the first ORF from a DIRS1-like retrotransposon…domestication happened separately and resulted in proteins that combine retrotransposon and host protein domains. The alternative splicing of the retrotransposed sequence allowed the production of both the new and the untouched original isoforms…” |
Mammal, Primate | MIR retrotransposons |
Mouse | L1 retrotransposons; “antisense insertions results in an increased potential for exonization” |
Rat | L1 retrotransposon and ERV (endogenous retrovirus) in embryonically expressed Rtdpoz-T1 and -T2 locus |
Human and mouse | “…exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes…cases of primate-specific Alu elements that depend on RNA editing for their exonization…” |
Primate | Alu exonization in BCS1L, RNA edited Alu element in human nuclear prelamin A recognition factor gene transcript |
Primate | LINE retrotransposon in ZRANB2 locus |
Human | Anti-sense Alu SINEs; Alu-derived segments in two Bcl-family proteins. |
Human | “Exons derived from Alu SINEs but also the exons from the TEs of other families were preferentially established in zinc finger (ZNF) genes.” |
Human | “Long Terminal Repeat (LTR) retrotransposons are associated with 1057 human genes (5.8%). In 256 cases LTR retrotransposons were observed in protein-coding regions, while 50 distinct protein coding exons in 45 genes were comprised exclusively of LTR RetroTransposon Sequence (LRTS)…an alternatively spliced exon of the Interleukin 22 receptor, alpha 2 gene (IL22RA2) derived from a sequence of retrotransposon of the Mammalian apparent LTR retrotransposons (MaLR) family …hypothesize that the recruitment of the part of LTR as a novel exon…a result of a single mutation in the proto-splice site…” |
Human | “…human nuclear prelamin A recognition factor contains a primate-specific Alu-exon that exclusively depends on RNA editing for its exonization.” |
Species | Genome Size | Fraction Total Repetitive DNA (Interspersed Mobile DNA) |
---|---|---|
Primates | ||
Human Homo sapiens | 3,049,315,783 bp | 52.58% (48.49%) |
Orangutan Pongo pygmaeus abelii | 3,093,543,172 bp | 52.16% (48.79%) |
Gorilla Gorilla gorilla gorilla | 2,822,760,080 bp | 49.43% (46.12%) |
Gibbon Nomascus leucogenys | 2,756,609,047 bp | 51.96% (47.90%) |
Chimp Pan troglodytes | 2,902,338,967 bp | 51.72% (48.77%) |
Other Mammals | ||
Mouse Mus musculus | 2,652,783,500 bp | 45.03% (41.73%) |
Cow Bos taurus | 2,804,673,174 bp | 49.38% (47.98%) |
Killer whale Orcinus orca | 2,249,582,112 bp | 44.53% (43.23%) |
Dolphin Tursiops truncatus | 2,332,402,443 bp | 44.00% (41.24%) |
Squirrel Spermophilus tridecemlineatus | 2,311,060,300 bp | 36.30% (34.32%) |
Elephant Loxodonta africana | 3,118,565,340 bp | 57.63% (56.38%) |
Microbat Myotis lucifugus | 1,966,419,868 bp | 37.03% (35.51%) |
Megabat Pteropus vampyrus | 1,839,436,660 bp | 35.82% (33.40%) |
Birds | ||
Chicken Gallus gallus | 1,032,854,810 bp | 11.47% (9.74%) |
Zebra finch Taeniopygia guttata | 1,222,864,691 bp | 8.45% (7.17%) |
Mallard duck Anas platyrhynchos | 1,069,972,754 bp | 6.53% (4.69%) |
Reptiles | ||
Lizard Anolis carolinensis | 1,701,353,767 bp | 36.01% (34.26%) |
Alligator Alligator mississippiensis | 2,098,626,832 bp | 37.68% (36.96%) |
Gharial crocodile Gavialis gangeticus | 2,139,715,393 bp | 37.55% (36.86%) |
Painted turtle Chrysemys picta bellii | 2,158,289,746 bp | 30.86% (30.20%) |
Amphibian | ||
Western clawed frog Xenopus tropicalis | 1,365,936,747 bp | 34.91% (31.88%) |
Fish | ||
Coelacanth Latimeria chalumnae | 2,183,592,768 bp | 9.13% (6.82%) |
Stickleback Gasterosteus aculeatus | 446,627,861 bp | 5.78% (3.23%) |
Fugu Takifugu rubripes | 350,961,831 bp | 8.66% (5.92%) |
Spotted gar Lepisosteus oculatus | 869,414,359 bp | 1.20% (0.00%) |
Lower vertebrate | ||
Lamprey Petromyzon marinus | 647,368,134 bp | 35.46% (30.35%) |
Chordate | ||
Lancelet amphioxus Branchiostoma floridae | 480,418,582 bp | 13.63% (12.35%) |
Insects | ||
Bee Apis mellifera | 231,030,884 bp | 6.21% (0.24%) |
Mosquito Anopheles gambiae | 263,156,584 bp | 14.10% (11.34%) |
Fruit fly Drosophila melanogaster | 162,367,812 bp | 28.61% (20.44%) |
Mollusca | ||
Sea hare mollusk Aplysia californica | 619,228,092 bp | 13.00% (4.86%) |
Echinoderm | ||
Sea Urchin Strongylocentrotus purpuratus | 809,969,717 bp | 18.00% (13.82%) |
Nematodes | ||
Caenorhabditis briggsae | 105,451,667 bp | 20.07% (16.02%) |
Caenorhabditis elegans | 100,286,070 bp | 12.59% (10.31%) |
Tunicate | ||
Ciona intestinalis | 141,233,565 bp | 16.57% (14.82%) |
Organisms | Phenotypes |
---|---|
18 Fungal Genomes | Whole-Genome Architecture and Transcriptional Profiles |
Plants | Epigenetic Controls |
Plants | C4 photosynthesis |
Plants | Stress Response |
Maize | Abiotic Stress Response |
Maize | Helitron transposons reshuffle the transcriptome |
Cotton | Fiber cell development |
Coffea | Drought stress response |
Drosophila | X chromosome dosage compensation |
Mammals | Estrogen receptor network |
Mammals | Pregnancy |
Human | c-Myc regulatory subnetwork |
Human | Core embryonic stem cell development |
Organism or Taxon | Function(s) |
---|---|
Budding yeast | Galactose metabolism, controls speed of transcriptional induction by galactose |
Fission yeast | Phosphate-induced epigenetic silencing |
Budding, fission yeast | Cellular responses to environmental changes |
Fungal pathogen Cryptococcus neoformans | lncRNA RZE1 regulates yeast-to-hypha transition |
Plasmodium falciparum |
|
Plants | Flower development and timing |
Arabidopsis |
|
Tomato | Fruit ripening |
Drosophila |
|
Tetrapods | Spermatogenesis, synaptic transmission, placenta development |
Mammals |
|
Marsupial (Monodelphis domestica) | Female X chromosome inactivation by repeat-rich lncRNA Rsx |
Goat (Capra hircus) | Skin pigmentation |
Mouse |
|
Rat | Long-term potentiation of synaptic connectivity in adult brain development |
Primate |
|
Human |
|
Mutation Type | Biochemical Activity |
---|---|
Single nucleotide substitutions | Y-family mutagenic trans-lesion DNA polymerase; error-prone repair systems |
Frameshifts | Y-family mutagenic trans-lesion DNA polymerase; error-prone repair systems |
Deletions (bacteria) | Y-family mutagenic trans-lesion DNA polymerase; error-prone repair systems |
Deletions and translocations (often with microhomologies) | Mre11, CltP exonucleases; canonical or alternative non-homologous end-joining (NHEJ) complexes |
Deletions and translocations | Non-allelic homologous recombination (NAHR) between mobile DNA repeats |
Deletion | Elevated transcription, Topoisomerase I; LINE-1-mediated; non-allelic homologous recombination between dispersed mobile repeats |
Translocations | Nonhomologous end joining or microhomology-mediated break-induced replication |
Somatic hypermutation and kataegis: multiple clustered nucleotide substitutions | AID or APOBEC cytosine deaminase |
Chromothripsis and complex chromosome segment insertions | Loss of p53-dependent checkpoints; Rad51 homologous recombination; NHEJ; premature chromosome condensation; segregation of chromosome breakage and repair into a micronucleus; L1-Mediated Retrotransposition and Alu-Alu NAHR (Not all these processes are involved in each chromothripsis event.) |
Ecological Factors and NGE Effects | Affected Organisms |
---|---|
Growth conditions and cellular differentiation | |
Stationary phase mutagenesis; anaerobic growth enhanced point mutations; aging colonies produce mutational hotspots and retromutations (8-oxo-guanosine, formed exclusively on the transcribed strand); adaptive selection-induced retromutations; nutrient-dependent mutability (Phosphorus/carbon limitation increase point mutations, iron/oxygen/carbon limitation increase IS150 insertions, and phosphorus limitation increases indels) | B. subtilis and E. coli |
Cystic Fibrosis lung growth hypermutability | P. aeruginosa |
Adenine starvation stimulates Ty1 retrotransposition; transcription induces APOBEC kataegis; Glucose- or phosphate-limited growth produced frequent genomic amplifications, rearrangements and novel retrotransposition; starvation leads to genome restructuring but has <2× effect on point mutation; nitrogen starvation increases copy number variations (CNVs) | Yeast Saccharomyces cerevisaea |
Domestication leads to increase in repetitive DNA and retrotransposons | Maize |
Early embryogenesis activates mPing DNA transposition | Rice |
Plant regeneration activates chromovirus LORE1 (ERV) retrotransposition | Model legume Lotus japonicus |
Neural differentiation activates L1 retrotransposition. | Rodents, humans |
Aging induces retrotransposition (effect counter-acted by calorie restriction) | Mouse germline and somatic tissue |
Early embryonic development displays a mutator state for copy number variation (CNV) of genomic duplications | Humans |
Abiotic stresses | |
UV irradiation stimulates hypermutation; oxidative stress induces DNA transposon non-allelic homolgous recombination (NAHR) | Pseudomonas aeruginosa and Burkholderia cenocepacia |
Copper induces expansion and contraction of CUP1 arrays encoding copper-binding protein (copy number variation, CNV) | Budding yeast Saccharomyces cerevisaea |
Heat shock, oxidative and copper sulphate stresses activate LTR-retrotransposons Pyret and MAGGY, DNA transposons Pot3, MINE, Mg-SINE, Grasshopper and MGLR3 | Fungal pathogen Magnaporthe oryzae |
Mild heat stress and UV activate mariner-Mos1 transposition | Drosophila simulans |
Uranium induces alternative NHEJ DSB repair processes | Embryonic zebrafish cells |
“Two mechanisms … of cadmium mutagenicity: (i) induction of reactive oxygen species (ROS); and (ii) inhibition of DNA repair.” | Various mammals |
Arsenic, vanadium, iron induce VL30 retrotransposition | Mouse NIH3T3 cells |
“Environmental stressors such as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter {PM}-derived and gaseous), persistent organic pollutants, and metals” activate mobile DNA elements; mercury induces LINE1 retrotransposition; low doses of NiCl2 and CdCl2 contributed to an increase in mutagenic deletions by Alu-Alu NAHR…cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR; Aluminum and low-level As2O3 induce LINE1 retrotransposition while copper treatment downregulated L1 retrotransposition; exposure to CdCl2 and CdAc2 inhibits NHEJ and activates MRE11-dependent repair; Cold, heat, hypoxic, and oxidative stresses induce trinucleotide repeat mutagenesis | Human cells and tissues |
Heat stress activates ONSEN, COPIA retrotransposition | Brassicaceae and Arabidopsis |
Microsatellite mutation rate is significantly greater at 26 °C than at 18 °C | C. elegans |
Hyper salinity, stressed lineages accumulate ∼100% more mutations, and these mutations exhibit a distinctive molecular mutational spectrum (specific increases in relative frequency of transversion and insertion/deletion {indel} mutations). | A. thaliana |
Nitric oxide modulator, sodium nitroprusside induces Tos17 LTR retrotransposition; laser irradiation stimulates DNA methylation changes and mPing DNA transposition | Rice |
Fungicides boscalid (respiration inhibitor), iprodione (unclear mode of action), thiophanate methyl (inhibition of microtubulin synthesis) and azoxystrobin and pyraclostrobin (quinone outside inhibitors) raised mutation rates 1.7- to 60-fold compared to neutral conditions. | Plant pathogen Sclerotinia sclerotiorum |
Biotic Stresses and Biomolecules | |
Ethanol stress induces transient hypermutator state; food additive sepiolite stimulates antibiotic resistance plasmid transfer | E. coli and other bacteria |
Joint action of LL-37 (antimicrobial peptide) and free iron induces mutagenesis | P. aeruginosa |
Antibiotics induce SOS response and conjugal DNA transfer | V. cholera, Pseudomonas aeruginosa |
Fluoroquinolone and norfloxacin antibiotics induced point mutations, IS1 NAHR deletions, IS5 NAHR duplications (but not transpositions) | E. coli |
Beta-lactam antibiotics induced RpoS-dependent mutagenesis | E. coli |
Subinhibitory concentrations of ciprofloxacin and vancomycin activate IS256 transposition, induce SOS response | Staphylococcus aureus |
Tigecycline induces hypermutation | Acinetobacter baumannii |
Cationic antimicrobial peptide human cathelicidin LL-37 induces mutagenesis in CF lungs | P. aeruginosa |
Canavanine proteotoxic stress induces mutagenesis | Yeast S. cerevisaea |
Infection by the following bacteria can produces DNA damage, genome instabilities and alterations in DNA repair activities: Chlamydia trachomatis, N. gonorrhea, Helicobacter pylori, E. coli, Campylobacter jejuni, Haemophilus ducreyi, Actinobacillus actinomycetemcomitans, Shigella dysenteriae, Helicobacter cinaedi, Helicobacter hepaticus, Salmonella species, Shigella strains, Klebsiella pneumoniae, Enterobacter aerogenes, Citrobacter koseri, P. aeruginosa, Listeria monocytogenes | Human cells |
Infection by the following viruses can produce DNA damage, genome instabilities and alterations in DNA repair activities: human cytomegalovirus, Human T-cell lymphotropic virus 1 (HTLV-1) retrovirus, and Zika virus. | Human cells |
P. syringae pathovar tomato infection induces DSB formation… abundance of infection-induced DSBs reduced by salicylic acid | Arabidopsis |
Attack by the oomycete pathogen Peronospora parasitica stimulates somatic recombination | Arabidopsis |
Tobacco mosaic virus (TMV) or oilseed rape mosaic virus (ORMV) tobacco leaf infection resulted in a systemic increase in homologous recombination (HR)…a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. | Arabidopsis, tobacco |
Bs1 Transposition detected in maize lines following barley stripe mosaic virus infection | Zea mays |
Physiological stress, induced by climate change or invasion of new habitats, disrupts epigenetic regulation and activates mobile DNA elements | Diverse organisms |
Stress-Induced Mutagenic Activity |
---|
Hypermutability following loss of replication proofreading functions |
Massive genome rearrangements (“karyotype chaos”) |
Homology-independent rearrangements (NHEJ) |
Retrotransposon activation |
Non-canonical termination of homologous recombination |
Kataegis and somatic hypermutation |
Cytosine deaminase-dependent chromosome translocation |
Chromothripsis |
Chromothripsis linked to oncogene amplification |
Complex insertion-deletion mutations (indels) |
Tandem duplications as well as formation of “amplicons” with rearranged and amplified chromosomal segments, a.k.a. copy number variations (CNVs) |
Formation of amplified circular extrachromosomal DNAs |
Processed pseudogene formation |
L1 retrotransposition |
Extensive L1 retrotransduction of non-repetitive DNA |
Transfer of mitochondrial DNA into nuclear genome |
RAG transposase/recombinase-mediated chromosome rearrangement in immune system tumors |
Somatic hypermutation involving a reverse transcriptase-based mutator activity |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapiro, J.A. Living Organisms Author Their Read-Write Genomes in Evolution. Biology 2017, 6, 42. https://doi.org/10.3390/biology6040042
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. Biology. 2017; 6(4):42. https://doi.org/10.3390/biology6040042
Chicago/Turabian StyleShapiro, James A. 2017. "Living Organisms Author Their Read-Write Genomes in Evolution" Biology 6, no. 4: 42. https://doi.org/10.3390/biology6040042
APA StyleShapiro, J. A. (2017). Living Organisms Author Their Read-Write Genomes in Evolution. Biology, 6(4), 42. https://doi.org/10.3390/biology6040042