Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Purification of Exosomes
2.2. Exosomes Characterization by Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA)
2.3. Small-RNA Sequencing and miRNA Analyses of Exosomes
2.4. Proteomic Analyses
2.4.1. SDS-PAGE Analyses and In-Gel Digestion
2.4.2. LC-MS Analysis
2.4.3. MS Data Analysis
2.5. Metabolomics
2.6. Cell-Culture Model and Treatment with Exosomes
2.7. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qPCR)
2.8. Statistical Analysis
3. Results
3.1. Characterization of Exosomes from Flower Waste of Saffron
3.2. Small-RNAs’ Results and Analyses of Target Genes in Saffron and Humans
3.3. Proteomic Analyses of Saffron Flower Waste Exosomes
3.4. Proteome Functional Analyses
3.5. Secondary Metabolites in Saffron Flower Waste Exosomes
3.6. Exosomes Induction of Expression of Anti-Inflammatory Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.C.; Caleja, C.; Oliveira, M.B.P.; Pereira, E.; Barros, L. Reuse of fruits and vegetables biowaste for sustainable development of natural ingredients. Food Biosci. 2023, 53, 102711. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, Y.-Y.; Pan, L.-H.; Li, Q.-M.; Luo, J.-P.; Zha, X.-Q. Co-encapsulation systems for delivery of bioactive ingredients. Food Res. Int. 2022, 155, 111073. [Google Scholar] [CrossRef]
- Ashaolu, T.J.; Le, T.-D.; Suttikhana, I. Stability and bioactivity of peptides in food matrices based on processing conditions. Food Res. Int. 2023, 168, 112786. [Google Scholar] [CrossRef]
- Mandal, S. Curcumin, a promising anti-cancer therapeutic: It’s bioactivity and development of drug delivery vehicles. Int. J. Drug Res. Technol 2016, 6, 43–57. [Google Scholar]
- Munir, J.; Lee, M.; Ryu, S. Exosomes in Food: Health Benefits and Clinical Relevance in Diseases. Adv. Nutr. Int. Rev. J. 2020, 11, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Hong, Y.D.; Kim, D.; Park, S.J.; Kim, J.S.; Kim, H.-M.; Yoon, E.J.; Cho, J.-S. Confirmation of plant-derived exosomes as bioactive substances for skin application through comparative analysis of keratinocyte transcriptome. Appl. Biol. Chem. 2022, 65, 8. [Google Scholar] [CrossRef]
- Ahrazem, O.; Rubio-Moraga, A.; Nebauer, S.G.; Molina, R.V.; Gómez-Gómez, L. Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. J. Agric. Food Chem. 2015, 63, 8751–8764. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.I.; Manzoor, M.; Dhar, M.K. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed. Pharmacother. 2018, 98, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Lahmass, I.; Lamkami, T.; Delporte, C.; Sikdar, S.; Van Antwerpen, P.; Saalaoui, E.; Megalizzi, V. The waste of saffron crop, a cheap source of bioactive compounds. J. Funct. Foods 2017, 35, 341–351. [Google Scholar] [CrossRef]
- Ruggieri, F.; Maggi, M.A.; Rossi, M.; Consonni, R. Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L. Molecules 2023, 28, 5976. [Google Scholar] [CrossRef] [PubMed]
- Mottaghipisheh, J.; Sourestani, M.M.; Kiss, T.; Horváth, A.; Tóth, B.; Ayanmanesh, M.; Khamushi, A.; Csupor, D. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity. J. Pharm. Biomed. Anal. 2020, 184, 113183. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Cai, Y.; Yang, L.; Zou, Z.; Zhu, J.; Zhang, Y. Comparative Metabolomics Analysis of Stigmas and Petals in Chinese Saffron (Crocus sativus) by Widely Targeted Metabolomics. Plants 2022, 11, 2427. [Google Scholar] [CrossRef]
- Wang, L.; Qin, Y.; Wang, Y.; Zhou, Y. Changes of anthocyanin and amino acid metabolites in saffron petals (Crocus sativus L.) during fermentation based on untargeted metabolomics. LWT 2024, 192, 115724. [Google Scholar] [CrossRef]
- Hosseini, A.; Razavi, B.M.; Hosseinzadeh, H. Saffron (Crocus sativus) petal as a new pharmacological target: A review. Iran. J. Basic Med. Sci. 2018, 21, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Moratalla-López, N.; Bagur, M.J.; Lorenzo, C.; Martínez-Navarro, M.E.; Salinas, M.R.; Alonso, G.L. Bioactivity and Bioavailability of the Major Metabolites of Crocus sativus L. Flower. Molecules 2019, 24, 2827. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Guo, S.; Wang, H.; Feng, T.; Sun, M.; Song, S.; Hou, F. Volatile fingerprints of different parts of Chongming saffron (Crocus sativus) flowers by headspace-gas chromatography-ion mobility spectrometry and in vitro bioactive properties of the saffron tepals. J. Food Sci. 2022, 87, 4491–4503. [Google Scholar] [CrossRef]
- Ouahhoud, S.; Khoulati, A.; Kadda, S.; Bencheikh, N.; Mamri, S.; Ziani, A.; Baddaoui, S.; Eddabbeh, F.-E.; Lahmass, I.; Benabbes, R.; et al. Antioxidant Activity, Metal Chelating Ability and DNA Protective Effect of the Hydroethanolic Extracts of Crocus sativus Stigmas, Tepals and Leaves. Antioxidants 2022, 11, 932. [Google Scholar] [CrossRef] [PubMed]
- Righi, V.; Parenti, F.; Tugnoli, V.; Schenetti, L.; Mucci, A. Crocus sativus Petals: Waste or Valuable Resource? The Answer of High-Resolution and High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. J. Agric. Food Chem. 2015, 63, 8439–8444. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Extraction kinetic modelling of total polyphenols and total anthocyanins from saffron floral bio-residues: Comparison of extraction methods. Food Chem. 2018, 258, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, A.; Vassilev, K.; Nenov, N.; Passon, M.; Shikov, V.; Schieber, A.; Mihalev, K. Combining Enzymatic and Subcritical Water Treatments for Green Extraction of Polyphenolic Co-pigments from Saffron Tepals. Waste Biomass-Valorization 2024, 15, 207–217. [Google Scholar] [CrossRef]
- Lachguer, K.; El Merzougui, S.; Boudadi, I.; Laktib, A.; Ben El Caid, M.; Ramdan, B.; Boubaker, H.; Serghini, M.A. Major Phytochemical Compounds, In Vitro Antioxidant, Antibacterial, and Antifungal Activities of Six Aqueous and Organic Extracts of Crocus sativus L. Flower Waste. Waste Biomass-Valorization 2023, 14, 1571–1587. [Google Scholar] [CrossRef]
- Naim, N.; Bouymajane, A.; El Majdoub, Y.O.; Ezrari, S.; Lahlali, R.; Tahiri, A.; Ennahli, S.; Vinci, R.L.; Cacciola, F.; Mondello, L.; et al. Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts. Molecules 2022, 28, 186. [Google Scholar] [CrossRef] [PubMed]
- Friedländer, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef]
- Bo, X.; Wang, S. TargetFinder: A software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA. Bioinformatics 2005, 21, 1401–1402. [Google Scholar] [CrossRef]
- Diretto, G.; Ahrazem, O.; Rubio-Moraga, Á.; Fiore, A.; Sevi, F.; Argandoña, J.; Gómez-Gómez, L. UGT709G1: A novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). New Phytol. 2019, 224, 725–740. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, W.; Ii, D.J.K. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015, 140, 6631–6642. [Google Scholar] [CrossRef] [PubMed]
- Pasquinelli, A.E. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 2012, 13, 271–282. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, S.; Verma, R.; Lata, C.; Sanyal, I.; Rai, S.P. microRNA 166: An evolutionarily conserved stress biomarker in land plants targeting HD-ZIP family. Physiol. Mol. Biol. Plants 2021, 27, 2471–2485. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Yang, J.; He, Y. Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nat. Commun. 2020, 11, 5351. [Google Scholar] [CrossRef]
- Liebsch, D.; Palatnik, J.F. MicroRNA miR396, GRF transcription factors and GIF co-regulators: A conserved plant growth regulatory module with potential for breeding and biotechnology. Curr. Opin. Plant Biol. 2020, 53, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Sim, E.; Abuhammad, A.; Ryan, A. Arylamine N-acetyltransferases: From drug metabolism and pharmacogenetics to drug discovery. Br. J. Pharmacol. 2014, 171, 2705–2725. [Google Scholar] [CrossRef] [PubMed]
- Suanno, C.; Tonoli, E.; Fornari, E.; Savoca, M.P.; Aloisi, I.; Parrotta, L.; Faleri, C.; Cai, G.; Coveney, C.; Boocock, D.J.; et al. Small extracellular vesicles released from germinated kiwi pollen (pollensomes) present characteristics similar to mammalian exosomes and carry a plant homolog of ALIX. Front. Plant Sci. 2023, 14, 1090026. [Google Scholar] [CrossRef] [PubMed]
- Woith, E.; Guerriero, G.; Hausman, J.-F.; Renaut, J.; Leclercq, C.C.; Weise, C.; Legay, S.; Weng, A.; Melzig, M.F. Plant Extracellular Vesicles and Nanovesicles: Focus on Secondary Metabolites, Proteins and Lipids with Perspectives on Their Potential and Sources. Int. J. Mol. Sci. 2021, 22, 3719. [Google Scholar] [CrossRef] [PubMed]
- Dharmasiri, S.; Garrido-Martin, E.M.; Harris, R.J.; Bateman, A.C.; ECollins, J.; Cummings, J.R.F.; Sanchez-Elsner, T. Human Intestinal Macrophages Are Involved in the Pathology of Both Ulcerative Colitis and Crohn Disease. Inflamm. Bowel Dis. 2021, 27, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, L.M.; Jones, G.-R.; Bain, C.C. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 538–553. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Sica, A.; Locati, M. New vistas on macrophage differentiation and activation. Eur. J. Immunol. 2007, 37, 14–16. [Google Scholar] [CrossRef]
- Wu, W.-J.H.; Kim, M.; Chang, L.-C.; Assie, A.; Saldana-Morales, F.B.; Zegarra-Ruiz, D.F.; Norwood, K.; Samuel, B.S.; Diehl, G.E. Interleukin-1β secretion induced by mucosa-associated gut commensal bacteria promotes intestinal barrier repair. Gut Microbes 2022, 14, 2014772. [Google Scholar] [CrossRef]
- Ruder, B.; Atreya, R.; Becker, C. Tumour Necrosis Factor Alpha in Intestinal Homeostasis and Gut Related Diseases. Int. J. Mol. Sci. 2019, 20, 1887. [Google Scholar] [CrossRef]
- Zhao, S.; Jiang, J.; Jing, Y.; Liu, W.; Yang, X.; Hou, X.; Gao, L.; Wei, L. The concentration of tumor necrosis factor-α determines its protective or damaging effect on liver injury by regulating Yap activity. Cell Death Dis. 2020, 11, 70. [Google Scholar] [CrossRef]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Atukorala, I.; Mathivanan, S. Biogenesis of Extracellular Vesicles. Subcell. Biochem. 2021, 97, 19–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, C.; Ruan, J.; Yang, C.; Tian, Y.; Lu, B.; Wang, Y. Cross-kingdom regulation of ginseng miRNA156 on immunity and metabolism. Int. Immunopharmacol. 2024, 138, 112577. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.R.; Fong, M.Y.; Somlo, G.; Wu, J.; Swiderski, P.; Wu, X.; Wang, S.E. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016, 26, 217–228. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Bian, Z.; Liang, X.; Cai, X.; Yin, Y.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef] [PubMed]
- Kameli, N.; Dragojlovic-Kerkache, A.; Savelkoul, P.; Stassen, F.R. Plant-Derived Extracellular Vesicles: Current Findings, Challenges, and Future Applications. Membranes 2021, 11, 411. [Google Scholar] [CrossRef] [PubMed]
- Cavalieri, D.; Rizzetto, L.; Tocci, N.; Rivero, D.; Asquini, E.; Si-Ammour, A.; Bonechi, E.; Ballerini, C.; Viola, R. Plant microRNAs as novel immunomodulatory agents. Sci. Rep. 2016, 6, 25761. [Google Scholar] [CrossRef]
- Link, J.; Thon, C.; Schanze, D.; Steponaitiene, R.; Kupcinskas, J.; Zenker, M.; Canbay, A.; Malfertheiner, P.; Link, A. Food-Derived Xeno-microRNAs: Influence of Diet and Detectability in Gastrointestinal Tract—Proof-of-Principle Study. Mol. Nutr. Food Res. 2019, 63, e1800076. [Google Scholar] [CrossRef] [PubMed]
- Minutolo, A.; Potestà, M.; Roglia, V.; Cirilli, M.; Iacovelli, F.; Cerva, C.; Fokam, J.; Desideri, A.; Andreoni, M.; Grelli, S.; et al. Plant microRNAs from Moringa oleifera Regulate Immune Response and HIV Infection. Front. Pharmacol. 2020, 11, 620038. [Google Scholar] [CrossRef] [PubMed]
- Rakhmetullina, A.; Pyrkova, A.; Aisina, D.; Ivashchenko, A. In silico prediction of human genes as potential targets for rice miRNAs. Comput. Biol. Chem. 2020, 87, 107305. [Google Scholar] [CrossRef]
- Shen, C.-B.; Yu, L.; Wang, S. miR-396 ameliorate allergic inflammation in a mouse model of asthma. J. Immunol. 2018, 200, 44.23. [Google Scholar] [CrossRef]
- Bian, Y.; Li, W.; Jiang, X.; Yin, F.; Yin, L.; Zhang, Y.; Guo, H.; Liu, J. Garlic-derived exosomes carrying miR-396e shapes macrophage metabolic reprograming to mitigate the inflammatory response in obese adipose tissue. J. Nutr. Biochem. 2023, 113, 109249. [Google Scholar] [CrossRef]
- Li, D.; Yang, J.; Yang, Y.; Liu, J.; Li, H.; Li, R.; Cao, C.; Shi, L.; Wu, W.; He, K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front. Genet. 2021, 12, 613197. [Google Scholar] [CrossRef]
- Alshehri, B. Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation. Saudi J. Biol. Sci. 2021, 28, 2408–2422. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Ou, X.; Wang, H.; Tie, H.; Liao, J.; Luo, Y.; Huang, W.; Yu, R.; Song, L.; Zhu, J. Novel plant-derived exosome-like nanovesicles from Catharanthus roseus: Preparation, characterization, and immunostimulatory effect via TNF-α/NF-κB/PU.1 axis. J. Nanobiotechnol. 2023, 21, 160. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, M.K.; Deswal, R.; Sopory, S.K. Plant RABs: Role in Development and in Abiotic and Biotic Stress Responses. Curr. Genom. 2021, 22, 26–40. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, X.; Chen, H.; Ding, L.; Wang, K.; Zhai, L.; Mao, C. TM9SF1 knockdown decreases inflammation by enhancing autophagy in a mouse model of acute lung injury. Heliyon 2022, 8, e12092. [Google Scholar] [CrossRef] [PubMed]
- Perrin, J.; Le Coadic, M.; Vernay, A.; Dias, M.; Gopaldass, N.; Ouertatani-Sakouhi, H.; Cosson, P. TM9 family proteins control surface targeting of glycine-rich transmembrane domains. J. Cell Sci. 2015, 128, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
- Conde-Vancells, J.; Rodriguez-Suarez, E.; Embade, N.; Gil, D.; Matthiesen, R.; Valle, M.; Elortza, F.; Lu, S.C.; Mato, J.M.; Falcon-Perez, J.M. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 2008, 7, 5157–5166. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Ghosh, S. Exosome: The “Off-the-Shelf” Cellular Nanocomponent as a Potential Pathogenic Agent, a Disease Biomarker, and Neurotherapeutics. Front. Pharmacol. 2022, 13, 878058. [Google Scholar] [CrossRef] [PubMed]
- Regimbeau, M.; Abrey, J.; Vautrot, V.; Causse, S.; Gobbo, J.; Garrido, C. Heat shock proteins and exosomes in cancer theranostics. Semin. Cancer Biol. 2022, 86, 46–57. [Google Scholar] [CrossRef]
- Komarova, E.Y.; Suezov, R.V.; Nikotina, A.D.; Aksenov, N.D.; Garaeva, L.A.; Shtam, T.A.; Zhakhov, A.V.; Martynova, M.G.; Bystrova, O.A.; Istomina, M.S.; et al. Hsp70-containing extracellular vesicles are capable of activating of adaptive immunity in models of mouse melanoma and colon carcinoma. Sci. Rep. 2021, 11, 21314. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Díaz, J.; Sánchez, A.M.; Martínez-Tomé, M.; Winterhalter, P.; Alonso, G.L. Flavonoid Determination in the Quality Control of Floral Bioresidues from Crocus sativus L. J. Agric. Food Chem. 2014, 62, 3125–3133. [Google Scholar] [CrossRef]
- Guijarro-Díez, M.; Nozal, L.; Marina, M.L.; Crego, A.L. Metabolomic fingerprinting of saffron by LC/MS: Novel authenticity markers. Anal. Bioanal. Chem. 2015, 407, 7197–7213. [Google Scholar] [CrossRef]
- Zeka, K.; Ruparelia, K.C.; Continenza, M.A.; Stagos, D.; Vegliò, F.; Arroo, R.R. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. Fitoterapia 2015, 107, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Heilmann, R.M.; Paital, B.; Patel, A.; Yadav, V.K.; Wong, D.; Jergens, A.E. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front. Endocrinol. 2023, 14, 1217165. [Google Scholar] [CrossRef]
- Choi, W.; Cho, J.H.; Park, S.H.; Kim, D.S.; Lee, H.P.; Kim, D.; Kim, H.S.; Kim, J.H.; Cho, J.Y. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J. Ginseng Res. 2024, 48, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhuang, X.; Deng, Z.-B.; Jiang, H.; Mu, J.; Wang, Q.; Xiang, X.; Guo, H.; Zhang, L.; Dryden, G.; et al. Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit. Mol. Ther. 2014, 22, 522–534. [Google Scholar] [CrossRef]
- Dad, H.A.; Gu, T.-W.; Zhu, A.-Q.; Huang, L.-Q.; Peng, L.-H. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol. Ther. 2021, 29, 13–31. [Google Scholar] [CrossRef]
- Yi, Q.; Xu, Z.; Thakur, A.; Zhang, K.; Liang, Q.; Liu, Y.; Yan, Y. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol. Res. 2023, 190, 106733. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Saeed, A.F.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 2023, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Purcu, D.U.; Korkmaz, A.; Gunalp, S.; Helvaci, D.G.; Erdal, Y.; Dogan, Y.; Suner, A.; Wingender, G.; Sag, D. Effect of stimulation time on the expression of human macrophage polarization markers. PLoS ONE 2022, 17, e0265196. [Google Scholar] [CrossRef]
- Scarpa, M.; Behboo, R.; Angriman, I.; Cecchetto, A.; D’incà, R.; Termini, B.; Barollo, M.; Ruffolo, C.; Polese, L.; Sturniolo, G.C.; et al. Expression of costimulatory molecule CD80 in colonic dysplasia in ulcerative colitis: An immunosurveillance mechanism against colorectal cancer? Int. J. Color. Dis. 2006, 21, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, D.; Suzuki, H.; Kusamori, K.; Itakura, S.; Todo, H.; Nishikawa, M. Development of rice bran-derived nanoparticles with excellent anti-cancer activity and their application for peritoneal dissemination. J. Nanobiotechnol. 2024, 22, 114. [Google Scholar] [CrossRef]
- Sasaki, D.; Kusamori, K.; Takayama, Y.; Itakura, S.; Todo, H.; Nishikawa, M. Development of nanoparticles derived from corn as mass producible bionanoparticles with anticancer activity. Sci. Rep. 2021, 11, 22818. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Yan, H.; Han, X.; Weng, L.; Wei, Q.; Sun, X.; Lu, W.; Wei, Q.; Ye, J.; Cai, X.; et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326. [Google Scholar] [CrossRef]
- Mu, J.; Zhuang, X.; Wang, Q.; Jiang, H.; Deng, Z.B.; Wang, B.; Zhang, L.; Kakar, S.; Jun, Y.; Miller, D.; et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 2014, 58, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Shahi, T.; Assadpour, E.; Jafari, S.M. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends Food Sci. Technol. 2016, 58, 69–78. [Google Scholar] [CrossRef]
ID | miRNA Database Pre-miRNA | miRNA Mature |
---|---|---|
chr5_794 | Aquilegia caerulea miR156b stem-loop (aqc-MIR156b) | Populus trichocarpa miR156i stem-loop (ptc-MIR156i) |
chr5_1128 | Aquilegia caerulea miR156b stem-loop (aqc-MIR156b) | Populus trichocarpa miR156i stem-loop (ptc-MIR156i) |
chr5_2157 | Aquilegia caerulea miR156b stem-loop (aqc-MIR156b) | Populus trichocarpa miR156i stem-loop (ptc-MIR156i) |
chr5_2600 | Malus domestica miR398b stem-loop (mdm-MIR398b) | Nicotiana tabacum miR398 stem-loop (nta-MIR398) |
chr5_1183 | Asparagus officinalis miR398 stem-loop (aof-MIR398) | Nicotiana tabacum miR398 stem-loop (nta-MIR398) |
chr5_1177 | Asparagus officinalis miR398 stem-loop (aof-MIR398) | Nicotiana tabacum miR398 stem-loop (nta-MIR398) |
chr5_2342 | Gallus gallus (chicken) microRNA gga-mir-1599 precursor | |
chr5_1649 | Gossypium raimondii miR8641 stem-loop (gra-MIR8641) | |
chr4_1395 | Fragaria vesca miR396a stem-loop (fve-MIR396a) | Citrus sinensis miR396a stem-loop (csi-MIR396a) |
chr4_765 | Fragaria vesca miR396a stem-loop (fve-MIR396a) | Citrus sinensis miR396a stem-loop (csi-MIR396a) |
chr4_2266 | Fragaria vesca miR396a stem-loop (fve-MIR396a) | Citrus sinensis miR396a stem-loop (csi-MIR396a) |
chr4_2262 | Fragaria vesca miR396a stem-loop (fve-MIR396a) | Citrus sinensis miR396a stem-loop (csi-MIR396a) |
chr4_2115 | Fragaria vesca miR396a stem-loop (fve-MIR396a) | Citrus sinensis miR396a stem-loop (csi-MIR396a) |
chr4_1744 | Vriesea carinata miR166a stem-loop (vca-MIR166a) | Arabidopsis thaliana (thale cress) ath-miR166d |
chr4_1845 | Medicago truncatula miR2590e stem-loop (mtr-MIR2590e) | |
chr4_1747 | Medicago truncatula miR2676f stem-loop (mtr-MIR2676f) | |
chr4_566 | Brachypodium distachyon miR5058 stem-loop (bdi-MIR5058) | |
chr4_1330 | Manihot esculenta miR169ab stem-loop (mes-MIR169ab) | |
chr8_2423 | Citrus sinensis miR166c stem-loop (csi-MIR166c) | Aquilegia coerulea aqc-miR166a |
chr8_3304 | Manihot esculenta miR166a stem-loop (mes-MIR166a) | Aquilegia coerulea aqc-miR166a |
chr8_3423 | Petromyzon marinus (sea lamprey) microRNA pma-mir-22a precursor | Cucumis melo miR160c stem-loop (cme-MIR160c) |
chr3_1145 | Schistosoma mansoni microRNA sma-mir-2f precursor | |
chr3_952 | Ornithorhynchus anatinus (platypus) microRNA oan-mir-1347 precursor | |
chr8_2319 | Gallus gallus (chicken) microRNA gga-mir-1599 precursor | |
chr3_1017 | Oryctolagus cuniculus (rabbit) microRNA ocu-mir-3613 precursor | Oryza sativa (rice) osa-miR2275c |
chr3_1337 | Solanum lycopersicum miR396a stem-loop (sly-MIR396a) | |
chr8_2773 | Medicago truncatula miR168c stem-loop (mtr-MIR168c) | Arabidopsis thaliana (thale cress) ath-miR168a-3p |
chr8_3410 | Medicago truncatula miR5266 stem-loop (mtr-MIR5266) | |
chr7_3949 | Oryza sativa miR166d stem-loop (osa-MIR166d) | Arabidopsis thaliana (thale cress) ath-miR165a-3p |
chr7_3533 | Mus musculus (house mouse) microRNA mmu-mir-8109 precursor | |
chr2_1178 | Triticum aestivum miR5085 stem-loop (tae-MIR5085) | |
chr7_2915 | Gallus gallus (chicken) microRNA gga-mir-1599 precursor | |
chr7_2991 | Fragaria vesca miR162 stem-loop (fve-MIR162) | |
chr2_1335 | Lotus japonicus miR7526c stem-loop (lja-MIR7526c) | Citrus sinensis (sweet orange) csi-miR9560–5p |
chr2_776 | Tetraodon nigroviridis let-7a-1 stem-loop (tni-let-7a-1) | |
chr7_3878 | Gallus gallus (chicken) microRNA gga-mir-1599 precursor | |
chr2_725 | Medicago truncatula miR2670b stem-loop (mtr-MIR2670b) | |
chr2_2497 | Medicago truncatula miR2676f stem-loop (mtr-MIR2676f) | |
chr1_994 | Vriesea carinata miR396 stem-loop (vca-MIR396) | Arabidopsis thaliana (thale cress) ath-miR396b-5p |
chr1_2091 | Medicago truncatula miR168c stem-loop (mtr-MIR168c) | Cynara cardunculus miR168a stem-loop (cca-MIR168a) |
chr1_2089 | Medicago truncatula miR168c stem-loop (mtr-MIR168c) | Cynara cardunculus miR168a stem-loop (cca-MIR168a) |
chr1_636 | Medicago truncatula miR168c stem-loop (mtr-MIR168c) | Arabidopsis thaliana (thale cress) ath-miR168a-3p |
chr1_1326 | Brachypodium distachyon miR5058 stem-loop (bdi-MIR5058) | |
chr1_468 | Pan troglodytes (chimpanzee) microRNA ptr-mir-320e precursor | |
chr6_3204 | Mus musculus (house mouse) microRNA mmu-mir-7116 precursor | |
chr1_1961 | Mus musculus (house mouse) microRNA mmu-mir-7116 precursor | |
chr1_783 | Brassica napus miR824 stem-loop (bna-MIR824) | |
chr1_2624 | Brassica napus miR824 stem-loop (bna-MIR824) |
miRNA | Gene ID, Name and Description |
---|---|
miR168 | NM_001040429.3 Homo sapiens protocadherin 17 (PCDH17), mRNA |
NM_018644.3 Homo sapiens beta-1,3-glucuronyltransferase 1 (B3GAT1), transcript variant 1, mRNA | |
miR396 | NM_001271562.2 Homo sapiens chromosome 11 open reading frame 71 (C11orf71), transcript variant |
NM_001370465.2 Homo sapiens dual specificity phosphatase 28 (DUSP28), transcript variant 1, mR | |
NM_001394062.1 Homo sapiens microtubule actin crosslinking factor 1 (MACF1), transcript variant | |
NM_001395392.1 Homo sapiens general transcription factor IIH subunit 2 (GTF2H2), transcript va variant | |
NM_004736.4 Homo sapiens xenotropic and polytropic retrovirus receptor 1 (XPR1), transcript va variant | |
NM_005502.4 Homo sapiens ATP binding cassette subfamily A member 1 (ABCA1), mRNA | |
NM_006948.5 Homo sapiens heat shock protein family A (Hsp70) member 13 (HSPA13), mRNA | |
NM_016052.4 Homo sapiens ribosomal RNA processing 15 homolog (RRP15), mRNA | |
NM_022739.4 Homo sapiens SMAD specific E3 ubiquitin protein ligase 2 (SMURF2), mRNA | |
NM_001004464.2 Homo sapiens olfactory receptor family 10 subfamily G member 8 (OR10G8), mRNA | |
NM_001142934.2 Homo sapiens choline O-acetyltransferase (CHAT), transcript variant, mRNA | |
NM_001270974.2 Homo sapiens HYDIN axonemal central pair apparatus protein (HYDIN), transcript | |
NM_001308022.2 Homo sapiens tensin 1 (TNS1), transcript variant 2, mRNA | |
NM_001321231.2 Homo sapiens histone deacetylase 6 (HDAC6), transcript variant 8, mRNA | |
NM_001347701.2 Homo sapiens spectrin repeat containing nuclear envelope protein 1 (SYNE1) | |
NM_001376194.2 Homo sapiens chromodomain helicase DNA binding protein 1 (CHD1) | |
NM_002646.4 Homo sapiens phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 | |
NM_004371.4 Homo sapiens COPI coat complex subunit alpha (COPA), transcript variant 2, mRNA | |
NM_004405.4 Homo sapiens distal-less homeobox 2 (DLX2), mRNA | |
NM_004485.4 Homo sapiens G protein subunit gamma 4 (GNG4), transcript variant 3, mRNA | |
NM_004664.4 Homo sapiens lin-7 homolog A, crumbs cell polarity complex component (LIN7A), transcript | |
NM_007118.4 Homo sapiens trio Rho guanine nucleotide exchange factor (TRIO), transcript variant | |
NM_007204.5 Homo sapiens DEAD-box helicase 20 (DDX20), mRNA | |
NM_015114.3 Homo sapiens ankyrin repeat and LEM domain containing 2 (ANKLE2), mRNA | |
NM_015286.6 Homo sapiens synemin (SYNM), transcript variant B, mRNA | |
NM_016652.6 Homo sapiens crooked neck pre-mRNA splicing factor 1 (CRNKL1), transcript variant | |
NM_018230.3 Homo sapiens nucleoporin 133 (NUP133), mRNA | |
NM_022161.4 Homo sapiens baculoviral IAP repeat containing 7 (BIRC7), transcript variant 2, mRNA | |
NM_001164183.2 Homo sapiens ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1), transcrIPT | |
NM_001164389.2 Homo sapiens Rap guanine nucleotide exchange factor 6 (RAPGEF6), transcript variant | |
NM_001166355.2 Homo sapiens O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase (LFNG) | |
NM_001166699.2 Homo sapiens family with sequence similarity 104 member B (FAM104B), transcript | |
NM_001286229.2 Homo sapiens denticleless E3 ubiquitin protein ligase homolog (DTL), transcript | |
NM_001286365.2 Homo sapiens MAP7 domain containing 1 (MAP7D1), transcript variant 2, mRNA | |
NM_001286730.2 Homo sapiens solute carrier family 44 member 1 (SLC44A1), transcript variant 2, | |
NM_001301856.2 Homo sapiens ELOVL fatty acid elongase 5 (ELOVL5), transcript variant 5, mRNA | |
NM_001310135.5 Homo sapiens tetratricopeptide repeat domain 6 (TTC6), transcript variant 1, mRNA | |
NM_001318844.2 Homo sapiens SNW domain containing 1 (SNW1), transcript variant 1, mRNA | |
NM_001324423.2 Homo sapiens lin-7 homolog A, crumbs cell polarity complex component (LIN7A), transcript varian t | |
NM_001349745.2 Homo sapiens transmembrane and coiled-coil domains 3 (TMCO3), transcript varianT | |
NM_001350339.2 Homo sapiens large tumor suppressor kinase 1 (LATS1), transcript variant 4, mRNA | |
NM_001364113.3 Homo sapiens chromodomain helicase DNA binding protein 1 (CHD1), transcript varian | |
NM_002788.4 Homo sapiens proteasome 20S subunit alpha 3 (PSMA3), transcript variant 1, mRNA | |
NM_004274.5 Homo sapiens A-kinase anchoring protein 6 (AKAP6), mRNA | |
NM_006428.5 Homo sapiens mitochondrial ribosomal protein L28 (MRPL28), mRNA | |
NM_006469.5 Homo sapiens influenza virus NS1A binding protein (IVNS1ABP), mRNA | |
NM_006836.2 Homo sapiens GCN1 activator of EIF2AK4 (GCN1), mRNA | |
NM_012235.4 Homo sapiens SREBF chaperone (SCAP), transcript variant 1, mRNA | |
NM_015488.5 Homo sapiens PNKD metallo-beta-lactamase domain containing (PNKD), transcript varian | |
NM_015963.6 Homo sapiens THAP domain containing 4 (THAP4), transcript variant 1, mRNA | |
miR398 | NM_001036.6 Homo sapiens ryanodine receptor 3 (RYR3), transcript variant 1, mRNA |
NM_001145784.2 Homo sapiens BLOC-1 related complex subunit 8 (BORCS8), transcript variant 1, mRNA | |
miR156 | NM_001031848.2 Homo sapiens serpin family B member 8 (SERPINB8), transcript variant 3, mRNA |
NM_001144830.3 Homo sapiens flavin containing dimethylaniline monoxygenase 5 (FMO5), transcripT | |
NM_001163771.2 Homo sapiens collagen type XI alpha 2 chain (COL11A2), transcript variant 4, mRNA | |
NM_001243403.2 Homo sapiens C-type lectin domain containing 16A (CLEC16A), transcript variant | |
NM_007021.4 Homo sapiens DEPP autophagy regulator 1 (DEPP1), mRNA | |
miR166 | NM_015221.4 Homo sapiens dynamin binding protein (DNMBP), transcript variant 1, mRNA |
Type of Compound | Name | tR, min | m/z | Ion | Formula |
---|---|---|---|---|---|
Carotenoids | |||||
β-Carotene | 7.00 | 537.4426 | M + H+ | C40H56 | |
α-Carotene | 7.20 | 537.4426 | M + H+ | C40H56 | |
Zeaxanthin | 4.73 | 569.4323 | M + H+ | C40H56O2 | |
Lutein | 3.94 | 569.4323 | M + H+ | C40H56O2 | |
Hydroxy phytofluene | 2.82 | 559.4901 | M + H+ | C40H62O | |
Quinones | |||||
Plastoquinone | 6.25 | 748.6125 | M + H+ | C53H80O2 | |
Ubiquinone 10 | 5.78 | 862.6823 | M + H+ | C59H90O4 | |
Flavonoids | |||||
Kaempferol 3,7-diglucoside | 8.81 | 611.1604 | M + H+ | C27H30O16 | |
Anthocyanins | |||||
Delphinidin 3,5-di-O-glucoside | 8.36 | 627.5248 | M+ | C15H11O7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez Fajardo, C.; López-Jiménez, A.J.; López-López, S.; Morote, L.; Moreno-Giménez, E.; Diretto, G.; Díaz-Guerra, M.J.M.; Rubio-Moraga, Á.; Ahrazem, O.; Gómez-Gómez, L. Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity. Biology 2025, 14, 215. https://doi.org/10.3390/biology14020215
Martínez Fajardo C, López-Jiménez AJ, López-López S, Morote L, Moreno-Giménez E, Diretto G, Díaz-Guerra MJM, Rubio-Moraga Á, Ahrazem O, Gómez-Gómez L. Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity. Biology. 2025; 14(2):215. https://doi.org/10.3390/biology14020215
Chicago/Turabian StyleMartínez Fajardo, Cristian, Alberto J. López-Jiménez, Susana López-López, Lucía Morote, Elena Moreno-Giménez, Gianfranco Diretto, María José M. Díaz-Guerra, Ángela Rubio-Moraga, Oussama Ahrazem, and Lourdes Gómez-Gómez. 2025. "Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity" Biology 14, no. 2: 215. https://doi.org/10.3390/biology14020215
APA StyleMartínez Fajardo, C., López-Jiménez, A. J., López-López, S., Morote, L., Moreno-Giménez, E., Diretto, G., Díaz-Guerra, M. J. M., Rubio-Moraga, Á., Ahrazem, O., & Gómez-Gómez, L. (2025). Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity. Biology, 14(2), 215. https://doi.org/10.3390/biology14020215