Murine Models in Oral Research: A Narrative Review of Experimental Approaches and Cardiovascular Implications
Simple Summary
Abstract
1. Introduction
2. Experimental Models
2.1. Surgical Models
2.1.1. Periodontal Model
2.1.2. Ligature-Induced BRONJ Model
2.1.3. Zoledronate-Induced Osteonecrosis of the Jaw (ONJ) Model
2.1.4. Tooth Movement Model
2.1.5. Periapical Lesion Induction
2.1.6. Unilateral Anterior Crossbite Model
2.1.7. Dental Occlusion Model
2.1.8. Medial and Distal Molar Displacement Model
2.1.9. Mandibular Incisor Trimming Model
2.1.10. Forced Mouth Opening Model
2.1.11. Implantation Model
2.1.12. Peri-Implantitis Model
2.1.13. Diabetic Peri-Implantitis Model
2.1.14. Oral Floor Tumor Model
2.1.15. Simulated Alveolar Cleft Model
2.1.16. Orthodontic Tooth Movement (OTM) Model
2.1.17. Root Resorption Model
2.1.18. Tooth Extraction Model
2.1.19. PCL Biomembrane Implantation in Maxillary Defects Models
2.1.20. Oral Mucosa Wound Healing Model
2.1.21. FRICTION Model
2.1.22. Tunable Mechanical Overload Model
2.2. Drug/Chemically Induced Rodent Models
2.2.1. 4NQO-Induced Oral Mucosal Carcinogenesis Models
2.2.2. Osteonecrosis of the Jaw (ONJ) Model
2.2.3. Bisphosphonate-Related and Denosumab-Related Osteonecrosis of the Jaw (BRONJ and DRONJ) Models
2.2.4. Oral Ulcers Model
2.2.5. Dentin Protein Immunization Model
2.2.6. Induced Buccal Mucosa Lesion Model
2.2.7. Deproteinized Bovine Bone and Bioactive Glass-Induced Guided Tissue Regeneration (GTR) Model
2.2.8. Oral Submucous Fibrosis Model
2.3. Genetically Induced Rodent Models
2.3.1. Induced Oral Cancer Model
2.3.2. Induced Cyclin D1/p53 Tumorigenesis Model
2.3.3. TGF-β3 Knockout Model for Palatal Fusion Studies
2.4. Pathogen-Induced Rodent Models
2.4.1. Infection-Induced Periapical Lesion Model
2.4.2. Polymicrobial Periodontal Infection Model
2.4.3. Peri-Implant Mucositis and Peri-Implantitis Model
2.4.4. Candida albicans Colonization Model
2.4.5. Pathogen-Induced Periodontal Disease Model
2.4.6. Inflammatory Bone Loss Model
2.4.7. Pathogen-Induced BRON Model in Rats
2.4.8. Bacterial Lavage-Induced Peri-Implantitis Model in Rats
2.4.9. Dental Implant Biofilm Formation Model
3. Cardiac Implications of Oral Infections
3.1. Mechanisms Linking Oral Infection to Cardiac Dysfunction
3.1.1. Bacterial Dissemination and Inflammatory Pathways
3.1.2. Thrombotic Risk
3.2. Experimental Evidence
3.3. Addressing the Gaps: Methodological and Translational Constraints of Murine Models
3.3.1. Periodontal Ligature Model and Its Acute Nature
3.3.2. Immune System Differences Between Rodents and Humans
3.3.3. General Challenges of Translating Murine Findings to Humans
3.3.4. Limitations of Murine Models in Atherosclerosis Research
3.3.5. Future Research Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maddi, A.; Scannapieco, F.A. Oral Biofilms, Oral and Periodontal Infections, and Systemic Disease. Am. J. Dent. 2013, 26, 249–254. [Google Scholar] [PubMed]
- Toz Ertop, M.; Cicek, O.; Erener, H.; Ozkalayci, N.; Demir Cicek, B.; Comert, F. Evaluation of the Demineralization Development around Different Types of Orthodontic Brackets. Materials 2023, 16, 984. [Google Scholar] [CrossRef] [PubMed]
- Almosa, N.A.; Sibai, B.S.; Rejjal, O.A.; Alqahtani, N. Enamel Demineralization around Metal and Ceramic Brackets: An in Vitro Study. Clin. Cosmet. Investig. Dent. 2019, 11, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.J.; Lamster, I.B.; Greenspan, J.S.; Pitts, N.B.; Scully, C.; Warnakulasuriya, S. Global Burden of Oral Diseases: Emerging Concepts, Management and Interplay with Systemic Health. Oral Dis. 2016, 22, 609–619. [Google Scholar] [CrossRef]
- Farag, A.; Mandour, A.S.; Hendawy, H.; Elhaieg, A.; Elfadadny, A.; Tanaka, R. A Review on Experimental Surgical Models and Anesthetic Protocols of Heart Failure in Rats. Front. Vet. Sci. 2023, 10, 386. [Google Scholar] [CrossRef]
- Farag, A.; Ngeun, S.K.; Kaneda, M.; Aboubakr, M.; Elhaieg, A.; Hendawy, H.; Tanaka, R. Exploring the Potential Effects of Cryopreservation on the Biological Characteristics and Cardiomyogenic Differentiation of Rat Adipose-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2024, 25, 9908. [Google Scholar] [CrossRef]
- Dietrich, T.; Webb, I.; Stenhouse, L.; Pattni, A.; Ready, D.; Wanyonyi, K.L.; White, S.; Gallagher, J.E. Evidence Summary: The Relationship between Oral and Cardiovascular Disease. Br. Dent. J. 2017, 222, 381–385. [Google Scholar] [CrossRef]
- Lee, S.K.; Hwang, S.Y. Oral Health in Adults with Coronary Artery Disease and Its Risk Factors: A Comparative Study Using the Korea National Health and Nutrition Examination Survey Data. BMC Cardiovasc. Disord. 2021, 21, 71. [Google Scholar] [CrossRef]
- Samaranayake, Y.H.; Samaranayake, L.P. Experimental Oral Candidiasis in Animal Models. Clin. Microbiol. Rev. 2001, 14, 398–429. [Google Scholar] [CrossRef]
- Elhaieg, A.; Farag, A.; Elfadadny, A.; Yokoi, A.; Hendawy, H.; Mandour, A.S.; Tanaka, R. Effect of Experimental Periodontitis on Cardiac Functions: A Comprehensive Study Using Echocardiography, Hemodynamic Analysis, and Histopathological Evaluation in a Rat Model. Front. Vet. Sci. 2023, 10, 1327484. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; Santos-Junior, N.N.; Luiz, J.P.M.; de Oliveira, M.; Kanashiro, A.; Taira, T.M.; Fukada, S.Y.; Alves-Filho, J.C.; Fazan Junior, R.; Salgado, H.C. Cardiovascular and Autonomic Dysfunction in Murine Ligature-Induced Periodontitis. Sci. Rep. 2020, 10, 6891. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. Periodontitis: From Microbial Immune Subversion to Systemic Inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.W.; Wang, X. Mobile Microbiome: Oral Bacteria in Extra-Oral Infections and Inflammation. J. Dent. Res. 2013, 92, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Van Dyke, T.E.; Working Group 1 of the Joint EFP/AAP Workshop. Periodontitis and Atherosclerotic Cardiovascular Disease: Consensus Report of the Joint EFP/AAPWorkshop on Periodontitis and Systemic Diseases. J. Periodontol. 2013, 84, S24–S29. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, U.; Tanwir, F. Association of Periodontal Pathogenesis and Cardiovascular Diseases: A Literature Review. Oral Health Prev. Dent. 2015, 13, 21–27. [Google Scholar]
- Ionel, A.; Lucaciu, O.; Moga, M.; Buhatel, D.; Ilea, A.; Tabaran, F.; Catoi, C.; Berce, C.; Toader, S.; Campian, R.S. Periodontal Disease Induced in Wistar Rats-Experimental Study. Hum. Vet. Med. 2015, 7, 90–95. [Google Scholar]
- Abe, T.; Hajishengallis, G. Optimization of the Ligature-Induced Periodontitis Model in Mice. J. Immunol. Methods 2013, 394, 49–54. [Google Scholar] [CrossRef]
- Paddenberg, E.; Krenmayr, B.; Jantsch, J.; Kirschneck, C.; Proff, P.; Schröder, A. Dietary Salt and Myeloid NFAT5 (Nuclear Factor of Activated T Cells 5) Impact on the Number of Bone-Remodelling Cells and Frequency of Root Resorption during Orthodontic Tooth Movement. Ann. Anat.-Anat. Anz. 2022, 244, 151979. [Google Scholar] [CrossRef]
- De Molon, R.S.; Mascarenhas, V.I.; de Avila, E.D.; Finoti, L.S.; Toffoli, G.B.; Spolidorio, D.M.P.; Scarel-Caminaga, R.M.; Tetradis, S.; Cirelli, J.A. Long-Term Evaluation of Oral Gavage with Periodontopathogens or Ligature Induction of Experimental Periodontal Disease in Mice. Clin. Oral Investig. 2016, 20, 1203–1216. [Google Scholar] [CrossRef]
- Aghaloo, T.L.; Kang, B.; Sung, E.C.; Shoff, M.; Ronconi, M.; Gotcher, J.E.; Bezouglaia, O.; Dry, S.M.; Tetradis, S. Periodontal Disease and Bisphosphonates Induce Osteonecrosis of the Jaws in the Rat. J. Bone Miner. Res. 2011, 26, 1871–1882. [Google Scholar] [CrossRef]
- Park, S.; Kanayama, K.; Kaur, K.; Tseng, H.-C.H.; Banankhah, S.; Quje, D.T.; Sayre, J.W.; Jewett, A.; Nishimura, I. Osteonecrosis of the Jaw Developed in Mice: Disease Variants Regulated by Γδ T Cells in Oral Mucosal Barrier Immunity. J. Biol. Chem. 2015, 290, 17349–17366. [Google Scholar] [CrossRef] [PubMed]
- Kirschneck, C.; Proff, P.; Fanghaenel, J.; Behr, M.; Wahlmann, U.; Roemer, P. Differentiated Analysis of Orthodontic Tooth Movement in Rats with an Improved Rat Model and Three-Dimensional Imaging. Ann. Anat.-Anat. Anz. 2013, 195, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.S.; Garcez, A.S.; Suzuki, H.; Ervolino, E.; Moon, W.; Ribeiro, M.S. Low-level Laser Therapy Stimulates Bone Metabolism and Inhibits Root Resorption during Tooth Movement in a Rodent Model. J. Biophoton. 2016, 9, 1222–1235. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.M.; Stashenko, P. Identification of Inflammatory Cells in Developing Rat Periapical Lesions. J. Endod. 1987, 13, 535–540. [Google Scholar] [CrossRef]
- Liu, Y.-D.; Liao, L.-F.; Zhang, H.-Y.; Lu, L.; Jiao, K.; Zhang, M.; Zhang, J.; He, J.-J.; Wu, Y.-P.; Chen, D. Reducing Dietary Loading Decreases Mouse Temporomandibular Joint Degradation Induced by Anterior Crossbite Prosthesis. Osteoarthr. Cartil. 2014, 22, 302–312. [Google Scholar] [CrossRef]
- Walker, C.G.; Ito, Y.; Dangaria, S.; Luan, X.; Diekwisch, T.G.H. RANKL, Osteopontin, and Osteoclast Homeostasis in a Hyperocclusion Mouse Model. Eur. J. Oral Sci. 2008, 116, 312–318. [Google Scholar] [CrossRef]
- Matías, E.M.C.; Mecham, D.K.; Black, C.S.; Graf, J.W.; Steel, S.D.; Wilhelm, S.K.; Andersen, K.M.; Mitchell, J.A.; Macdonald, J.R.; Hollis, W.R. Malocclusion Model of Temporomandibular Joint Osteoarthritis in Mice with and without Receptor for Advanced Glycation End Products. Arch. Oral Biol. 2016, 69, 47–62. [Google Scholar] [CrossRef]
- Jiao, K.; Wang, M.-Q.; Niu, L.-N.; Dai, J.; Yu, S.-B.; Liu, X.-D.; Wang, G.-W. Death and Proliferation of Chondrocytes in the Degraded Mandibular Condylar Cartilage of Rats Induced by Experimentally Created Disordered Occlusion. Apoptosis 2009, 14, 22–30. [Google Scholar] [CrossRef]
- Chen, J.; Sorensen, K.P.; Gupta, T.; Kilts, T.; Young, M.; Wadhwa, S. Altered Functional Loading Causes Differential Effects in the Subchondral Bone and Condylar Cartilage in the Temporomandibular Joint from Young Mice. Osteoarthr. Cartil. 2009, 17, 354–361. [Google Scholar] [CrossRef]
- Sobue, T.; Yeh, W.-C.; Chhibber, A.; Utreja, A.; Diaz-Doran, V.; Adams, D.; Kalajzic, Z.; Chen, J.; Wadhwa, S. Murine TMJ Loading Causes Increased Proliferation and Chondrocyte Maturation. J. Dent. Res. 2011, 90, 512–516. [Google Scholar] [CrossRef]
- Kavanagh, P.; Gould, T.R.L.; Brunette, D.M.; Weston, L. A Rodent Model for the Investigation of Dental Implants. J. Prosthet. Dent. 1985, 54, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Mouraret, S.; Hunter, D.J.; Bardet, C.; Brunski, J.B.; Bouchard, P.; Helms, J.A. A Pre-Clinical Murine Model of Oral Implant Osseointegration. Bone 2014, 58, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Takemura, Y.; Moriyama, Y.; Ayukawa, Y.; Kurata, K.; Rakhmatia, Y.D.; Koyano, K. Mechanical Loading Induced Osteocyte Apoptosis and Connexin 43 Expression in Three-dimensional Cell Culture and Dental Implant Model. J. Biomed. Mater. Res. Part A 2019, 107, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Pirih, F.Q.; Hiyari, S.; Barroso, A.D.V.; Jorge, A.C.A.; Perussolo, J.; Atti, E.; Tetradis, S.; Camargo, P.M. Ligature-induced Peri-implantitis in Mice. J. Periodontal Res. 2015, 50, 519–524. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Mu, Z.; Shrestha, A.; Wang, C.; Wang, S.; Tang, H.; Li, Y.; Song, J.; Ji, P.; Huang, Y. Development of a Rat Model for Type 2 Diabetes Mellitus Peri-implantitis: A Preliminary Study. Oral Dis. 2022, 28, 1936–1946. [Google Scholar] [CrossRef]
- Behren, A.; Kamenisch, Y.; Muehlen, S.; Flechtenmacher, C.; Haberkorn, U.; Hilber, H.; Myers, J.N.; Bergmann, Z.; Plinkert, P.K.; Simon, C. Development of an Oral Cancer Recurrence Mouse Model after Surgical Resection. Int. J. Oncol. 2010, 36, 849–855. [Google Scholar]
- Korn, P.; Hauptstock, M.; Range, U.; Kunert-Keil, C.; Pradel, W.; Lauer, G.; Schulz, M.C. Application of Tissue-Engineered Bone Grafts for Alveolar Cleft Osteoplasty in a Rodent Model. Clin. Oral Investig. 2017, 21, 2521–2534. [Google Scholar] [CrossRef]
- De Albuquerque Taddei, S.R.; Moura, A.P.; Andrade, I., Jr.; Garlet, G.P.; Garlet, T.P.; Teixeira, M.M.; da Silva, T.A. Experimental Model of Tooth Movement in Mice: A Standardized Protocol for Studying Bone Remodeling under Compression and Tensile Strains. J. Biomech. 2012, 45, 2729–2735. [Google Scholar] [CrossRef]
- Kunimatsu, R.; Kimura, A.; Tsuka, Y.; Horie, K.; Yoshimi, Y.; Awada, T.; Gunji, H.; Abe, T.; Nakajima, K.; Sakata, S. Baicalin Inhibits Root Resorption during Tooth Movement in a Rodent Model. Arch. Oral Biol. 2020, 116, 104770. [Google Scholar] [CrossRef]
- Vieira, A.E.; Repeke, C.E.; Ferreira Junior, S.d.B.; Colavite, P.M.; Biguetti, C.C.; Oliveira, R.C.; Assis, G.F.; Taga, R.; Trombone, A.P.F.; Garlet, G.P. Intramembranous Bone Healing Process Subsequent to Tooth Extraction in Mice: Micro-Computed Tomography, Histomorphometric and Molecular Characterization. PLoS ONE 2015, 10, e0128021. [Google Scholar] [CrossRef]
- Strub, M.; Van Bellinghen, X.; Fioretti, F.; Bornert, F.; Benkirane-Jessel, N.; Idoux-Gillet, Y.; Kuchler-Bopp, S.; Clauss, F. Maxillary Bone Regeneration Based on Nanoreservoirs Functionalized ε-Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion. Biomed. Res. Int. 2018, 2018, 7380389. [Google Scholar] [CrossRef] [PubMed]
- Maymon-Gil, T.; Weinberg, E.; Nemcovsky, C.; Weinreb, M. Enamel Matrix Derivative Promotes Healing of a Surgical Wound in the Rat Oral Mucosa. J. Periodontol. 2016, 87, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Montera, M.A.; Westlund, K.N. Minimally Invasive Oral Surgery Induction of the FRICT-ION Chronic Neuropathic Pain Model. Bio-Protocol 2020, 10, e3591. [Google Scholar] [CrossRef] [PubMed]
- Kartha, S.; Zhou, T.; Granquist, E.J.; Winkelstein, B.A. Development of a Rat Model of Mechanically Induced Tunable Pain and Associated Temporomandibular Joint Responses. J. Oral Maxillofac. Surg. 2016, 74, 54-e1. [Google Scholar] [CrossRef]
- O’Grady, J.F.; Reade, P.C. Candida Albicans as a Promoter of Oral Mucosal Neoplasia. Carcinogenesis 1992, 13, 783–786. [Google Scholar] [CrossRef]
- Chang, N.-W.; Pei, R.-J.; Tseng, H.-C.; Yeh, K.-T.; Chan, H.-C.; Lee, M.-R.; Lin, C.; Hsieh, W.-T.; Kao, M.-C.; Tsai, M.-H. Co-Treating with Arecoline and 4-Nitroquinoline 1-Oxide to Establish a Mouse Model Mimicking Oral Tumorigenesis. Chem. Biol. Interact. 2010, 183, 231–237. [Google Scholar] [CrossRef]
- Tang, X.-H.; Knudsen, B.; Bemis, D.; Tickoo, S.; Gudas, L.J. Oral Cavity and Esophageal Carcinogenesis Modeled in Carcinogen-Treated Mice. Clin. Cancer Res. 2004, 10, 301–313. [Google Scholar] [CrossRef]
- Kang, B.; Cheong, S.; Chaichanasakul, T.; Bezouglaia, O.; Atti, E.; Dry, S.M.; Pirih, F.Q.; Aghaloo, T.L.; Tetradis, S. Periapical Disease and Bisphosphonates Induce Osteonecrosis of the Jaws in Mice. J. Bone Miner. Res. 2013, 28, 1631–1640. [Google Scholar] [CrossRef]
- Williams, D.W.; Lee, C.; Kim, T.; Yagita, H.; Wu, H.; Park, S.; Yang, P.; Liu, H.; Shi, S.; Shin, K.-H. Impaired Bone Resorption and Woven Bone Formation Are Associated with Development of Osteonecrosis of the Jaw-like Lesions by Bisphosphonate and Anti–Receptor Activator of NF-ΚB Ligand Antibody in Mice. Am. J. Pathol. 2014, 184, 3084–3093. [Google Scholar] [CrossRef]
- Warzecha, Z.; Kownacki, P.; Ceranowicz, P.; Dembinski, M.; Cieszkowski, J.; Dembinski, A. Ghrelin Accelerates the Healing of Oral Ulcers in Non-Sialoadenectomized and Sialoadenectomized Rats. J. Physiol. Pharmacol. 2013, 64, 657–668. [Google Scholar]
- De Carvalho, F.B.; Andrade, A.S.; Rasquin, L.C.; de Castro, I.V.; Cangussu, M.C.T.; Pinheiro, A.L.B.; dos Santos, J.N. Effect of Laser (λ 660 Nm) and LED (λ 630 Nm) Photobiomodulation on Formocresol-Induced Oral Ulcers: A Clinical and Histological Study on Rodents. Lasers Med. Sci. 2015, 30, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.T.; Stroup, S.E. Traumatic Root Resorption in Dentine-Immunized Mice. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Sumeth Perera, M.W.; Gunasinghe, D.; Perera, P.A.J.; Ranasinghe, A.; Amaratunga, P.; Warnakulasuriya, S.; Kaluarachchi, K. Development of an in Vivo Mouse Model to Study Oral Submucous Fibrosis. J. Oral Pathol. Med. 2007, 36, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Stavropoulos, A.; Kostopoulos, L.; Nyengaard, J.R.; Karring, T. Deproteinized Bovine Bone (Bio-Oss®) and Bioactive Glass (Biogran®) Arrest Bone Formation When Used as an Adjunct to Guided Tissue Regeneration (GTR) An Experimental Study in the Rat. J. Clin. Periodontol. 2003, 30, 636–643. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Gong, Z.-J.; Xiong, W.; Wang, X.; Min, Q.; Luo, C.-D.; Ling, T.-Y. A Rat Model of Oral Submucous Fibrosis Induced by Bleomycin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 216–223. [Google Scholar] [CrossRef]
- Caulin, C.; Nguyen, T.; Longley, M.A.; Zhou, Z.; Wang, X.-J.; Roop, D.R. Inducible Activation of Oncogenic K-Ras Results in Tumor Formation in the Oral Cavity. Cancer Res. 2004, 64, 5054–5058. [Google Scholar] [CrossRef]
- Opitz, O.G.; Harada, H.; Suliman, Y.; Rhoades, B.; Sharpless, N.E.; Kent, R.; Kopelovich, L.; Nakagawa, H.; Rustgi, A.K. A Mouse Model of Human Oral-Esophageal Cancer. J. Clin. Investig. 2002, 110, 761–769. [Google Scholar] [CrossRef]
- Taya, Y.; O’Kane, S.; Ferguson, M.W.J. Pathogenesis of Cleft Palate in TGF-Β3 Knockout Mice. Development 1999, 126, 3869–3879. [Google Scholar] [CrossRef]
- Sasaki, H.; Hou, L.; Belani, A.; Wang, C.-Y.; Uchiyama, T.; Müller, R.; Stashenko, P. IL-10, but Not IL-4, Suppresses Infection-Stimulated Bone Resorption in Vivo. J. Immunol. 2000, 165, 3626–3630. [Google Scholar] [CrossRef]
- Kesavalu, L.; Sathishkumar, S.; Bakthavatchalu, V.; Matthews, C.; Dawson, D.; Steffen, M.; Ebersole, J.L. Rat Model of Polymicrobial Infection, Immunity, and Alveolar Bone Resorption in Periodontal Disease. Infect. Immun. 2007, 75, 1704–1712. [Google Scholar] [CrossRef]
- Pirih, F.Q.; Hiyari, S.; Leung, H.-Y.; Barroso, A.D.V.; Jorge, A.C.A.; Perussolo, J.; Atti, E.; Lin, Y.-L.; Tetradis, S.; Camargo, P.M. A Murine Model of Lipopolysaccharide-Induced Peri-Implant Mucositis and Peri-Implantitis. J. Oral Implantol. 2015, 41, e158–e164. [Google Scholar] [CrossRef] [PubMed]
- Yujra, V.Q.; Scherma, A.P.; Junqueira, J.C.; Jorge, A.O.C.; Da Rocha, R.F. The Role of Metronidazole on the Establishment and Persistence of Oralcandidosis. Braz. J. Oral Sci. 2006, 5, 1041–1047. [Google Scholar]
- De Molon, R.S.; de Avila, E.D.; Boas Nogueira, A.V.; Chaves de Souza, J.A.; Avila-Campos, M.J.; de Andrade, C.R.; Cirelli, J.A. Evaluation of the Host Response in Various Models of Induced Periodontal Disease in Mice. J. Periodontol. 2014, 85, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.J.; Dixon, M.; Roopenian, D.C. Genetic Control of Susceptibility to Porphyromonas Gingivalis-Induced Alveolar Bone Loss in Mice. Infect. Immun. 2000, 68, 5864–5868. [Google Scholar] [CrossRef]
- Sartori, R.; Li, F.; Kirkwood, K.L. MAP Kinase Phosphatase-1 Protects against Inflammatory Bone Loss. J. Dent. Res. 2009, 88, 1125–1130. [Google Scholar] [CrossRef]
- Tsurushima, H.; Kokuryo, S.; Sakaguchi, O.; Tanaka, J.; Tominaga, K. Bacterial Promotion of Bisphosphonate-Induced Osteonecrosis in Wistar Rats. Int. J. Oral Maxillofac. Surg. 2013, 42, 1481–1487. [Google Scholar] [CrossRef]
- Sun, J.; Eberhard, J.; Glage, S.; Held, N.; Voigt, H.; Schwabe, K.; Winkel, A.; Stiesch, M. Development of a Peri-implantitis Model in the Rat. Clin. Oral Implants Res. 2020, 31, 203–214. [Google Scholar] [CrossRef]
- Blank, E.; Grischke, J.; Winkel, A.; Eberhard, J.; Kommerein, N.; Doll, K.; Yang, I.; Stiesch, M. Evaluation of Biofilm Colonization on Multi-Part Dental Implants in a Rat Model. BMC Oral Health 2021, 21, 313. [Google Scholar] [CrossRef]
- Sanz, M.; Marco del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F. Periodontitis and Cardiovascular Diseases: Consensus Report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef]
- Lalla, E.; Lamster, I.B.; Hofmann, M.A.; Bucciarelli, L.; Jerud, A.P.; Tucker, S.; Lu, Y.; Papapanou, P.N.; Schmidt, A.M. Oral Infection with a Periodontal Pathogen Accelerates Early Atherosclerosis in Apolipoprotein E–Null Mice. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1405–1411. [Google Scholar] [CrossRef]
- Zhang, T.; Kurita-Ochiai, T.; Hashizume, T.; Du, Y.; Oguchi, S.; Yamamoto, M. Aggregatibacter Actinomycetemcomitans Accelerates Atherosclerosis with an Increase in Atherogenic Factors in Spontaneously Hyperlipidemic Mice. FEMS Immunol. Med. Microbiol. 2010, 59, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kweider, M.; Lowe, G.D.O.; Murray, G.D.; Kinane, D.F.; McGowan, D.A. Dental Disease, Fibrinogen and White Cell Count; Links with Myocardial Infarction? Scott. Med. J. 1993, 38, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Cutler, C.W.; Shinedling, E.A.; Nunn, M.; Jotwani, R.; Kim, B.; Nares, S.; Iacopino, A.M. Association between Periodontitis and Hyperlipidemia: Cause or Effect? J. Periodontol. 1999, 70, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.; Ou, A.; Johnston, J.; Giannobile, W.V.; Yang, B.; Fenno, J.C.; Wang, H. Association between Peri-implantitis and Cardiovascular Diseases: A Case-control Study. J. Periodontol. 2022, 93, 633–643. [Google Scholar] [CrossRef]
- Ustaoğlu, G.; Erdal, E. Relationship between Risk Markers for Cardiovascular Disease and Peri-Implant Diseases. Int. J. Implant Dent. 2020, 6, 73. [Google Scholar] [CrossRef]
- Gan, G.; Lu, B.; Zhang, R.; Luo, Y.; Chen, S.; Lei, H.; Li, Y.; Cai, Z.; Huang, X. Chronic Apical Periodontitis Exacerbates Atherosclerosis in Apolipoprotein E-deficient Mice and Leads to Changes in the Diversity of Gut Microbiota. Int. Endod. J. 2022, 55, 152–163. [Google Scholar] [CrossRef]
- Milojevic Samanovic, A.; Jakovljevic, V.; Vasovic, M.; Mitrovic, S.; Rankovic, M.; Mihajlovic, K.; Bolevich, S.; Zivkovic, V. Cardiac, Biochemical and Histopathological Analysis Reveals Impaired Heart Function in Hypertensive Rats with Apical Periodontitis. Int. Endod. J. 2021, 54, 1581–1596. [Google Scholar] [CrossRef]
- Conti, L.C.; Segura-Egea, J.J.; Cardoso, C.d.B.M.; Benetti, F.; Azuma, M.M.; Oliveira, P.H.C.; Bomfim, S.R.M.; Cintra, L.T.A. Relationship between Apical Periodontitis and Atherosclerosis in Rats: Lipid Profile and Histological Study. Int. Endod. J. 2020, 53, 1387–1397. [Google Scholar] [CrossRef]
- Bergandi, L.; Giuggia, B.; Alovisi, M.; Comba, A.; Silvagno, F.; Maule, M.; Aldieri, E.; Scotti, N.; Scacciatella, P.; Conrotto, F. Endothelial Dysfunction Marker Variation in Young Adults with Chronic Apical Periodontitis before and after Endodontic Treatment. J. Endod. 2019, 45, 500–506. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Yamamoto, T.; Yamamoto, K.; Oseko, F.; Kanamura, N.; Imanishi, J.; Kita, M. Porphyromonas Gingivalis Induces Myocarditis and/or Myocardial Infarction in Mice and IL-17A Is Involved in Pathogenesis of These Diseases. Arch. Oral Biol. 2011, 56, 1290–1298. [Google Scholar] [CrossRef]
- Chukkapalli, S.S.; Rivera, M.F.; Velsko, I.M.; Lee, J.-Y.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Invasion of Oral and Aortic Tissues by Oral Spirochete Treponema Denticola in ApoE−/− Mice Causally Links Periodontal Disease and Atherosclerosis. Infect. Immun. 2014, 82, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Kim, S.Y.; Lee, A.; Kim, Y.-J.; Chang, C.; Ton-That, H.; Kim, R.; Kim, S.; Park, N.-H. HTERT Peptide Fragment GV1001 Prevents the Development of Porphyromonas Gingivalis-Induced Periodontal Disease and Systemic Disorders in ApoE-Deficient Mice. Int. J. Mol. Sci. 2024, 25, 6126. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Tang, Q.; Nie, J.; Zhang, C.; Zhou, X.; Yu, S.; Sun, J.; Cheng, X.; Dong, N.; Hu, Y. BMAL1-Downregulation Aggravates Porphyromonas Gingivalis-Induced Atherosclerosis by Encouraging Oxidative Stress. Circ. Res. 2020, 126, e15–e29. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Qin, Z.; Ling, Z.; Ge, X.; Zhang, H.; Guo, S.; Liu, L.; Zheng, K.; Jiang, H.; Xu, R. Oral Pathogen Aggravates Atherosclerosis by Inducing Smooth Muscle Cell Apoptosis and Repressing Macrophage Efferocytosis. Int. J. Oral Sci. 2023, 15, 26. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Teng, Y.; Xie, W.; Huang, L.; Wu, J.; Wang, H.; Xie, S. Effect of Three Oral Pathogens on the TMA-TMAO Metabolic Pathway. Front. Cell. Infect. Microbiol. 2024, 14, 1413787. [Google Scholar] [CrossRef]
- Herzberg, M.C.; Meyer, M.W. Effects of Oral Flora on Platelets: Possible Consequences in Cardiovascular Disease. J. Periodontol. 1996, 67, 1138–1142. [Google Scholar] [CrossRef]
- Dorn, B.R.; Dunn, W.A., Jr.; Progulske-Fox, A. Invasion of Human Coronary Artery Cells by Periodontal Pathogens. Infect. Immun. 1999, 67, 5792–5798. [Google Scholar] [CrossRef]
- Garrido, M.; Cárdenas, A.M.; Astorga, J.; Quinlan, F.; Valdés, M.; Chaparro, A.; Carvajal, P.; Pussinen, P.; Huamán-Chipana, P.; Jalil, J.E. Elevated Systemic Inflammatory Burden and Cardiovascular Risk in Young Adults with Endodontic Apical Lesions. J. Endod. 2019, 45, 111–115. [Google Scholar] [CrossRef]
- Hung, H.; Joshipura, K.J.; Colditz, G.; Manson, J.E.; Rimm, E.B.; Speizer, F.E.; Willett, W.C. The Association between Tooth Loss and Coronary Heart Disease in Men and Women. J. Public Health Dent. 2004, 64, 209–215. [Google Scholar] [CrossRef]
- Nakano, K.; Inaba, H.; Nomura, R.; Nemoto, H.; Takeda, M.; Yoshioka, H.; Matsue, H.; Takahashi, T.; Taniguchi, K.; Amano, A. Detection of Cariogenic Streptococcus Mutans in Extirpated Heart Valve and Atheromatous Plaque Specimens. J. Clin. Microbiol. 2006, 44, 3313–3317. [Google Scholar] [CrossRef]
- Chun, Y.P.; Chun, K.J.; Olguin, D.; Wang, H. Biological Foundation for Periodontitis as a Potential Risk Factor for Atherosclerosis. J. Periodontal Res. 2005, 40, 87–95. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Tseng, R.; Zhang, Z.; Cortes, J.; O’Brien, S.; Giles, F.; Hannah, A.; Estrov, Z.; Keating, M.; Kantarjian, H. Circulating Heat Shock Protein 70 and Progression in Patients with Chronic Myeloid Leukemia. Leuk. Res. 2009, 33, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Okuda, K.; Kato, T.; Ishihara, K. Involvement of Periodontopathic Biofilm in Vascular Diseases. Oral Dis. 2004, 10, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Miyauchi, M.; Inubushi, T.; Kitagawa, M.; Furusho, H.; Ando, T.; Ayuningtyas, N.F.; Nagasaki, A.; Ishihara, K.; Tahara, H. Infection with Porphyromonas Gingivalis Exacerbates Endothelial Injury in Obese Mice. PLoS ONE 2014, 9, e110519. [Google Scholar] [CrossRef] [PubMed]
- D’Aiuto, F.; Orlandi, M.; Gunsolley, J.C. Evidence That Periodontal Treatment Improves Biomarkers and CVD Outcomes. J. Periodontol. 2013, 84, S85–S105. [Google Scholar] [CrossRef]
- El Kholy, K.; Genco, R.J.; Van Dyke, T.E. Oral Infections and Cardiovascular Disease. Trends Endocrinol. Metab. 2015, 26, 315–321. [Google Scholar] [CrossRef]
- Overholser, C.D.; Moreillon, P.; Glauser, M.P. Experimental Bacterial Endocarditis after Dental Extractions in Rats with Periodontitis. J. Infect. Dis. 1987, 155, 107–112. [Google Scholar] [CrossRef]
- Özdem, M.; Kırzıoğlu, F.Y.; Yılmaz, H.R.; Vural, H.; Fentoğlu, Ö.; Uz, E.; Koçak, A.; Yiğit, A. Antioxidant Effects of Melatonin in Heart Tissue after Induction of Experimental Periodontitis in Rats. J. Oral Sci. 2017, 59, 23–29. [Google Scholar] [CrossRef]
- Köse, O.; Arabacı, T.; Yemenoglu, H.; Ozkanlar, S.; Kurt, N.; Gumussoy, I.; Gedikli, S.; Kara, A. Influence of Experimental Periodontitis on Cardiac Oxidative Stress in Rats: A Biochemical and Histomorphometric Study. J. Periodontal Res. 2017, 52, 603–608. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; da Silva, T.M.; Santos-Junior, N.N.; Castania, J.A.; Fazan, R.; Salgado, H.C. Short-Term Effect of Ligature-Induced Periodontitis on Cardiovascular Variability and Inflammatory Response in Spontaneously Hypertensive Rats. BMC Oral Health 2021, 21, 515. [Google Scholar] [CrossRef]
- Brito, L.C.W.; DalBo, S.; Striechen, T.M.; Farias, J.M.; Olchanheski, L.R., Jr.; Mendes, R.T.; Vellosa, J.C.R.; Favero, G.M.; Sordi, R.; Assreuy, J. Experimental Periodontitis Promotes Transient Vascular Inflammation and Endothelial Dysfunction. Arch. Oral Biol. 2013, 58, 1187–1198. [Google Scholar] [CrossRef] [PubMed]
- Velsko, I.M.; Chukkapalli, S.S.; Rivera, M.F.; Lee, J.-Y.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Active Invasion of Oral and Aortic Tissues by Porphyromonas Gingivalis in Mice Causally Links Periodontitis and Atherosclerosis. PLoS ONE 2014, 9, e97811. [Google Scholar] [CrossRef] [PubMed]
- Slocum, C.; Coats, S.R.; Hua, N.; Kramer, C.; Papadopoulos, G.; Weinberg, E.O.; Gudino, C.V.; Hamilton, J.A.; Darveau, R.P.; Genco, C.A. Distinct Lipid a Moieties Contribute to Pathogen-Induced Site-Specific Vascular Inflammation. PLoS Pathog. 2014, 10, e1004215. [Google Scholar] [CrossRef] [PubMed]
- Boring, L.; Gosling, J.; Cleary, M.; Charo, I.F. Decreased Lesion Formation in CCR2−/− Mice Reveals a Role for Chemokines in the Initiation of Atherosclerosis. Nature 1998, 394, 894–897. [Google Scholar] [CrossRef]
- Pouliot, M.; Clish, C.B.; Petasis, N.A.; Van Dyke, T.E.; Serhan, C.N. Lipoxin A4 Analogues Inhibit Leukocyte Recruitment to Porphyromonas Gingivalis: A Role for Cyclooxygenase-2 and Lipoxins in Periodontal Disease. Biochemistry 2000, 39, 4761–4768. [Google Scholar] [CrossRef]
- Hayashi, C.; Viereck, J.; Hua, N.; Phinikaridou, A.; Madrigal, A.G.; Gibson, F.C., III; Hamilton, J.A.; Genco, C.A. Porphyromonas Gingivalis Accelerates Inflammatory Atherosclerosis in the Innominate Artery of ApoE Deficient Mice. Atherosclerosis 2011, 215, 52–59. [Google Scholar] [CrossRef]
- Graves, D.T.; Cochran, D. The Contribution of Interleukin-1 and Tumor Necrosis Factor to Periodontal Tissue Destruction. J. Periodontol. 2003, 74, 391–401. [Google Scholar] [CrossRef]
- Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between Mouse and Human Immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Seok, J.; Warren, H.S.; Cuenca, A.G.; Mindrinos, M.N.; Baker, H.V.; Xu, W.; Richards, D.R.; McDonald-Smith, G.P.; Gao, H.; Hennessy, L. Genomic Responses in Mouse Models Poorly Mimic Human Inflammatory Diseases. Proc. Natl. Acad. Sci. USA 2013, 110, 3507–3512. [Google Scholar] [CrossRef]
- Farag, A.; Koung Ngeun, S.; Kaneda, M.; Aboubakr, M.; Tanaka, R. Optimizing Cardiomyocyte Differentiation: Comparative Analysis of Bone Marrow and Adipose-Derived Mesenchymal Stem Cells in Rats Using 5-Azacytidine and Low-Dose FGF and IGF Treatment. Biomedicines 2024, 12, 1923. [Google Scholar] [CrossRef]
- Perlman, R.L. Mouse Models of Human Disease: An Evolutionary Perspective. Evol. Med. Public Health 2016, 2016, 170–176. [Google Scholar] [CrossRef]
- Zschaler, J.; Schlorke, D.; Arnhold, J. Differences in Innate Immune Response between Man and Mouse. Crit. Rev. Immunol. 2014, 34, 433–454. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.; Achilli, F.; Festing, M.F.W.; Fisher, E.M.C. The Origins and Uses of Mouse Outbred Stocks. Nat. Genet. 2005, 37, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Veseli, B.E.; Perrotta, P.; De Meyer, G.R.A.; Roth, L.; Van der Donckt, C.; Martinet, W.; De Meyer, G.R.Y. Animal Models of Atherosclerosis. Eur. J. Pharmacol. 2017, 816, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Oppi, S.; Lüscher, T.F.; Stein, S. Mouse Models for Atherosclerosis Research—Which Is My Line? Front. Cardiovasc. Med. 2019, 6, 46. [Google Scholar] [CrossRef]
Model Type | Species | Procedure/Methodology | Duration | Key Findings | Reference |
---|---|---|---|---|---|
Periodontal Ligature Model | Wistar Rats, C57BL/6 Mice | Ligature placed around teeth (e.g., inferior frontal teeth in Wistar rats or left maxillary second molar in C57BL/6 mice) to induce gingival irritation, plaque accumulation, and periodontitis. | 14 days (rats), 1–8 days (mice) | Induced significant gingival inflammation, plaque accumulation, alveolar bone loss, and periodontal disease. | [16,17] |
Elastic Band Periodontal Model | Mice | An elastic band (0.3 mm) was inserted between the molars to induce mechanical stress and periodontal inflammation. | 1 week on diet, followed by a period of elastic band application | Periodontal inflammation was induced depending on dietary salt intake (low, normal, or high salt). | [18] |
Ligature and Oral Gavage Model | Mice | Ligature placed around molars and oral inoculation with Porphyromonas gingivalis or Fusobacterium nucleatum. | 45–60 days | The ligature model induced significant inflammation and bone resorption, while gavage confirmed bacterial colonization with minimal tissue inflammation. | [19] |
Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ) Model | Rats | Ligature placed around molars to induce periodontal disease, with concomitant zoledronic acid treatment to simulate BRONJ. | Not specified | Induced osteonecrosis in the jaw, confirmed by micro-CT and histology, mimicking human BRONJ pathology. | [20] |
Zoledronate-Induced Osteonecrosis of the Jaw (ONJ) Model | C57BL/6J Mice | High-dose zoledronate (540 μg/kg) injection followed by molar extraction. | 1 week post-injection, followed by wound monitoring | Delayed wound healing and hyperplasia in zoledronate-treated wild-type mice, while γδ T cell-deficient mice showed better healing despite ONJ lesions. | [21] |
Orthodontic Tooth Movement (OTM) Model | Wistar Rats | A constant force (0.25 N) was applied to the upper molar using a NiTi coil spring, secured between the upper incisors for up to 4 weeks. | Up to 4 weeks | Induced significant tooth movement, with root resorption observed during extended durations. | [22] |
Root Resorption Model | Wistar Rats | A NiTi closed-coil spring applied 50 g of force to the left molar to induce root resorption. | 21 days | Induced root resorption, confirmed by histological analysis of tooth and periodontal tissue. | [39] |
Periapical Lesion Induction Model | Sprague-Dawley Rats | Pulpal exposure of molars with a dental bur to induce infection and allow oral environmental exposure. | Variable | Induced formation of periapical lesions, mimicking natural periapical infection progression. | [24] |
Mandibular Incisor Trimming Model | CD-1 Mice | Periodic trimming (~1 mm every other day) of mandibular incisors using orthodontic wire clippers. | 2–6 weeks | Affected occlusion and jaw mechanics, with different outcomes based on diet (pellet vs. soft dough diet). | [29] |
Unilateral Anterior Crossbite Model | C57BL/6J Mice | Metal tubes bonded onto left maxillary and mandibular incisors to induce unilateral anterior crossbite. | 3 weeks | Induced significant tissue degradation in the temporomandibular joint (TMJ), varying by diet size (small particles vs. large pellets). | [25] |
Forced Mouth Opening Model | C57BL/6 Mice | Stainless steel springs were used to force mouth opening (0.25–0.50 N force) for 5 consecutive days | 5 days | Increased orofacial sensitivity, with higher forces causing significant cartilage degeneration typical of temporomandibular joint osteoarthritis (TMJ-OA). | [30] |
Maxillary Implantation Model | Sprague-Dawley Rats, CD1 Mice | Extraction of maxillary molar followed by implantation of titanium screws or implants, with occlusal relief on opposing molars to prevent interference. | Variable | Assessed osseointegration and peri-implant healing, with studies focusing on factors such as bone formation, inflammation, and wound closure. | [31,32] |
Peri-implantitis Model | C57BL/6J Mice | After implant placement and osseointegration, silk ligatures were placed around the implants to induce peri-implantitis. | 12 weeks post-ligation | Induced significant peri-implant bone loss, mimicking clinical peri-implantitis. | [34] |
Diabetic Peri-implantitis Model | Sprague-Dawley Rats | Type 2 diabetes was induced via a high-fat diet and streptozotocin injections, followed by peri-implantitis induced by LPS injections into the implant sulcus. | Variable | Significant inflammatory response and bone resorption observed, simulating peri-implantitis in diabetic conditions. | [35] |
Oral Floor Tumor Model | Female BALB/c-NU Mice | Tumor cells (2 × 106 or 8 × 105) in Matrigel/HBSS were injected into the floor-of-mouth region under anesthesia. Once tumors reached 0.8 cm, surgical excision was performed with margins, confirmed via imaging. | Variable | Allowed for detailed investigation of oral floor tumor growth, excision, and recurrence, using imaging to confirm complete resection. | [36] |
Simulated Alveolar Cleft Model | Rats | A 3.3 mm bone defect was surgically created in the anterior maxilla to simulate an alveolar cleft. Defects were treated with no graft, bHA, bHA with undifferentiated MSCs, or bHA with osteogenically differentiated MSCs. | Variable | The model provided insights into bone regeneration, showing enhanced bone formation in defects treated with osteogenically differentiated MSCs combined with bone graft material. | [37] |
Tooth Extraction Model | Mice | The upper right incisor was extracted under anesthesia using a dental probe and tweezers. Post-extraction, the maxillae were collected at 0, 7, 14, and 21 days for micro-CT, histological, and molecular analyses. | 0 h, 7, 14, 21 days | Allowed detailed investigation of post-extraction healing and bone remodeling using advanced imaging and molecular analyses. | [40] |
PCL Biomembrane Implantation in Maxillary Defects Models | Mice | Maxillary bone lesions were created in the diastemal area, followed by the implantation of functionalized BMP-2/Ibuprofen scaffolds. Controls with no scaffolds were also included. The mucosa was closed using biological glue. | Not specified | Provided a platform for evaluating the effects of functionalized biomaterials on bone healing and regeneration. | [41] |
Oral Mucosa Wound Healing Model | Sprague-Dawley Rats | Bilateral incisions were made in the anterior edentulous maxilla. Enamel Matrix Protein Derivative (EMD) was injected into the soft tissue on one side, while the contralateral side served as a control. | 5–9 days | EMD treatment enhanced vascularization, collagen synthesis, and expression of growth factors and cytokines, improving oral mucosal wound healing. | [42] |
FRICTION Model | BALBc and C57Bl/6 Mice | A chromic gut suture was inserted orally to irritate the V2 branch of the trigeminal nerve, modeling chronic neuropathic pain without visible signs of injury. Mechanical hypersensitivity and behavioral changes were monitored over 100 days. | Up to 100 days | Induced long-term mechanical hypersensitivity and behavioral changes, serving as a robust model for preclinical testing of non-opioid pain therapies. | [43] |
Tunable Mechanical Overload Model | Holtzman Rats | Jaw-opening forces (2 N and 3.5 N) were applied daily for 1 h over 7 days, followed by a rest period. Orofacial sensitivity and TMJ degeneration were assessed. | 7 days loading, assessed at 14 days | 3.5 N loading induced persistent pain and TMJ cartilage degeneration, upregulating inflammatory markers, while 2 N loading did not induce chronic pain or significant inflammation. | [44] |
4NQO-Induced Oral Mucosal Carcinogenesis Models | Sprague-Dawley Rats, C57BL/6JNarl Mice | 4-Nitroquinoline-1-oxide (4NQO) was applied to the palatal and tongue mucosa in rats or dissolved in the drinking water for mice. Mice were also treated with arecoline hydrobromide. | Variable | Induced oral mucosal carcinogenesis and neoplastic changes in tongue and palatal tissues. | [45,46] |
Osteonecrosis of the Jaw (ONJ) Model | Mice | High doses of zoledronic acid were administered, followed by pulpal exposure of mandibular molars to create periapical disease. | 8 weeks | Induced ONJ in mandibles, with radiographic and histological analyses showing bisphosphonate effects on bone. | [48] |
Bisphosphonate-Related and Denosumab-Related Osteonecrosis of the Jaw (BRONJ and DRONJ) Models | C57BL/6 Mice | Zoledronic acid (BRONJ) or anti-RANKL monoclonal antibody (DRONJ) injections were administered biweekly, followed by molar extraction. | 4 weeks | Both models induced osteonecrosis in maxillae, with bone loss observed post-extraction and treatment. | [49] |
Oral Ulcers Model | Wistar Rats | Ulcers were induced using 100% acetic acid applied to the gingival or lingual mucosa following sialoadenectomy. Another model involved the application of formocresol to the gingiva in rats. | Variable | Ulcer formation and healing patterns were analyzed after various treatments (e.g., ghrelin, saline). | [50,51] |
Inflammatory Bone Loss Model | Mkp-1+/+ and Mkp-1−/− Mice | LPS from Aggregatibacter actinomycetemcomitans was micro-injected into gingiva three times weekly to induce alveolar bone loss. | 4 weeks | Induced inflammatory bone loss, providing insights into the role of Mkp-1 in bone remodeling and inflammation. | [65] |
Peri-implant Mucositis and Peri-implantitis Model | C57BL/6J Mice | Mice received custom titanium implants post-molar extraction. P. gingivalis LPS injected into peri-implant mucosa to induce mucositis and peri-implantitis. | 6 weeks | Induced peri-implant mucositis and bone loss, replicating peri-implant diseases seen in clinical settings. | [61] |
Dentin Protein Immunization Model | NIH Swiss Female Mice | Mice were immunized intraperitoneally with mouse dentin protein emulsified in Complete Freund’s Adjuvant, followed by weekly boosters with dentin from Sprague-Dawley rats. | 4–10 weeks | Induced antibody production against dentin, modeling immunological responses to dental proteins. | [52] |
Induced Buccal Mucosa Lesion Model | BALB/c Mice | Areca nut extract was applied to the buccal mucosa twice daily for 300–600 days to induce lesions. Control mice received saline. | 300–600 days | Induced buccal mucosa lesions, providing insights into the effects of areca nut extract on oral tissue over long-term exposure. | [53] |
Deproteinized Bovine Bone and Bioactive Glass-Induced Guided Tissue Regeneration (GTR) Model | Rats | Hemispherical Teflon capsules packed with either deproteinized bovine bone (Bio-Oss®) or bioactive glass (Biogran®) were placed on the mandibular ramus to evaluate long-term bone regeneration. | 1 year | Limited bone formation was observed with grafting materials, while controls showed substantial new bone formation, highlighting the inhibitory effects of the grafts. | [54] |
Oral Submucous Fibrosis (OSF) Model | Rats | Daily injections of bleomycin into buccal mucosa induce fibrosis, with histopathological features assessed for collagen deposition and ultrastructural changes. | 2–8 weeks | Induced oral submucous fibrosis, mirroring the fibrotic changes observed in human OSF, validating the model for further research. | [55] |
Bacterial Peri-Implantitis Model | Sprague-Dawley Rats | Titanium implants were placed in the maxilla, followed by bacterial lavage with Streptococcus oralis and Aggregatibacter actinomycetemcomitans to induce peri-implantitis. | 3 months | Significant bone loss and peri-implant inflammation, replicating human peri-implantitis. | [67] |
Dental Implant Biofilm Formation Model | Sprague-Dawley Rats | Custom-made dental implants were placed, followed by inoculation with human-derived biofilm-forming bacteria: Streptococcus oralis, Fusobacterium nucleatum, and Porphyromonas gingivalis. | 6–7 weeks | Reliable biofilm quantification and assessment of peri-implant mucositis. | [68] |
Induced Oral Cancer Model | Mice | Mice with inducible K-rasG12D mutations in stratified epithelia were crossed with K14.CrePR1 or K5.CrePR1* mice. RU486 treatment activated K-ras in oral tissues, causing squamous papillomas. | Not specified | Developed benign squamous papillomas, mimicking early stages of human oral tumorigenesis. | [56] |
Induced Cyclin D1/p53 Tumorigenesis Model | Mice | Transgenic mice expressing human cyclin D1 were generated and backcrossed with p53 heterozygous mice. A subgroup was treated with sulindac to assess its chemopreventive potential. | 3 months | Enhanced tumorigenesis with combinations of cyclin D1 and p53 expression. Sulindac treatment showed chemopreventive effects. | [57] |
TGF-β3 Knockout Model for Palatal Fusion Studies | Mice | Knockout (TGF-β3−/−), heterozygous (TGF-β3+/−), and wild-type (TGF-β3+/+) embryos were generated to study the role of TGF-β isoforms in palatal fusion using in vitro organ culture methods. | Embryonic days 12.5–16.5 | Provided insights into the roles of TGF-β isoforms in palatal fusion, with different growth factors influencing palatal shelf development and fusion. | [58] |
Infection-Induced Periapical Lesion Model | IL-4−/− and IL-10−/− Mice | Exposed molars infected with a mix of endodontic pathogens (Prevotella intermedia, Fusobacterium nucleatum, Peptostreptococcus micros, and Streptococcus intermedius). | 21 days | Significant bone resorption and inflammation, modeling periapical periodontitis in genetically engineered mice. | [59] |
Polymicrobial Periodontal Infection Model | Rats | Oral inoculation with a polymicrobial mixture of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum to simulate chronic periodontal disease. | Variable | Increased alveolar bone loss and systemic immune response, replicating polymicrobial human periodontal disease. | [60] |
Pathogen-Induced Periodontal Disease Model | Mice | A ligature was placed around the first maxillary molars, followed by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum | 1–4 weeks | Induced periodontal inflammation and bone loss, resembling human periodontal disease. | [63] |
Candida albicans Colonization Model | Rats | Inoculation with Candida albicans on the tongue followed by metronidazole treatment. | 7, 15, and 30 days post-inoculation | Persistent colonization of C. albicans, modeling oral candidiasis. | [62] |
Mechanism | Model and Pathogen | Cardiovascular Findings | Reference |
---|---|---|---|
Systemic Inflammation and Cytokine Elevation | Ligature-induced periodontitis (Porphyromonas gingivalis) | Increased levels of pro-inflammatory cytokines (IL-6, TNF-α) were linked to endothelial dysfunction and vascular inflammation. | [14,69] |
Aggregatibacter actinomycetemcomitans infection | Elevated IL-6, IL-8, TNF-α; systemic inflammation; increased adhesion molecules ICAM-1, E-selectin in aortic tissue. | [71] | |
Direct Bacterial Translocation to Cardiovascular Tissues | Periodontitis with P. gingivalis inoculation | Detection of P. gingivalis DNA in aortic tissue; promotes vascular inflammation and contributes to atherosclerosis. | [70,73] |
Treponema denticola infection | Elevated IgG antibodies; increased vascular inflammation; higher oxidized LDL and reduced nitric oxide levels, promoting atherosclerosis. | [81] | |
Oxidative Stress and Endothelial Dysfunction | Apical periodontitis in hypertensive rats | Elevated superoxide anion levels and decreased antioxidant enzyme activity led to myocardial damage and impaired cardiac dynamics. | [77,78] |
Ligature-induced periodontitis in ApoE−/− mice | Increased oxidative stress markers (malondialdehyde, 8-hydroxy-2′-deoxyguanosine) contribute to cardiac remodeling. | [99,101] | |
Thrombogenesis and Platelet Aggregation | Streptococcus sanguis bacteremia | Platelet aggregation linked to endocardial vegetation formation; potential for coronary thrombosis under hyperlipidemic conditions. | [86] |
Direct Cardiac Impact and Myocardial Inflammation | P. gingivalis bacteremia | Induces myocarditis and myocardial infarction; elevated levels of IL-1β, IL-6, IL-17A, and TNF-α in heart tissue, with neutrophil infiltration. | [80] |
Periodontitis and Blood Pressure | Spontaneously hypertensive rats with periodontitis | Lowered arterial pressure was observed, possibly due to increased nitric oxide levels despite increased systemic inflammation. | [100] |
Cardiac Remodeling due to Oral Infection | Ligature-induced periodontitis in Balb/c mice | Increased heart rate and arterial pressure variability; myocardial cytokines (IL-6, IL-4, IL-17) elevated, correlating with cardiac dysfunction. | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhaieg, A.; Farag, A.; Mandour, A.S.; Hirose, M.; Elfadadny, A.; Tanaka, R. Murine Models in Oral Research: A Narrative Review of Experimental Approaches and Cardiovascular Implications. Biology 2025, 14, 127. https://doi.org/10.3390/biology14020127
Elhaieg A, Farag A, Mandour AS, Hirose M, Elfadadny A, Tanaka R. Murine Models in Oral Research: A Narrative Review of Experimental Approaches and Cardiovascular Implications. Biology. 2025; 14(2):127. https://doi.org/10.3390/biology14020127
Chicago/Turabian StyleElhaieg, Asmaa, Ahmed Farag, Ahmed S. Mandour, Miki Hirose, Ahmed Elfadadny, and Ryou Tanaka. 2025. "Murine Models in Oral Research: A Narrative Review of Experimental Approaches and Cardiovascular Implications" Biology 14, no. 2: 127. https://doi.org/10.3390/biology14020127
APA StyleElhaieg, A., Farag, A., Mandour, A. S., Hirose, M., Elfadadny, A., & Tanaka, R. (2025). Murine Models in Oral Research: A Narrative Review of Experimental Approaches and Cardiovascular Implications. Biology, 14(2), 127. https://doi.org/10.3390/biology14020127