Investigation of the Influence of Hypercapnia on the Physiology of Ovigerous West Coast Rock Lobsters, Jasus lalandii, and Their Embryonic Development
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Acute Response to Hypercapnia
2.3. Chronic Response to Hypercapnia
2.4. Haemolymph Acid–Base Balance
2.5. Embryonic Development
2.6. Hepatosomatic Index (HSI) and Gonadosomatic Index (GSI)
2.7. Scanning Electron Microscopy (SEM) Analysis
2.8. Statistical Analysis
3. Results
3.1. Acute Experiments—Acid Base Regulation
3.2. Chronic Incubation—Acid–Base Regulation
3.3. Chronic Exposure—Embryonic Development
3.4. Chronic Exposure—Gonadosomatic and Hepatosomatic Index
3.5. Chronic Exposure—Structural SEM Analysis of the Cuticle and Eggs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eggers, J.M.; Cochrane, K.L.; Sauer, W.H.H. Estimating the economic income and social contributions derived from the South African west coast rock lobster fishery. Afr. J. Mar. Sci. 2022, 44, 255–269. [Google Scholar] [CrossRef]
- DFFE (Department of Forestry, Fisheries and the Environment). Status of the South African Marine Fishery Resources; DFFE: Cape Town, South Africa, 2023. [Google Scholar] [CrossRef]
- Pitcher, G.C.; Probyn, T.A. Red tides and anoxia: An example from the southern Benguela Current System. In Proceedings of the 14th International Conference on Harmful Algae. International Society for the Study of Harmful Algae and Intergovernmental Oceanographic Commission of UNESCO 2013, Creete, Greece, 1–5 November 2010; Pagou, P., Hallegraeff, G., Eds.; pp. 159–161. [Google Scholar]
- Pitcher, G.C.; Figueiras, F.G.; Hickey, B.M.; Moita, M.T. The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog. Oceanogr. 2010, 85, 5–32. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, G.C.; Probyn, T.A.; du Randt, A.; Lucas, A.J.; Bernard, S.; Evers-King, H.; Lamont, T.; Hutchings, L. Dynamics of oxygen depletion in the nearshore of a coastal embayment of the southern Benguela upwelling system. J. Geophys. Res. Oceans 2014, 119, 2183–2200. [Google Scholar] [CrossRef]
- Cooley, S.; Schoeman, D.; Bopp, L.; Boyd, P.; Donner, S.; Ghebrehiwet, D.Y.; Ito, S.-I.; Kiessling, W.; Martinetto, P.E.; Ojea, E.; et al. Oceans and Coastal Ecosystems and Their Services. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 379–550. [Google Scholar] [CrossRef]
- Bednaršek, N.; Ambrose, R.; Calosi, P.; Childers, R.K.; Feely, R.A.; Litvin, S.Y.; Long, W.C.; Spicer, J.I.; Štrus, J.; Taylor, J.; et al. Synthesis of thresholds of ocean acidification impacts on decapods. Front. Mar. Sci. 2021, 8, 651102. [Google Scholar] [CrossRef]
- Long, W.C.; Swiney, K.M.; Foy, R.J. Direct, carryover, and maternal effects of ocean acidification on snow crab embryos and larvae. PLoS ONE 2023, 18, e0276360. [Google Scholar] [CrossRef]
- Knapp, J.L.; Bridges, C.R.; Krohn, J.; Hoffman, L.C.; Auerswald, L. Acid–base balance and changes in haemolymph properties of the South African rock lobsters, Jasus lalandii, a palinurid decapod, during chronic hypercapnia. Biochem. Biophys. Res. Commun. 2015, 461, 475–480. [Google Scholar] [CrossRef]
- Knapp, J.L.; Bridges, C.R.; Krohn, J.; Hoffman, L.C.; Auerswald, L. The effects of hypercapnia on the West Coast rock lobster (Jasus lalandii) through acute exposure to decreased seawater pH—Physiological and biochemical responses. J. Exp. Mar. Biol. Ecol. 2016, 476, 58–64. [Google Scholar] [CrossRef]
- Knapp, J.L.; Hoffman, L.C.; Auerswald, L.; Macey, B.M. Effects of chronic hypercapnia and elevated temperature on the immune response of the spiny lobster, Jasus lalandii. Fish. Shellf. Immunol. 2019, 93, 752–762. [Google Scholar] [CrossRef]
- Heydorn, A.E.F. The rock lobster of the South African West Coast Jasus lalandii (H. Milne Edwards):—Part 2; Population studies, behavior, reproduction, molting, growth and migration. Investig. Rep. Div. Sea Fish. S. Afr. 1969, 71, 1–52. [Google Scholar]
- Jeffs, A.G.; Gardner, C.; Cockcroft, A. Jasus and Sagamariasus species. In Lobsters: Biology, Management, Aquaculture and Fisheries; Phillips, B.F., Ed.; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 259–288. [Google Scholar]
- Munian, A.; Cockcroft, A.; Hoffman, L.; Auerswald, L. Depot lipids in mature palinurid decapods (Crustacea). Invertebr. Reprod. Dev. 2021, 65, 1–11. [Google Scholar] [CrossRef]
- Zoutendyk, P. Gonad output in terms of carbon and nitrogen by the Cape rock lobster Jasus lalandii (H. Milne-Edwards 1837) (Decapoda, Palinuridae). Crustaceana 1990, 59, 180–191. [Google Scholar] [CrossRef]
- Beyers, B.; Goosen, P. Variations in fecundity and size at sexual maturity of female rock lobster Jasus lalandii in the Benguela ecosystem. S. Afr. J. Mar. Sci. 1987, 5, 513–521. [Google Scholar] [CrossRef]
- Cockcroft, A.C. Biochemical composition as growth predictor of the West Coast rock lobster Jasus lalandii. Mar. Freshw. Res. 1997, 48, 845–856. [Google Scholar] [CrossRef]
- Harrison, K.E. The role of nutrition in maturation, reproduction and embryonic development of decapod crustacean: A review. J. Shellfish Res. 1990, 9, 1–28. [Google Scholar]
- Silberbauer, B.I. The biology of the South African rock lobster Jasus lalandii (H. Milne-Edwards) 1. Development. Investl. Rep. Div. Sea Fish. S. Afr. 1971, 92, 1–70. [Google Scholar]
- Kittaka, J. Culture of the palinurid Jasus lalandii from egg stage to puerulus. Nippon. Suisan Gakk. 1988, 54, 87–93. [Google Scholar] [CrossRef]
- van Rooy, C. Aspects of the Breeding Cycle and Fecundity of the Female West Coast Rock Lobster, Jasus lalandii. Master’s Thesis, University of the Western Cape, Cape Town, South Africa, 1998. [Google Scholar]
- Munian, A. The Search for Biomarkers in the Growth Prediction of the West Coast Rock Lobster, Jasus lalandii. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2022. [Google Scholar]
- Byrne, M. Impact of ocean warming and ocean acidication on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 2011, 49, 1–42. [Google Scholar]
- Pörtner, H.-O.; Langenbuch, M.; Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 2004, 60, 705–718. [Google Scholar] [CrossRef]
- Whiteley, N.M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 2011, 430, 257–271. [Google Scholar] [CrossRef]
- Pardo, C.F.; Costa, T.M. Multiple-stressor effects of warming and acidification on the embryonic development of an estuarine fiddler crab. Estuar. Coast. Shelf Sci. 2021, 254, 107296. [Google Scholar] [CrossRef]
- Ocampo, E.H.; Nunez, J.D.; Ribeiro, P.D.; Perez García, M.; Bas, C.C.; Luppi, T.A. Disparate response of decapods to low pH: A meta-analysis of life history, physiology and behavior traits across life stages and environments. Mar. Pollut. Bull. 2024, 202, 116293. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Gamiño, J.L.; Alma, L.; Spencer, L.H.; Venkataraman, Y.R.; Wessler, L. Ocean acidification does not overlook sex: Review of understudied effects and implications of low pH on marine invertebrate sexual reproduction. Front. Mar. Sci. 2022, 9, 977754. [Google Scholar] [CrossRef]
- Sarazin, G.; Michard, G.; Prevot, F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999, 33, 290–294. [Google Scholar] [CrossRef]
- Pierrot, D.E.; Lewis, E.; Wallace, D.W.R. MS excel program developed for CO2 system calculations. ORNL/CDIAC-105a. In Carbon Dioxide Information Analysis Center; Oak Ridge National Laroratory, US Department of Energy: Oak Ridge, TN, USA, 2006. [Google Scholar]
- Riebesell, U.; Fabry, V.J.; Hansson, L.; Gattuso, J.-P. Guide to Best Practices for Ocean Acidification Research and Data Reporting. [Reprinted Edition Including Erratum]; EUR 24872 EN; Publications Office of the European Union: Luxembourg, 2011; 258p. [Google Scholar] [CrossRef]
- Cornwall, C.E.; Hurd, C.L. Experimental design in ocean acidification research: Problems and solutions. ICES J. Mar. Sci. 2015, 73, 572–581. [Google Scholar] [CrossRef]
- Truchot, J.P. Carbon dioxide combining properties of the blood of the shore crab Carcinus maenas (L.): Carbon dioxide solubility coefficient and carbonic acid dissociation constants. J. Exp. Biol. 1976, 64, 45–57. [Google Scholar] [CrossRef]
- Gil-Turnes, M.S.; Fenical, W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol. Bull. 1992, 182, 105–108. [Google Scholar] [CrossRef]
- Cameron, J.N. Effects of hypercapnia on blood acid–base status, NaCl fluxes, and trans-gill potential in freshwater blue crabs, Callinectes sapidus. J. Comp. Physiol. B 1978, 123, 137–141. [Google Scholar] [CrossRef]
- Henry, R.P.; Kormanik, G.A.; Smatresk, N.J.; Cameron, J.N. The role of CaCO3 dissolution as a source of HCO3− for the buffering of hypercapnic acidosis in aquatic and terrestrial decapod crustaceans. J. Exp. Biol. 1981, 94, 269–274. [Google Scholar] [CrossRef]
- Pane, E.F.; Barry, J.P. Extracellular acid–base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 2007, 334, 1–9. [Google Scholar] [CrossRef]
- Spicer, J.I.; Raffo, A.; Widdicombe, S. Influence of CO2-related seawater acidification on extracellular acid–base balance in the velvet swimming crab Necora puber. Mar. Biol. 2007, 151, 1117–1125. [Google Scholar] [CrossRef]
- Small, D.P.; Calosi, P.; Rastrick, S.P.S.; Turner, L.M.; Widdicombe, S.; Spicer, J.I. The effects of elevated temperature and pCO2 on the energetics and haemolymph pH homeostasis of juveniles of the European lobster, Homarus gammarus. J. Exp. Biol. 2020, 223, jeb209221. [Google Scholar] [CrossRef] [PubMed]
- Burnett, L.E.; Johansen, K. The role of branchial ventilation in hemolymph acid–base changes in the shore crab Carcinus maenas during hypoxia. J. Comp. Physiol. B 1981, 141, 489–494. [Google Scholar] [CrossRef]
- Reipschläger, A.; Pörtner, H.-O. Metabolic depression during environmental stress: The role of extracellular versus intracellular pH in Sipunculus nudus. J. Exp. Biol. 1996, 199, 1801–1807. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Bock, C.; Reipschläger, A. Modulation of the cost of pHi regulation during metabolic depression: A 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J. Exp. Biol. 2000, 203, 2417–2428. [Google Scholar] [CrossRef]
- von Bonde, C.; Marchand, J.M. The natural history and utilisation of the Cape crawfish, kreef or spiny lobsters, Jasus (Palinurus) lalandii (Milne Edwards) Ortmann. Fish. Bull. 1935, 1, 1–55. [Google Scholar]
- Ansell, A.D.; Robb, L. The spiny lobster Palinurus elephas in Scottish waters. Mar. Biol. 1977, 43, 63–70. [Google Scholar] [CrossRef]
- Key, M.M.; Smith, A.M.; Hanns, B.; Kane-Sanderson, P. Rare report of bryozoan fouling of rock lobsters (Jasus edwardsii: Decapoda: Palinuridae) from the North Island of New Zealand. N. Z. J. Mar. Freshw. Res. 2021, 57, 229–241. [Google Scholar] [CrossRef]
- Fernández, M.; Bock, C.; Pörtner, H.-O. The cost of being a caring mother: The ignored factor in the reproduction of marine invertebrates. Ecol. Lett. 2020, 3, 487–494. [Google Scholar] [CrossRef]
- Fernandez, M.; Brante, A. Brood care in Brachyuran crabs: The effect of oxygen provision on reproductive costs. Rev. Chil. Hist. Nat. 2003, 76, 157–168. [Google Scholar] [CrossRef]
- Long, W.C.; Conrad, A.L.; Gardner, J.L.; Foy, R.J. Red king crab larval survival and development are resilient to ocean acidification. J. Exp. Mar. Biol. Ecol. 2024, 577, 152028. [Google Scholar] [CrossRef]
- Styf, H.K.; Nilsson Sköld, H.; Eriksson, S.P. Embryonic response to long-term exposure of the marine crustacean Nephrops norvegicus to ocean acidification and elevated temperature. Ecol. Evol. 2013, 3, 5055–5065. [Google Scholar] [CrossRef] [PubMed]
- Findlay, H.S.; Kendall, M.A.; Spicer, J.I.; Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 2009, 389, 193–202. [Google Scholar] [CrossRef]
- Walther, K.; Anger, K.; Pörtner, H.-O. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs. 79° N). Mar. Ecol. Prog. Ser. 2010, 417, 159–170. [Google Scholar] [CrossRef]
- Keppel, E.A.; Scrosati, R.A.; Courtenay, S.C. Ocean acidification decreases growth and development in American lobster (Homarus americanus) larvae. J. Northw. Atl. Fish. Sci. 2012, 44, 61–66. [Google Scholar] [CrossRef]
- Swiney, K.M.; Long, W.C.; Foy, R.J. Effects of high pCO2 on tanner crab reproduction and early life history—Part I: Long-term exposure reduces hatching success and female calcification, and alters embryonic development. ICES J. Mar. Sci. 2016, 73, 825–835. [Google Scholar] [CrossRef]
- Long, W.C.; Swiney, K.M.; Foy, R.J. Effects of high pCO2 on Tanner crab reproduction and early life history, part II: Carryover effects on larvae from oogenesis and embryogenesis are stronger than direct effects. ICES J. Mar. Sci. 2016, 73, 836–848. [Google Scholar] [CrossRef]
- Long, W.C.; Swiney, K.M.; Foy, R.J. Effects of ocean acidification on the embryos and larvae of red king crab, Paralithodes camtschaticus. Mar. Pollut. Bull. 2013, 69, 38–47. [Google Scholar] [CrossRef]
- Tong, L.J.; Moss, G.A.; Pickering, T.D.; Paewai, M.P. Temperature effects on embryo and early larval development of the spiny lobster Jasus edwardsii, and description of a method to predict larval hatch times. Mar. Freshw. Res. 2000, 51, 243–248. [Google Scholar] [CrossRef]
- Smith, G.G.; Ritar, A.J.; Thompson, P.A.; Dunstan, G.A.; Brown, M.R. The effect of embryo incubation temperature on indicators of larval viability in Stage I phyllosoma of the spiny lobster, Jasus edwardsii. Aquaculture 2002, 209, 157–167. [Google Scholar] [CrossRef]
- Munian, A.; Cockcroft, A.; Hoffman, L.; Auerswald, L. Analysis of biological and biochemical parameters of adult male spiny lobsters Jasus lalandii for identification of possible growth predictors. Fish. Res. 2021, 243, 106061. [Google Scholar] [CrossRef]
- Siegel, K.R.; Kaur, M.; Grigal, A.C.; Metzler, R.A.; Dickinson, G.H. Meta-analysis suggests negative, but pCO2-specific, effects of ocean acidification on the structural and functional properties of crustacean biomaterials. Ecol. Evol. 2022, 12, e8922. [Google Scholar] [CrossRef] [PubMed]
- Algayer, T.; Mahmoud, A.; Saksena, S.; Long, W.C.; Swiney, K.M.; Foy, R.J.; Steffel, B.V.; ·Smith, K.E.; Aronson, R.B.; Dickinson, G.H. Adult snow crab, Chionoecetes opilio, display body-wide exoskeletal resistance to the effects of long-term ocean acidification. Mar. Biol. 2023, 170, 63. [Google Scholar] [CrossRef]
- Dickinson, G.H.; Bejerano, S.; Salvador, T.; Makdisi, C.; Patel, S.; Long, W.C.; Swiney, K.M.; Foy, R.J.; Steffel, B.V.; Smith, K.E.; et al. Ocean acidification alters properties of the exoskeleton in adult Tanner crabs, Chionoecetes bairdi. J. Exp. Biol. 2021, 224, jeb232819. [Google Scholar] [CrossRef] [PubMed]
- Klumpen, E. Einfluss der Acidifizierung der Meere auf die Physiologie des Taschenkrebses Cancer pagurus. Master’s Thesis, Düsseldorf University, Düsseldorf, Germany, 2010. [Google Scholar]
- Al-Sawalmih, A.; Li, C.; Siegel, S.; Fabritius, H.; Yi, S.; Raabe, D.; Fratzl, P.; Paris, O. Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv. Funct. Mater. 2008, 18, 3307–3314. [Google Scholar] [CrossRef]
- Wood, H.L.; Spicer, J.I.; Widdicombe, S. Ocean acidification may increase calcification rates, but at a cost. Proc. R. Soc. B 2008, 275, 1767–1773. [Google Scholar] [CrossRef]
- Stumpp, M.; Wren, J.; Melzner, F.; Thorndyke, M.C.; Dupont, S.T. CO2 induced seawater acidification impacts sea urchin larval development I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comp. Biochem. Physiol. A 2011, 160, 331–340. [Google Scholar] [CrossRef]
- Figuerola, B.; Hancock, A.M.; Bax, N.; Cummings, V.J.; Downey, R.; Griffiths, H.J.; Smith, J.; Stark, J.S. A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern Ocean. Front. Mar. Sci. 2021, 8, 584445. [Google Scholar] [CrossRef]
- Feely, R.A.; Carter, B.R.; Alin, S.R.; Greeley, D.; Bednaršek, N. The combined effects of ocean acidification and respiration on habitat suitability for marine calcifiers along the west coast of North America. J. Geophys. Res. Oceans 2024, 129, e2023JC019892. [Google Scholar] [CrossRef]
Treatment | TA °C | pH | AT µmol kg−1 | O2 % | Salinity ‰ | Ca2+ mmol L−1 | Mg2+ mmol L−1 | pCO2 | HCO3− mmol L−1 | CO32− mmol L−1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Torr | (µatm) | ||||||||||
Acclimation | 14.2 ± 0.0 | 7.93 ± 0.02 | 2001 ± 21 | 97.1 ± 0.8 | 34.9 ± 00 | 10.1 ± 0.3 | 52.0 ± 1.9 | 0.3 ± 0.0 | (460 ± 26) | 1.7 ± 0.0 | 0.1 ± 0.0 |
Acute exposure | |||||||||||
Normocapnia | 14.0 ± 0.2 | 7.95 ± 0.04 | 1997 ± 24 | 96.0 ± 1.4 | 34.9 ± 0.1 | 10.2 ± 0.6 | 50.5 ± 2.7 | 0.3 ± 0.0 | (443 ± 37) | 1.7 ± 0.0 | 0.1 ± 0.0 |
Hypercapnia 7.5 | 14.1 ± 0.3 | 7.47 ± 0.07 | 2003 ± 15 | 95.4 ± 0.8 | 34.9 ± 0.2 | 10.0 ± 0.2 | 51.2 ± 3.8 | 1.1 ±0.2 | (1463 ± 236) | 1.9 ± 0.0 | 0.0 ± 0.0 |
Chronic exposure | |||||||||||
Normocapnia | 17.1 ± 1.4 | 7.99 ± 0.10 | 2034 ± 40 | 93.6 ± 1.5 | 35.0 ± 0.0 | 10.3 ± 0.6 | 52.8 ± 1.9 | 0.3 ± 0.1 | (410 ± 130) | 1.7 ± 0.1 | 0.1 ± 0.0 |
Hypercapnia 7.8 | 17.2 ± 1.2 | 7.80 ± 0.01 | 2029 ± 42 | 92.4 ± 1.4 | 35.0 ± 0.0 | 10.2 ± 0.5 | 52.4 ± 1.5 | 0.5 ± 0.0 | (665 ± 25) | 1.8 ± 0.0 | 0.1 ± 0.0 |
Hypercapnia 7.5 | 16.9 ± 1.1 | 7.52 ± 0.04 | 2032± 42 | 94.6 ± 1.8 | 35.0 ± 0.0 | 10.2 ± 0.3 | 52.6 ± 1.3 | 1.0 ± 0.1 | (1338 ± 138) | 1.9 ± 0.0 | 0.1 ± 0.0 |
Exposure Time (h) | pH | cCO2 mmol L−1 | pCO2 | [HCO3− + CO32−] mmol L−1 | Ca2+ mmol L−1 | Mg2+ mmol L−1 | Protein mg mL−1 | Haemocyanin mg mL−1 | L-lactate mmol L−1 | |
---|---|---|---|---|---|---|---|---|---|---|
Torr | µatm | |||||||||
Normocapia | ||||||||||
0 | 7.79 ± 0.05 | 4.0 ± 0.5 | 1.5 ± 0.4 | 2632 ± 395 | 4.0 ± 0.5 | 15.6 ± 1.7 | 7.9 ± 0.2 | 28.9 ± 3.9 | 20.0 ± 3.9 | 0.2 ± 0.1 |
1 | 7.73 ± 0.05 | 3.2 ± 0.5 # | 1.3 ± 0.1 | 2105 ± 394 | 3.1 ± 0.5 | 15.7 ± 2.5 | 8.1 ± 1.5 | 29.0 ± 5.8 | 19.7 ± 5.2 | 0.3 ± 0.1 |
3 | 7.77 ± 0.13 | 2.1 ± 0.4 # | 0.9 ± 0.2 | 1447 ± 263 | 2.1 ± 0.4 # | 15.4 ± 2.3 | 8.9 ± 0.8 | 27.7 ± 5.4 | 18.0 ± 5.4 | 0.2 ± 0.1 |
5 | 7.78 ± 0.06 | 1.9 ± 0.3 # | 0.7 ± 0.1 # | 1316 ± 132 | 1.9 ± 0.3 # | 14.4 ± 1.4 | 8.0 ± 1.4 | 23.3 ± 2.1 | 13.2 ± 1.1 | 0.2 ± 0.1 |
8 | 7.78 ± 0.08 | 1.9 ± 0.4 # | 0.7 ± 0.0 | 1184 ± 264 | 1.9 ± 0.4 # | 13.0 ± 2.6 | 9.7 ± 0.6 | 20.9 ± 4.4 | 9.8 ± 4.0 | 0.1 ± 0.1 |
24 | 7.85 ± 0.09 | 3.6 ± 0.7 # | 1.2 ± 0.5 | 2368 ± 262 | 3.5 ± 0.6 | 16.1 ± 1.1 | 7.7 ± 0.8 | 22.3 ± 2.8 | 10.7 ± 2.6 | 0.2 ± 0.1 |
Hypercapnia | ||||||||||
0 | 7.76 ± 0.13 | 3.8 ± 0.3 | 1.6 ± 0.2 | 2634 ± 260 | 3.7 ± 0.3 | 12.9 ± 0.8 | 9.1 ± 1.2 | 29.6 ± 7.0 | 18.5 ± 7.7 | 0.4 ± 0.2 |
1 | 7.58 ± 0.09 * | 5.1 ± 0.2 * | 2.5 ± 0.1 | 3289 ± 132 | 4.9 ± 0.2 #* | 11.6 ± 0.9 | 9.6 ± 1.0 | 30.2 ± 8.1 | 19.2 ± 9.0 | 0.4 ± 0.1 |
3 | 7.77 ± 0.04 | 5.8 ± 0.3 #* | 2.9 ± 0.1 #* | 3816 ± 136 | 5.7 ± 0.3 #* | 12.7 ± 3.0 | 10.3 ± 0.6 | 28.7 ± 4.9 | 16.7 ± 4.2 | 0.3 ± 0.1 |
5 | 7.79 ± 0.05 | 6.2 ± 0.5 #* | 3.0 ± 0.3 #* | 3947 ± 398 | 6.1 ± 0.5 #* | 10.5 ± 2.2 | 10.6 ± 0.9 | 25.3 ± 4.3 | 15.1 ± 6.2 | 0.3 ± 0.2 |
8 | 7.80 ± 0.03 | 6.4 ± 0.5 #* | 3.1 ± 0.3 #* | 4079 ± 391 | 6.3 ± 0.5 #* | 12.0 ± 2.4 | 11.8 ± 0.7 | 23.6 ± 2.6 | 12.3 ± 2.5 | 0.3 ± 0.2 |
24 | 7.88 ± 0.06 | 9.1 ± 0.8 #* | 4.6 ± 0.3 #* | 6053 ± 393 | 9.0 ± 0.8 #* | 11.7 ± 3.3 | 9.2 ± 1.2 | 23.1 ± 3.1 | 12.0 ± 2.7 | 0.2 ± 0.2 |
Exposure Time | pH | cCO2 mmol L−1 | pCO2 | [HCO3− + CO32−] mmol L−1 | Ca2+ mmol L−1 | Mg2+ mmol·L−1 | Protein mg mL−1 | Haemocyanin mg mL−1 | L-lactate mmol L−1 | |
---|---|---|---|---|---|---|---|---|---|---|
Torr | µatm | |||||||||
Normocapnia | 7.76 ± 0.10 | 2.7 ± 0.3 | 1.0 ± 0.3 | 1316 ± 395 | 2.6 ± 0.3 | 12.9 ± 2.1 | 9.5 ± 1.4 | 23.5 ± 3.6 | 11.9 ± 4.1 | 0.2 ± 0.1 |
Hypercapnia pH 7.8 | 7.76 ± 0.05 | 4.0 ± 0.5 * | 1.5 ± 0.2 * | 1974 ± 263 | 3.9 ± 0.5 * | 12.1 ± 1.7 | 10.2 ± 0.9 | 23.6 ± 3.9 | 14.6 ± 4.2 | 0.2 ± 0.1 |
Hypercapnia pH 7.5 | 7.78 ± 0.02 | 6.1 ± 1.2 * | 2.2 ± 0.5 * | 2632 ± 658 | 6.1 ± 1.1 * | 14.8 ± 3.2 | 9.9 ± 1.2 | 24.2 ± 3.8 | 16.5 ± 2.9 * | 0.1 ± 0.1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritter, A.; Bridges, C.R.; Auerswald, L. Investigation of the Influence of Hypercapnia on the Physiology of Ovigerous West Coast Rock Lobsters, Jasus lalandii, and Their Embryonic Development. Biology 2025, 14, 132. https://doi.org/10.3390/biology14020132
Ritter A, Bridges CR, Auerswald L. Investigation of the Influence of Hypercapnia on the Physiology of Ovigerous West Coast Rock Lobsters, Jasus lalandii, and Their Embryonic Development. Biology. 2025; 14(2):132. https://doi.org/10.3390/biology14020132
Chicago/Turabian StyleRitter, Annika, Christopher R. Bridges, and Lutz Auerswald. 2025. "Investigation of the Influence of Hypercapnia on the Physiology of Ovigerous West Coast Rock Lobsters, Jasus lalandii, and Their Embryonic Development" Biology 14, no. 2: 132. https://doi.org/10.3390/biology14020132
APA StyleRitter, A., Bridges, C. R., & Auerswald, L. (2025). Investigation of the Influence of Hypercapnia on the Physiology of Ovigerous West Coast Rock Lobsters, Jasus lalandii, and Their Embryonic Development. Biology, 14(2), 132. https://doi.org/10.3390/biology14020132