The Role of Th17/Treg Axis in Retinal Pathology Associated with Diabetes and Treatment Options
Simple Summary
Abstract
1. Introduction
2. The Th17/Treg Axis
3. The Th17/Treg Axis in DR
4. Treatment Alternatives
4.1. Natural Compounds
4.2. Chemokines Modulation
4.3. Immunomodulatory Drugs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Chen, B. Retinal Cell Damage in Diabetic Retinopathy. Cells 2023, 12, 1342. [Google Scholar] [CrossRef] [PubMed]
- Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; et al. The Progress in Understanding and Treatment of Diabetic Retinopathy. Prog. Retin. Eye Res. 2016, 51, 156–186. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology 2020, 127, 786–806. [Google Scholar] [CrossRef]
- Balaratnasingam, C.; An, D.; Hein, M.; Yu, P.; Yu, D.-Y. Studies of the Retinal Microcirculation Using Human Donor Eyes and High-Resolution Clinical Imaging: Insights Gained to Guide Future Research in Diabetic Retinopathy. Prog. Retin. Eye Res. 2023, 94, 101134. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Pearce, E. The Unmet Need for Better Risk Stratification of Non-Proliferative Diabetic Retinopathy. Diabet. Med. 2019, 36, 424–433. [Google Scholar] [CrossRef]
- Gershoni, A.; Barayev, E.; Jbara, D.; Hadayer, A.; Axer-Siegel, R.; Dotan, A.; Gal-Or, O.; Tuuminen, R.; Ehrlich, R. Postoperative Complications of Combined Phacoemulsification and Pars Plana Vitrectomy in Diabetic Retinopathy Patients. Front. Med. 2022, 9, 978346. [Google Scholar] [CrossRef]
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.T.K.S.; de Clerck, E.; Polivka, J.; Potuznik, P.; Polivka, J.; et al. Diabetic Retinopathy as the Leading Cause of Blindness and Early Predictor of Cascading Complications—Risks and Mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef]
- Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic Retinopathy. Lancet 2010, 376, 124–136. [Google Scholar] [CrossRef]
- Mansour, S.E.; Browning, D.J.; Wong, K.; Flynn, H.W., Jr.; Bhavsar, A.R. The Evolving Treatment of Diabetic Retinopathy. Clin. Ophthalmol. 2020, 14, 653–678. [Google Scholar] [CrossRef]
- Everett, L.A.; Paulus, Y.M. Laser Therapy in the Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Curr. Diab. Rep. 2021, 21, 35. [Google Scholar] [CrossRef] [PubMed]
- Nagel, I.; Mueller, A.; Freeman, W.R.; Kozak, I. Laser-Based Therapy Approaches in the Retina: A Review of Micropulse Laser Therapy for Diabetic Retinopathy TT—Laserbasierte Therapieansätze für die Netzhaut: Ein Überblick über die Mikroimpuls-Lasertherapie bei diabetischer Retinopathie. Klin. Monbl. Augenheilkd. 2024, 241, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hua, R.; Zhao, Y.; Liu, L. Laser Treatment for Diabetic Retinopathy: History, Mechanism, and Novel Technologies. J. Clin. Med. 2024, 13, 5439. [Google Scholar] [CrossRef]
- Gomułka, K.; Ruta, M. The Role of Inflammation and Therapeutic Concepts in Diabetic Retinopathy—A Short Review. Int. J. Mol. Sci. 2023, 24, 1024. [Google Scholar] [CrossRef]
- Osaadon, P.; Fagan, X.J.; Lifshitz, T.; Levy, J. A Review of Anti-VEGF Agents for Proliferative Diabetic Retinopathy. Eye 2014, 28, 510–520. [Google Scholar] [CrossRef]
- Silva, P.S.; Sun, J.K.; Aiello, L.P. Role of Steroids in the Management of Diabetic Macular Edema and Proliferative Diabetic Retinopathy. Semin. Ophthalmol. 2009, 24, 93–99. [Google Scholar] [CrossRef]
- Beaser, R.S.; Turell, W.A.; Howson, A. Strategies to Improve Prevention and Management in Diabetic Retinopathy: Qualitative Insights from a Mixed-Methods Study. Diabetes Spectr. 2018, 31, 65–74. [Google Scholar] [CrossRef]
- Wang, W.; Lo, A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018, 19, 1816. [Google Scholar] [CrossRef]
- Ansari, P.; Tabasumma, N.; Snigdha, N.N.; Siam, N.H.; Panduru, R.V.N.R.S.; Azam, S.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Diabetic Retinopathy: An Overview on Mechanisms, Pathophysiology and Pharmacotherapy. Diabetology 2022, 3, 159–175. [Google Scholar] [CrossRef]
- Yuuki, T.; Kanda, T.; Kimura, Y.; Kotajima, N.; Tamura, J.; Kobayashi, I.; Kishi, S. Inflammatory Cytokines in Vitreous Fluid and Serum of Patients with Diabetic Vitreoretinopathy. J. Diabetes Complicat. 2001, 15, 257–259. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Lam, E.; Alvarez, D.; Sun, Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int. J. Mol. Sci. 2023, 24, 12090. [Google Scholar] [CrossRef] [PubMed]
- Frey, T.; Antonetti, D.A. Alterations to the Blood-Retinal Barrier in Diabetes: Cytokines and Reactive Oxygen Species. Antioxid. Redox Signal. 2011, 15, 1271–1284. [Google Scholar] [CrossRef] [PubMed]
- Chibber, R.; Ben-Mahmud, B.; Chibber, S.; Kohner, E. Leukocytes in Diabetic Retinopathy. Curr. Diabetes Rev. 2007, 3, 3–14. [Google Scholar] [CrossRef] [PubMed]
- van der Wijk, A.-E.; Hughes, J.M.; Klaassen, I.; Van Noorden, C.J.F.; Schlingemann, R.O. Is Leukostasis a Crucial Step or Epiphenomenon in the Pathogenesis of Diabetic Retinopathy? J. Leukoc. Biol. 2017, 102, 993–1001. [Google Scholar] [CrossRef]
- Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic Retinopathy: Current Understanding, Mechanisms, and Treatment Strategies. JCI Insight 2017, 2, e93751. [Google Scholar] [CrossRef]
- Schröder, S.; Palinski, W.; Schmid-Schönbein, G.W. Activated Monocytes and Granulocytes, Capillary Nonperfusion, and Neovascularization in Diabetic Retinopathy. Am. J. Pathol. 1991, 139, 81. [Google Scholar]
- Miyamoto, K.; Ogura, Y. Pathogenetic Potential of Leukocytes in Diabetic Retinopathy. Semin. Ophthalmol. 1999, 14, 233–239. [Google Scholar] [CrossRef]
- Hughes, J.M. Vascular Leucocyte Adhesion Molecules Unaltered in the Human Retina in Diabetes. Br. J. Ophthalmol. 2004, 88, 566–572. [Google Scholar] [CrossRef]
- Barouch, F.C.; Miyamoto, K.; Allport, J.R.; Fujita, K.; Bursell, S.E.; Aiello, L.P.; Luscinskas, F.W.; Adamis, A.P. Integrin-Mediated Neutrophil Adhesion and Retinal Leukostasis in Diabetes. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1153–1158. [Google Scholar]
- Atkinson, M.A.; Brian Wilson, S. Fatal Attraction: Chemokines and Type 1 Diabetes. J. Clin. Investig. 2002, 110, 1611–1613. [Google Scholar] [CrossRef]
- Feng, S.; Yu, H.; Yu, Y.; Geng, Y.; Li, D.; Yang, C.; Lv, Q.; Lu, L.; Liu, T.; Li, G.; et al. Levels of Inflammatory Cytokines IL-1 β, IL-6, IL-8, IL-17A, and TNF- α in Aqueous Humour of Patients with Diabetic Retinopathy. J. Diabetes Res. 2018, 2018, 8546423. [Google Scholar] [CrossRef] [PubMed]
- Koleva-Georgieva, D.N.; Sivkova, N.P.; Terzieva, D. Serum Inflammatory Cytokines IL-1beta, IL-6, TNF-Alpha and VEGF Have Influence on the Development of Diabetic Retinopathy. Folia Med. 2011, 53, 44–50. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic Vascular Diseases: Molecular Mechanisms and Therapeutic Strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef]
- Carpi-Santos, R.; de Melo Reis, R.A.; Gomes, F.C.A.; Calaza, K.C. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants 2022, 11, 617. [Google Scholar] [CrossRef]
- Luo, Y.; Dong, X.; Lu, S.; Gao, Y.; Sun, G.; Sun, X. Gypenoside XVII Alleviates Early Diabetic Retinopathy by Regulating Müller Cell Apoptosis and Autophagy in Db/Db Mice. Eur. J. Pharmacol. 2021, 895, 173893. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, C.; Chen, Y.; Li, T.; Pang, L. Single-Cell Transcriptomic Analysis Revealing Changes in Retinal Cell Subpopulation Levels and the Pathways Involved in Diabetic Retinopathy. Ann. Transl. Med. 2022, 10, 562. [Google Scholar] [CrossRef]
- Xue, M.; Mao, X.; Chen, M.; Yin, W.; Yuan, S.; Liu, Q. The Role of Adaptive Immunity in Diabetic Retinopathy. J. Clin. Med. 2022, 11, 6499. [Google Scholar] [CrossRef]
- Zhou, T.; Hu, Z.; Yang, S.; Sun, L.; Yu, Z.; Wang, G. Role of Adaptive and Innate Immunity in Type 2 Diabetes Mellitus. J. Diabetes Res. 2018, 2018, 7457269. [Google Scholar] [CrossRef]
- Haliyur, R.; Parkinson, D.H.; Ma, F.; Xu, J.; Li, Q.; Huang, Y.; Tsoi, L.C.; Bogle, R.; Liu, J.; Gudjonsson, J.E.; et al. Liquid Biopsy for Proliferative Diabetic Retinopathy: Single-Cell Transcriptomics of Human Vitreous Reveals Inflammatory T-Cell Signature. Ophthalmol. Sci. 2024, 4, 100539. [Google Scholar] [CrossRef]
- Wacleche, V.S.; Landay, A.; Routy, J.P.; Ancuta, P. The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis. Viruses 2017, 9, 303. [Google Scholar] [CrossRef]
- Mickael, M.-E.; Basu, R.; Bhaumik, S. Retinoid-Related Orphan Receptor RORγt in CD4+T Cell Mediated Intestinal Homeostasis and Inflammation. Am. J. Pathol. 2020, 190, 1984–1999. [Google Scholar] [CrossRef] [PubMed]
- Kubick, N.; Flournoy, P.C.H.; Enciu, A.-M.; Manda, G.; Mickael, M.-E. Drugs Modulating CD4+ T Cells Blood–Brain Barrier Interaction in Alzheimer’s Disease. Pharmaceutics 2020, 12, 880. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, Q. Gene Biomarkers Related to Th17 Cells in Macular Edema of Diabetic Retinopathy: Cutting-Edge Comprehensive Bioinformatics Analysis and In Vivo Validation. Front. Immunol. 2022, 13, 858972. [Google Scholar] [CrossRef] [PubMed]
- Mickael, M.E.; Bhaumik, S.; Chakraborti, A.; Umfress, A.A.; van Groen, T.; Macaluso, M.; Totenhagen, J.; Sorace, A.G.; Bibb, J.A.; Standaert, D.G.; et al. RORγt-Expressing Pathogenic CD4+ T Cells Cause Brain Inflammation during Chronic Colitis. J. Immunol. 2022, 208, 2054–2066. [Google Scholar] [CrossRef]
- Brucklacher-Waldert, V.; Carr, E.J.; Linterman, M.A.; Veldhoen, M. Cellular Plasticity of CD4+ T Cells in the Intestine. Front. Immunol. 2014, 5, 488. [Google Scholar] [CrossRef]
- Yang, X.O.; Pappu, B.P.; Nurieva, R.; Akimzhanov, A.; Kang, H.S.; Chung, Y.; Ma, L.; Shah, B.; Panopoulos, A.D.; Schluns, K.S.; et al. T Helper 17 Lineage Differentiation Is Programmed by Orphan Nuclear Receptors RORα and RORγ. Immunity 2008, 28, 29–39. [Google Scholar] [CrossRef]
- Zhang, S.; Gang, X.; Yang, S.; Cui, M.; Sun, L.; Li, Z.; Wang, G. The Alterations in and the Role of the Th17/Treg Balance in Metabolic Diseases. Front. Immunol. 2021, 12, 678355. [Google Scholar] [CrossRef]
- Mickael, M.E.; Kubick, N.; Łazarczyk, M.; Sacharczuk, M.; Marchewka, J.; Urbański, P.; Horbańczuk, J.O. Transcriptome Analysis of the Th17/Treg Axis Reveals Multiple Pathways That Ensure Distinct Differentiation Patterns. Anim. Sci. Pap. Rep. 2023, 41, 79–93. [Google Scholar]
- Benlaribi, R.; Gou, Q.; Takaba, H. Thymic Self-Antigen Expression for Immune Tolerance and Surveillance. Inflamm. Regen. 2022, 42, 28. [Google Scholar] [CrossRef]
- Takaba, H.; Takayanagi, H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol. 2017, 38, 805–816. [Google Scholar] [CrossRef]
- Mickael, M.; Łazarczyk, M.; Kubick, N.; Gurba, A.; Kocki, T.; Horbańczuk, J.O.; Atanasov, A.G.; Sacharczuk, M.; Religa, P. FEZF2 and AIRE1: An Evolutionary Trade-Off in the Elimination of Auto-Reactive T Cells in the Thymus. J. Mol. Evol. 2024, 92, 72–86. [Google Scholar] [CrossRef]
- Sakaguchi, S.; Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T. Regulatory T Cells: How Do They Suppress Immune Responses? Int. Immunol. 2009, 21, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Fontenot, J.D.; Rudensky, A.Y. A Well Adapted Regulatory Contrivance: Regulatory T Cell Development and the Forkhead Family Transcription Factor Foxp3. Nat. Immunol. 2005, 6, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.J.; Sakaguchi, S. Regulatory T Cells in Transplantation Tolerance. Nat. Rev. Immunol. 2003, 3, 199–210. [Google Scholar] [CrossRef]
- Mickael, M.E.; Kubick, N.; Atansov, A.G.; Horbańczuk, J.O.; Kamińska, A.; Religa, P.; Sacharczuk, M.; Ławiński, M. Acod1 Mediates Anti-Inflammatory Treg Function in Sepsis. Anim. Sci. Pap. Rep. 2024, 42, 189–202. [Google Scholar] [CrossRef]
- Da, M.; Chen, L.; Enk, A.; Ring, S.; Mahnke, K. The Multifaceted Actions of CD73 During Development and Suppressive Actions of Regulatory T Cells. Front. Immunol. 2022, 13, 914799. [Google Scholar] [CrossRef]
- Kubick, N.; Lazarczyk, M.; Strzałkowska, N.; Charuta, A.; Horbańczuk, J.O.; Sacharczuk, M.; Mickael, M.E. Factors Regulating the Differences in Frequency of Infiltration of Th17 and Treg of the Blood–Brain Barrier. Immunogenetics 2023, 75, 417–423. [Google Scholar] [CrossRef]
- Schmidt, A.; Oberle, N.; Krammer, P.H. Molecular Mechanisms of Treg-Mediated T Cell Suppression. Front. Immunol. 2012, 3, 51. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, W.; Tang, B.; Wang, X.; Zhang, Q.; Li, W.; Li, L. The Protective and Pathogenic Role of Th17 Cell Plasticity and Function in the Tumor Microenvironment. Front. Immunol. 2023, 14, 1192303. [Google Scholar] [CrossRef]
- Kim, B.S.; Lu, H.; Ichiyama, K.; Chen, X.; Zhang, Y.B.; Mistry, N.A.; Tanaka, K.; Lee, Y.h.; Nurieva, R.; Zhang, L.; et al. Generation of RORγt+ Antigen-Specific T Regulatory 17 Cells from Foxp3+ Precursors in Autoimmunity. Cell Rep. 2017, 21, 195–207. [Google Scholar] [CrossRef]
- Ke, Y.; Jiang, G.; Sun, D.; Kaplan, H.J.; Shao, H. Retinal Astrocytes Respond to IL-17 Differently than Retinal Pigment Epithelial Cells. J. Leukoc. Biol. 2009, 86, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.; Salman, A.; Paluch, C.; Jackson-Wood, M.; McClements, M.E.; Luo, J.; Davis, S.J.; Cornall, R.J.; MacLaren, R.E.; Dendrou, C.A.; et al. Single-Cell Transcriptomic Analysis of Retinal Immune Regulation and Blood-Retinal Barrier Function During Experimental Autoimmune Uveitis. Sci. Rep. 2024, 14, 20033. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sun, Y.; Hu, X.; Wang, J.; Wang, L.; Liu, Y.; Liu, X. The Imbalance of Th17 and Treg Cells in the Retinopathy of Diabetic Rat Model. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2697. [Google Scholar]
- Chen, H.; Ren, X.; Liao, N.; Wen, F. Th17 Cell Frequency and IL-17A Concentrations in Peripheral Blood Mononuclear Cells and Vitreous Fluid from Patients with Diabetic Retinopathy. J. Int. Med. Res. 2016, 44, 1403–1413. [Google Scholar] [CrossRef]
- Li, X.; Qin, W.; Qin, X.; Wu, D.; Gao, C.; Luo, Y.; Xu, M. Meta-Analysis of the Relationship Between Ocular and Peripheral Serum IL-17A and Diabetic Retinopathy. Front. Endocrinol. 2024, 15, 1320632. [Google Scholar] [CrossRef]
- Takeuchi, M.; Sato, T.; Tanaka, A.; Muraoka, T.; Taguchi, M.; Sakurai, Y.; Karasawa, Y.; Ito, M. Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients. PLoS ONE 2015, 10, e0137358. [Google Scholar] [CrossRef]
- Quevedo-Martínez, J.U.; Garfias, Y.; Jimenez, J.; Garcia, O.; Venegas, D.; Bautista de Lucio, V.M. Pro-Inflammatory Cytokine Profile Is Present in the Serum of Mexican Patients with Different Stages of Diabetic Retinopathy Secondary to Type 2 Diabetes. BMJ Open Ophthalmol. 2021, 6, e000717. [Google Scholar] [CrossRef]
- Liu, F.; Han, F.; Liu, X.; Yang, L.; Jiang, C.; Cui, C.; Yuan, F.; Zhang, X.; Gong, L.; Hou, X.; et al. Cross-Sectional Analysis of the Involvement of Interleukin-17A in Diabetic Retinopathy in Elderly Individuals with Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 4199–4207. [Google Scholar] [CrossRef]
- Elahi, R.; Nazari, M.; Mohammadi, V.; Esmaeilzadeh, K.; Esmaeilzadeh, A. IL-17 in Type II Diabetes Mellitus (T2DM) Immunopathogenesis and Complications; Molecular Approaches. Mol. Immunol. 2024, 171, 66–76. [Google Scholar] [CrossRef]
- Taguchi, M.; Someya, H.; Inada, M.; Nishio, Y.; Takayama, K.; Harimoto, K.; Karasawa, Y.; Ito, M.; Takeuchi, M. Retinal Changes in Mice Spontaneously Developing Diabetes by Th17-Cell Deviation. Exp. Eye Res. 2020, 198, 108155. [Google Scholar] [CrossRef]
- Coughlin, B.A.; Feenstra, D.J.; Mohr, S. Müller Cells and Diabetic Retinopathy. Vis. Res. 2017, 139, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Qiu, A.-W.; Bian, Z.; Mao, P.-A.; Liu, Q.-H. IL-17A Exacerbates Diabetic Retinopathy by Impairing Müller Cell Function via Act1 Signaling. Exp. Mol. Med. 2016, 48, e280. [Google Scholar] [CrossRef] [PubMed]
- Byrne, E.M.; Llorián-Salvador, M.; Tang, M.; Margariti, A.; Chen, M.; Xu, H. IL-17A Damages the Blood–Retinal Barrier Through Activating the Janus Kinase 1 Pathway. Biomedicines 2021, 9, 831. [Google Scholar] [CrossRef]
- Lindstrom, S.I.; Sigurdardottir, S.; Zapadka, T.E.; Tang, J.; Liu, H.; Taylor, B.E.; Smith, D.G.; Lee, C.A.; DeAngelis, J.; Kern, T.S.; et al. Diabetes Induces IL-17A-Act1-FADD-Dependent Retinal Endothelial Cell Death and Capillary Degeneration. J. Diabetes Complicat. 2019, 33, 668–674. [Google Scholar] [CrossRef]
- Wu, J.; Hu, J.; Zhang, F.; Jin, Q.; Sun, X. High Glucose Promotes IL-17A-Induced Gene Expression Through Histone Acetylation in Retinal Pigment Epithelium Cells. Int. Immunopharmacol. 2022, 110, 108893. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Liao, N.; Wen, F. Increased Levels of IL-6, SIL-6R, and Sgp130 in the Aqueous Humor and Serum of Patients with Diabetic Retinopathy. Mol. Vis. 2016, 22, 1005. [Google Scholar]
- Yao, Y.; Li, R.; Du, J.; Long, L.; Li, X.; Luo, N. Interleukin-6 and Diabetic Retinopathy: A Systematic Review and Meta-Analysis. Curr. Eye Res. 2019, 44, 564–574. [Google Scholar] [CrossRef]
- Funatsu, H.; Yamashita, H.; Shimizu, E.; Kojima, R.; Hori, S. Relationship Between Vascular Endothelial Growth Factor and Interleukin-6 in Diabetic Retinopathy. Retina 2001, 21, 469–477. [Google Scholar] [CrossRef]
- Myśliwiec, M.; Balcerska, A.; Zorena, K.; Myśliwska, J.; Lipowski, P.; Raczyńska, K. The Role of Vascular Endothelial Growth Factor, Tumor Necrosis Factor Alpha and Interleukin-6 in Pathogenesis of Diabetic Retinopathy. Diabetes Res. Clin. Pract. 2008, 79, 141–146. [Google Scholar] [CrossRef]
- Mocan, M.C.; Kadayifcilar, S.; Eldem, B. Elevated Intravitreal Interleukin-6 Levels in Patients with Proliferative Diabetic Retinopathy. Can. J. Ophthalmol. 2006, 41, 747–752. [Google Scholar] [CrossRef]
- Sheikh, V.; Zamani, A.; Mahabadi-Ashtiyani, E.; Tarokhian, H.; Borzouei, S.; Alahgholi-Hajibehzad, M. Decreased Regulatory Function of CD4+CD25+CD45RA+ T Cells and Impaired IL-2 Signalling Pathway in Patients with Type 2 Diabetes Mellitus. Scand. J. Immunol. 2018, 88, e12711. [Google Scholar] [CrossRef] [PubMed]
- Yuan, N.; Zhang, H.; Wei, Q.; Wang, P.; Guo, W. Expression of CD4+CD25+Foxp3+ Regulatory T Cells, Interleukin 10 and Transforming Growth Factor β in Newly Diagnosed Type 2 Diabetic Patients. Exp. Clin. Endocrinol. Diabetes 2018, 126, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Shen, J.; He, L.; Hong, X.; Tian, F.; Pan, Y.; Liang, L.; Zhang, X.; Zhao, H. Changes of Regulatory T Cells and of Proinflammatory and Immunosuppressive Cytokines in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2016, 2016, 3694957. [Google Scholar] [CrossRef] [PubMed]
- Llorián-Salvador, M.; Pérez-Martínez, D.; Tang, M.; Duarri, A.; García-Ramirez, M.; Deàs-Just, A.; Álvarez-Guaita, A.; Ramos-Pérez, L.; Bogdanov, P.; Gomez-Sanchez, J.A.; et al. Regulatory T Cell Expansion Prevents Retinal Degeneration in Type 2 Diabetes. J. Neuroinflamm. 2024, 21, 328. [Google Scholar] [CrossRef]
- Jagannathan-Bogdan, M.; McDonnell, M.E.; Shin, H.; Rehman, Q.; Hasturk, H.; Apovian, C.M.; Nikolajczyk, B.S. Elevated Proinflammatory Cytokine Production by a Skewed T Cell Compartment Requires Monocytes and Promotes Inflammation in Type 2 Diabetes. J. Immunol. 2011, 186, 1162–1172. [Google Scholar] [CrossRef]
- Han, J.M.; Patterson, S.J.; Speck, M.; Ehses, J.A.; Levings, M.K. Insulin Inhibits IL-10–Mediated Regulatory T Cell Function: Implications for Obesity. J. Immunol. 2014, 192, 623–629. [Google Scholar] [CrossRef]
- Mickael, M.-E.; Kubick, N.; Klimovich, P.; Flournoy, P.H.; Bieńkowska, I.; Sacharczuk, M. Paracellular and Transcellular Leukocytes Diapedesis Are Divergent but Interconnected Evolutionary Events. Genes 2021, 12, 254. [Google Scholar] [CrossRef]
- Muller, W.A. Mechanisms of Leukocyte Transendothelial Migration. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 323–344. [Google Scholar] [CrossRef]
- Wimmer, I.; Tietz, S.; Nishihara, H.; Deutsch, U.; Sallusto, F.; Gosselet, F.; Lyck, R.; Muller, W.A.; Lassmann, H.; Engelhardt, B. PECAM-1 Stabilizes Blood-Brain Barrier Integrity and Favors Paracellular T-Cell Diapedesis Across the Blood-Brain Barrier During Neuroinflammation. Front. Immunol. 2019, 10, 711. [Google Scholar] [CrossRef]
- Fasching, P.; Stradner, M.; Graninger, W.; Dejaco, C.; Fessler, J. Therapeutic Potential of Targeting the Th17/Treg Axis in Autoimmune Disorders. Molecules 2017, 22, 134. [Google Scholar] [CrossRef]
- Niu, T.; Cheng, L.; Wang, H.; Zhu, S.; Yang, X.; Liu, K.; Jin, H.; Xu, X. KS23, a Novel Peptide Derived from Adiponectin, Inhibits Retinal Inflammation and Downregulates the Proportions of Th1 and Th17 Cells during Experimental Autoimmune Uveitis. J. Neuroinflamm. 2019, 16, 278. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wen, Z.; Zhang, Y.; Li, P.; Zhao, J.; Sun, Y.; Wang, P.; Lin, W. Berberine Alleviates Diabetic Retinopathy by Regulating the Th17/Treg Ratio. Immunol. Lett. 2024, 267, 106862. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.; Gao, S.; Li, N.; Xie, B.; Shen, X. Blocking the Interaction Between Interleukin-17A and Endoplasmic Reticulum Stress in Macrophage Attenuates Retinal Neovascularization in Oxygen-Induced Retinopathy. Cell Biosci. 2021, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Qiu, A.-W.; Liu, Q.-H.; Wang, J.-L. Blocking IL-17A Alleviates Diabetic Retinopathy in Rodents. Cell. Physiol. Biochem. 2017, 41, 960–972. [Google Scholar] [CrossRef]
- Zhou, A.Y.; Taylor, B.E.; Barber, K.G.; Lee, C.A.; Taylor, Z.R.R.; Howell, S.J.; Taylor, P.R. Anti-IL17A Halts the Onset of Diabetic Retinopathy in Type I and II Diabetic Mice. Int. J. Mol. Sci. 2023, 24, 1347. [Google Scholar] [CrossRef]
- Xu, H.; Cai, M.; Zhang, X. Effect of the Blockade of the IL-23-Th17-IL-17A Pathway on Streptozotocin-Induced Diabetic Retinopathy in Rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 1485–1492. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Liu, J.; Song, J.; Sun, Y.; Lin, P.; Liang, K.; Liu, F.; He, T.; Sun, Z.; et al. Irisin Modulates the Association of Interleukin-17A with the Presence of Non-Proliferative Diabetic Retinopathy in Patients with Type 2 Diabetes. Endocrine 2016, 53, 459–464. [Google Scholar] [CrossRef]
- Yan, A.; Zhang, Y.; Wang, X.; Cui, Y.; Tan, W. Interleukin 35 Regulates Interleukin 17 Expression and T Helper 17 in Patients with Proliferative Diabetic Retinopathy. Bioengineered 2022, 13, 13293–13299. [Google Scholar] [CrossRef]
- Robinson, R.; Srinivasan, M.; Shanmugam, A.; Ward, A.; Ganapathy, V.; Bloom, J.; Sharma, A.; Sharma, S. Interleukin-6 Trans-Signaling Inhibition Prevents Oxidative Stress in a Mouse Model of Early Diabetic Retinopathy. Redox Biol. 2020, 34, 101574. [Google Scholar] [CrossRef]
- Deliyanti, D.; Suphapimol, V.; Wilkinson-Berka, J.L. RORγ Inhibition Attenuates Vasculopathy in Mice and Rats with Diabetic Retinopathy by Reducing Th17 Cells and Increasing the Functionality of Tregs. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2001. [Google Scholar]
Therapeutic Strategy | Mechanism of Action | Key Findings and Research Status | Ref. |
---|---|---|---|
Natural Compounds | |||
Berberine (BBR) | Inhibits Th17 and promotes Tregs. Reduces inflammatory cytokines (TNF-α, IL-1β, IL-6). Downregulates RORγt and upregulates Foxp3. Enhances anti-inflammatory cytokines (TGF-β, IDO). | In STZ-induced diabetic mice, BBR reduced retinal damage and inflammation, offering a promising strategy for DR treatment. | [92] |
Curcumin | Inhibits histone acetyltransferase activity, reducing IL-17A expression. | Suppresses glucose-induced histone acetylation of IL17A-targeted genes in DR. | [75] |
Chemokine Modulation | |||
IL-17A Neutralization | Reduces retinal vascular permeability and neovascularization by inhibiting inflammation and ER stress. Disrupts the TXNIP/NLRP3 axis. | IL-17A blockade reduced vascular damage and inflammation in DR models. | [93,94,95] |
Irisin Therapy | Skeletal muscle-derived hormone reduces IL-17A-driven inflammation. | Lower irisin levels in T2DM patients correlated with higher IL-17A, suggesting potential protective effects in NPDR. | [97] |
Immunomodulatory Drugs | |||
IL-35 Therapy | Inhibits Th17 differentiation, reduces IL-17 expression, and suppresses RORα and RORγt transcription factors. | In PDR patients, IL-35 levels were reduced while IL-17 and Th17 cell frequencies were elevated. IL-35 treatment reversed these effects. | [98] |
IL-6 Trans-Signaling Blockade | Blocks IL-6-mediated Th17 differentiation and oxidative stress in DR. Restores antioxidant capacity and reduces oxidative damage (superoxide levels, lipid peroxidation). | In STZ-induced DR models, IL-6 inhibition reduced retinal oxidative stress, suggesting its potential role in preventing Th17-mediated inflammation. | [99] |
RORγ Inhibition (SR2211) | Suppresses Th17 differentiation while enhancing Treg function. Reduces VEGF, TNF, and ICAM-1 levels. | In animal models, SR2211 reduced retinal vascular leakage and inflammation, offering a new therapeutic approach. | [100] |
Th17 to Treg Conversion | Explores the potential of converting pathogenic Th17 cells into regulatory T cells. | Still an unexplored area in DR treatment, but holds promise for future investigations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mickael, M.-E.; Kubick, N.; Miftari, K.; Horbańczuk, J.O.; Atanasov, A.G.; Binçe, K.; Religa, P.; Kamińska, A.; Sacharczuk, M.; Ławiński, M. The Role of Th17/Treg Axis in Retinal Pathology Associated with Diabetes and Treatment Options. Biology 2025, 14, 275. https://doi.org/10.3390/biology14030275
Mickael M-E, Kubick N, Miftari K, Horbańczuk JO, Atanasov AG, Binçe K, Religa P, Kamińska A, Sacharczuk M, Ławiński M. The Role of Th17/Treg Axis in Retinal Pathology Associated with Diabetes and Treatment Options. Biology. 2025; 14(3):275. https://doi.org/10.3390/biology14030275
Chicago/Turabian StyleMickael, Michel-Edwar, Norwin Kubick, Kreshnik Miftari, Jarosław Olav Horbańczuk, Atanas G. Atanasov, Korona Binçe, Piotr Religa, Agnieszka Kamińska, Mariusz Sacharczuk, and Michał Ławiński. 2025. "The Role of Th17/Treg Axis in Retinal Pathology Associated with Diabetes and Treatment Options" Biology 14, no. 3: 275. https://doi.org/10.3390/biology14030275
APA StyleMickael, M.-E., Kubick, N., Miftari, K., Horbańczuk, J. O., Atanasov, A. G., Binçe, K., Religa, P., Kamińska, A., Sacharczuk, M., & Ławiński, M. (2025). The Role of Th17/Treg Axis in Retinal Pathology Associated with Diabetes and Treatment Options. Biology, 14(3), 275. https://doi.org/10.3390/biology14030275