Establishment of Integrated Quality Regions for the Rare Medicine Food Homology Plant Cyclocarya paliurus (Batal.) Iljinsk in China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species Data Acquisition and Processing
2.2. Environmental Variables Optimization
2.3. Predictive Modeling and Data Analysis
2.4. Centroid Migration
2.5. Integrated Quality Regions
3. Results
3.1. Modeling Environmental Variables
3.2. Model Accuracy Evaluation
3.3. Dominant Environmental Variables
3.4. Suitable Habitat Range
3.5. Potential Distribution: Current Climate
3.6. Potential Distribution: Future Climate
3.7. Analyzing Trends in Centroid Migration of C. paliurus’ Suitable Habitats Under Future Climate Scenarios
3.8. Correlation Between Chemical Composition and Environmental Variables
3.9. Integrated Quality Regions Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molefe, P.F.; Ghasemishahrestani, Z.; Mbele, M.; Khanyile, S.; Farrant, J.; Khumalo, N.P.; Bayat, A. African Medicinal Plants in Cutaneous Wound Repair: A Comprehensive Analysis of the Role of Phytochemicals. Int. Wound J. 2025, 22, e70742. [Google Scholar] [CrossRef]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhuo, Z.; Liu, B.; Peng, Y.; Xu, D. Predicting the Future Geographic Distribution of the Traditional Chinese Medicinal Plant Epimedium acuminatum Franch. in China Using Ensemble Models Based on Biomod2. Plants 2025, 14, 1065. [Google Scholar] [CrossRef]
- Zhang, F.G.; Zhang, S.; Wu, K.; Zhao, R.; Zhao, G.; Wang, Y. Potential habitat areas and priority protected areas of Tilia amurensis Rupr in China under the context of climate change. Front. Plant Sci. 2024, 15, 1365264. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, S.; Gao, S.; Liu, H.; Wang, Q. Suitable Planting Area Prediction for Two Arnebia Species: An Analysis Based on Habitat and Phytochemical Suitability. Plants 2025, 14, 1669. [Google Scholar] [CrossRef]
- He, J.; Yao, L.; Pecoraro, L.; Liu, C.; Wang, J.; Huang, L.; Gao, W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit. Rev. Biotechnol. 2023, 43, 680–697. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B.; Dresler, S.; Stasińska-Jakubas, M.; Wójciak, M.; Sowa, I.; Matraszek-Gawron, R. NaCl-Induced Elicitation Alters Physiology and Increases Accumulation of Phenolic Compounds in Melissa officinalis L. Int. J. Mol. Sci. 2021, 22, 6844. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, S.; Li, J.; Zhou, G. Metabolomics analysis reveals the metabolite profiles of Rheum tanguticum grown under different altitudinal gradients. BMC Plant Biol. 2024, 24, 226. [Google Scholar] [CrossRef]
- Guo, L.P.; Huang, L.Q.; Yan, H.; Lv, D.M.; Jiang, Y.X. Habitat characteristics for the growth of Atractylodes lancea based on GIS. Zhongguo Zhong Yao Za Zhi 2005, 30, 565–569. [Google Scholar]
- Sun, X.M.; Wang, C.Q.; Dong, L.L.; Zhang, J.Q.; Zhang, X.H. Research on planting area and industrial development strategy of Tibetan medicine. Zhongguo Zhong Yao Za Zhi 2020, 45, 2708–2713. [Google Scholar]
- Zhou, J.; Zhang, X.; Huo, T.; Xu, H.; Meng, F.; Xu, N.; Peng, C. Predicting high-quality ecologically suitable areas of Astragalus mongholicus Bunge based on secondary metabolites content using Biomod2 model. Sci. Rep. 2025, 15, 1373. [Google Scholar] [CrossRef]
- Sun, H.B.; Sun, H.; Jiang, S.Y.; Zhou, Y.; Cao, W.L.; Ji, M.C.; Zhy, W.T.; Yan, H.J. Cultural regionalization for Notopterygium incisum based on 3S technology platform. I. Evaluation for growth suitability for N. incisum based on ecological factors analysis by Maxent and ArcGIS model. Zhongguo Zhong Yao Za Zhi 2015, 40, 853–862. [Google Scholar]
- Sun, H.B.; Jiang, S.Y.; Sun, H.; Zhou, Y.; Zhu, W.T. Cultural regionalization for Notopterygium incisum based on 3S technology platform II. Evaluation for quality suitability for N. incisum based on collocated Cokriging. Zhongguo Zhong Yao Za Zhi 2017, 42, 2633–2638. [Google Scholar]
- Zhao, W.L.; Jin, L.; Wang, H.Z.; Cui, Z.J.; Hou, J.; Lu, Y.Y.; Du, T. Production regionalization study of Isatidis Radix. Zhongguo Zhong Yao Za Zhi 2017, 42, 4414–4418. [Google Scholar]
- Sun, Y.Z.; Guo, L.P.; Huang, L.Q.; He, Y.; Pan, Y.Z. Application of multivariate statistical methods in research of Chinese medicinal materials resource ecology. Zhongguo Zhong Yao Za Zhi 2007, 32, 1257–1260. [Google Scholar]
- Wang, H.; Huang, B.; Xu, L.; Chen, T. Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo WT Wang Under Climate Change: A Rare Medicinal Plant Endemic to China. Biology 2025, 14, 972. [Google Scholar] [CrossRef]
- Li, Q.; Hu, J.; Xie, J.; Nie, S.; Xie, M.Y. Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja. Ann. N.Y. Acad. Sci. 2017, 1398, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yin, Z.; Chen, J.; Wang, X.; Peng, D.; Shangguan, X. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja. PLoS ONE 2016, 11, e0160279. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Z.; Xu, D.; Sun, X. Advances on Cyclocarya paliurus polyphenols: Extraction, structures, bioactivities and future perspectives. Food Chem. 2022, 396, 133667. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Wu, Z.; Yin, Z.; Zhang, J.; Liu, Z.; Fang, Z. Simultaneous determination of flavonoids and triterpenoids in Cyclocarya paliurus leaves using high-performance liquid chromatography. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 125–134. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, Z.; Shang, X.; Yang, W.; Wang, T.; Fang, S. From rings to regions: Modeling and mapping climate-driven timber production zones for Cyclocarya paliurus by integrating niche models and growth traits. Front. Plant Sci. 2025, 16, 1635397. [Google Scholar] [CrossRef]
- Du, Z.; Ren, Z.; Yu, B.; Zhu, J.; Li, J. Impacts of climate change on the global distribution of Cyclocarya paliurus. Biologia 2023, 78, 41–53. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- JXYCBZ2023-002; Jiangxi Provincial Drug Administration’s Traditional Chinese Medicine Standards. Jiangxi Provincial Medical Products Administration: Nanchang, China, 2023.
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L. The Beijing Climate Center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; Van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Zongci, L.Y.Z. New generation of scenarios of greenhouse gas emission. Adv. Clim. Change Res. 2012, 8, 305. [Google Scholar]
- Zhang, H.; Sun, X.; Zhang, G.; Zhang, X.; Miao, Y.; Zhang, M.; Feng, Z.; Zeng, R.; Pei, J.; Huang, L. Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch: Predictions Based on MaxEnt Ecological Niche Modeling. Sustainability 2023, 15, 631. [Google Scholar] [CrossRef]
- Hao, S.; Zhang, D.; Wen, Y. Potential Geographical Distribution of Lagerstroemia excelsa under Climate Change. Agriculture 2024, 14, 191. [Google Scholar] [CrossRef]
- Feng, L.; Sun, J.; Wang, T.; Tian, X.; Wang, W.; Guo, J.; Feng, H.; Guo, H.; Deng, H.; Wang, G. Predicting suitable habitats of Ginkgo biloba L. fruit forests in China. Clim. Risk Manag. 2021, 34, 100364. [Google Scholar] [CrossRef]
- Wang, R.; Li, Q.; He, S.; Liu, Y.; Wang, M.; Jiang, G. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 2018, 13, e0192153. [Google Scholar] [CrossRef]
- Brismar, J. Understanding receiver-operating-characteristic curves: A graphic approach. AJR Am. J. Roentgenol. 1991, 157, 1119–1121. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wang, C.; He, J.; Zhang, Z. Analysis of geographical distribution of Abies in China under climate change. Bull. Bot. Res. 2018, 38, 37–46. [Google Scholar]
- Sun, H.B.; Jiang, S.Y.; Sun, H.; Wang, H.L.; Zhou, Y.; Zhu, W.T. Cultural regionalization for Notopterygium incisum based on 3S technology platform III. Functional regionalization for cultivation based on suitability evaluation of growth and production quality. Zhongguo Zhong Yao Za Zhi 2017, 42, 2639–2644. [Google Scholar] [PubMed]
- Xia, C.; Huang, Y.; Qi, Y.; Yang, X.; Xue, T.; Hu, R.; Deng, H.; Bussmann, R.W.; Yu, S. Developing long-term conservation priority planning for medicinal plants in China by combining conservation status with diversity hotspot analyses and climate change prediction. BMC Biol. 2022, 20, 89. [Google Scholar] [CrossRef]
- Liu, X.; Han, W.; Gao, R.; Jia, J.; Bai, J.; Xu, J.; Gao, W. Potential impacts of environmental types on geographical distribution of Larix principis-rupprechtii. Acta Ecol. Sin. 2021, 41, 1885–1893. [Google Scholar] [CrossRef]
- Fan, D.; Sun, Z.; Li, B.; Kou, Y.; Hodel, R.G.J.; Jin, Z.; Zhang, Z. Dispersal corridors for plant species in the Poyang Lake Basin of southeast China identified by integration of phylogeographic and geospatial data. Ecol. Evol. 2017, 7, 5140–5148. [Google Scholar] [CrossRef]
- Song, Y.G.; Fragnière, Y.; Meng, H.H.; Li, Y.; Bétrisey, S.; Corrales, A.; Manchester, S.; Deng, M.; Jasińska, A.K.; Văn Sâm, H. Global biogeographic synthesis and priority conservation regions of the relict tree family Juglandaceae. J. Biogeogr. 2020, 47, 643–657. [Google Scholar] [CrossRef]
- Vahdati, K.; Lotfi, N.; Kholdebarin, B.; Hassani, D.; Amiri, R.; Mozaffari, M.R.; Leslie, C. Screening for drought-tolerant genotypes of Persian walnuts (Juglans regia L.) during seed germination. HortScience 2009, 44, 1815–1819. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, Z. Vegetation response to Holocene climate change in East Asian monsoon-margin region. Earth-Sci. Rev. 2012, 113, 1–10. [Google Scholar] [CrossRef]
- Fontúrbel, F.E.; Bruford, M.W.; Salazar, D.A.; Cortés-Miranda, J.; Vega-Retter, C. The hidden costs of living in a transformed habitat: Ecological and evolutionary consequences in a tripartite mutualistic system with a keystone mistletoe. Sci. Total Environ. 2019, 651, 2740–2748. [Google Scholar] [CrossRef]
- Gandin, A.; Dizengremel, P.; Jolivet, Y. Integrative role of plant mitochondria facing oxidative stress: The case of ozone. Plant Physiol. Biochem. 2021, 159, 202–210. [Google Scholar] [CrossRef]
- Čėsna, V.; Gedminas, A.; Lynikienė, J.; Marčiulynienė, D. Insect Diversity in Pinus sylvestris Forest Stands Damaged by Lymantria monacha. Insects 2024, 15, 200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhuo, Z.; Ali, H.; Mureed, S.; Liu, Q.; Yang, X.; Xu, D. Predicting potential habitat distribution of the invasive species Rhynchophorus ferrugineus Olivier in China based on MaxEnt modelling technique and future climate change. Bull. Entomol. Res. 2024, 114, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, B. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology 2021, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jin, H.; Hong, K.; Fang, S. Effects of salicylic acid and brassinolide applications on salt tolerance in Cyclocarya paliurus: Amelioration of oxidative stress. Tree Physiol. 2025, 45, tpaf061. [Google Scholar] [CrossRef]
- Qiu, Y.; Fan, Y.; Chen, Y.; Hao, X.; Li, S.; Kang, S. Response of dry matter and water use efficiency of alfalfa to water and salinity stress in arid and semiarid regions of Northwest China. Agric. Water Manag. 2021, 254, 106934. [Google Scholar] [CrossRef]
- Paź-Dyderska, S.; Jagodziński, A.M.; Dyderski, M.K. Possible changes in spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. Reg. Environ. Change 2021, 21, 18. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Li, P.; Jin, J.; Li, Z. The bacterial consortia promote plant growth and secondary metabolite accumulation in Astragalus mongholicus under drought stress. BMC Plant Biol. 2022, 22, 475. [Google Scholar] [CrossRef]
- Liu, X.; Wang, C.; Xu, Q.; Zhao, D.; Liu, F.; Han, B. Metabolic Response of the Lycium barbarum Variety ‘Ningqi No. 7’ to Drought Stress. Plants 2024, 13, 1935. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Yin, Y.; An, W.; Qin, X.; Wang, Y.; Li, Y.; Fan, Y.; Cao, Y. Transcriptomic and metabolomic analyses of Lycium ruthenicum and Lycium barbarum fruits during ripening. Sci. Rep. 2020, 10, 4354. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Peng, Y.Q.; Xiang, G.S.; Song, W.L.; Feng, L.; Jiang, X.Y.; Li, X.J.; He, S.M.; Yang, S.C.; Zhao, Y.; et al. Functional characterization of genes related to triterpene and flavonoid biosynthesis in Cyclocarya paliurus. Planta 2024, 259, 50. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, X.; Zheng, X.; Zhu, J.; Xue, T. Combined metabolomic and transcriptomic analysis reveals the key genes for triterpenoid biosynthesis in Cyclocarya paliurus. BMC Genom. 2024, 25, 1197. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zheng, F.; Deng, X.; Sun, Y.; Yu, Z.; Shen, X. Genome-Wide Identification and Analysis of GATA Gene Family in Dendrobium officinale Under Methyl Jasmonate and Salt Stress. Plants 2025, 14, 1576. [Google Scholar] [CrossRef]
- Cheng, L.; Shi, N.; Du, X.; Huang, T.; Zhang, Y.; Zhao, C.; Zhao, K.; Lin, Z.; Ma, D.; Li, Q.; et al. Bioinformatics Analysis and Expression Profiling Under Abiotic Stress of the DREB Gene Family in Glycyrrhiza uralensis. Int. J. Mol. Sci. 2025, 26, 9235. [Google Scholar] [CrossRef]
- Sun, C.; Cao, Y.; Li, X.; Fang, S.; Yang, W.; Shang, X. The impact of genetic similarity and environment on the flavonoids variation pattern of Cyclocarya paliurus. Sci. Rep. 2024, 14, 24187. [Google Scholar] [CrossRef]
- Xie, J.H.; Dong, C.J.; Nie, S.P.; Li, F.; Wang, Z.J.; Shen, M.Y.; Xie, M.Y. Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chem. 2015, 186, 97–105. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Li, J. Quercetin promotes ATG5-mediating autophagy-dependent ferroptosis in gastric cancer. J. Mol. Histol. 2024, 55, 211–225. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull 2023, 80, 241–262. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases. Exp. Ther. Med. 2019, 18, 2759–2776. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Fang, S.; Wang, T.; Yin, Z.; Shang, X.; Yang, W.; Fu, X. Antidiabetic Effect of Cyclocarya paliurus Leaves Depends on the Contents of Antihyperglycemic Flavonoids and Antihyperlipidemic Triterpenoids. Molecules 2018, 23, 1042. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, M.; Zhao, J.; Yang, L.; Li, F.; Xu, J.; Chen, J.; Chen, Y.; Xu, D.; Feng, D. Regional Variation in Mulberry Leaf Metabolites: A Combined Metabolomic and Environmental Analysis of Biosynthetic Drivers. Metabolites 2025, 15, 728. [Google Scholar] [CrossRef]
- Ma, X.; Han, L.; Zhao, C.; Liu, D. Influences of environmental and leaf functional traits variations on photosynthetic characteristics of Cotoneaster multiflorus in Xinglong Mountain. Front. Plant Sci. 2025, 16, 1562491. [Google Scholar]
- Zhang, X.; Zhou, J.; Xu, H.; Peng, C.; Meng, F. Using ecological niche modelling to identify the high-quality ecological areas of Houttuynia cordata Thunb. based on secondary metabolites content. Front. Plant Sci. 2025, 16, 1641634. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, B.; Li, M.; Li, Z.; Tu, Y.; Tang, L.; He, G. Research on germplasm diversity of Amomum villosum. Lour in genuine producing area. PLoS ONE 2022, 17, e0268246. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Wang, D.; Ye, Q.; Luo, J.; Jin, B.; Yin, H. Construction of eco-quality dual-suitable distribution areas for Dictamnus dasycarpus Turcz.: Integrated analysis of MaxEnt model and multidimensional indicators. Front. Plant Sci. 2025, 16, 1591921. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, Y.T.; Chen, L.Y.; Lu, A.X.; Ji, H.Y.; Liu, H.P.; Li, Z.X.; Lin, Z.D.; Wu, S.S.; Zhai, J.W. Population dynamics of Phaius flavus in southeast China: Reproductive strategies and plants conservation. PLoS ONE 2022, 17, e0272929. [Google Scholar] [CrossRef]
- Li, C.; Lv, Y.; Gao, W.; Mao, K.; Shan, W.; Tong, S.; Xing, X.; Qiu, F.; Xia, Z.; Chu, C. A comprehensive strategy for prediction and quality evaluation of standardized planting herbs based on plant metabolomics coupled with extreme learning machine: Astragali Radix as an example. Phytochem. Anal. 2023, 34, 606–616. [Google Scholar] [CrossRef]
- Ullah, S.; Han, X.; Deng, R.; Ali, I.; Li, W.; Xu, Y.; Yang, M. Impacts of shifting from single-species pine forests to distinct agroforestry models on soil fertility, exchangeable cations, and microbial functions. J. Environ. Manag. 2024, 370, 122823. [Google Scholar] [CrossRef]
- Gaul, W.; Sadykova, D.; White, H.J.; Leon-Sanchez, L.; Caplat, P.; Emmerson, M.C.; Yearsley, J.M. Data quantity is more important than its spatial bias for predictive species distribution modelling. PeerJ 2020, 8, e10411. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, J.; Dong, C. Application of Virtual Sample Generation and Screening in Process Parameter Optimization of Botanical Medicinal Materials. Curr. Top. Med. Chem. 2023, 23, 618–626. [Google Scholar] [CrossRef]
- Gritti, E.S.; Duputie, A.; Massol, F.; Chuine, I. Estimating consensus and associated uncertainty between inherently different species distribution models. Methods Ecol. Evol. 2013, 4, 442–452. [Google Scholar] [CrossRef]
- Li, X.; Naimi, B.; Gong, P.; Araujo, M.B. Data error propagation in stacked bioclimatic envelope models. Integr. Zool. 2024, 19, 262–276. [Google Scholar] [CrossRef]
- Santini, L.; Benítez-López, A.; Maiorano, L.; Čengić, M.; Huijbregts, M.A. Assessing the reliability of species distribution projections in climate change research. Divers. Distrib. 2021, 27, 1035–1050. [Google Scholar] [CrossRef]
- Hendrickx, A.; Marsboom, C.; Rinaldi, L.; Vineer, H.R.; Morgoglione, M.E.; Sotiraki, S.; Cringoli, G.; Claerebout, E.; Hendrickx, G. Constraints of using historical data for modelling the spatial distribution of helminth parasites in ruminants. Parasite 2021, 28, 46. [Google Scholar] [CrossRef]
- Steen, V.; Sofaer, H.R.; Skagen, S.K.; Ray, A.J.; Noon, B.R. Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best? Ecol. Evol. 2017, 7, 8841–8851. [Google Scholar] [CrossRef]
- Zheng, H.; Fu, X.; Shao, J.; Tang, Y.; Yu, M.; Li, L.; Huang, L.; Tang, K. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends Plant Sci. 2023, 28, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, C.; Wu, F.; Zhao, S.; Chen, T.; You, H.; Lin, Y.; Zou, X. Integrated Transcriptomic and Targeted Metabolomic Analysis Reveals the Key Genes Involved in Triterpenoid Biosynthesis of Ganoderma lucidum. J. Fungi 2025, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- da Silva Gualberto, A.A.; Nanni, M.R.; da Silva Junior, C.A.; Cezar, E.; Crusiol, L.G.T.; Silva, G.F.C.; de Carvalho Gasparotto, A. Spatial distribution of soil chemicals attributes in sugar cane crop area. Afr. J. Agric. Res. 2016, 11, 4886–4893. [Google Scholar] [CrossRef]
- Engelhardt, E.K.; Neuschulz, E.L.; Hof, C. Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. J. Biogeogr. 2020, 47, 143–154. [Google Scholar] [CrossRef]
- Colicchio, J.M.; Hamm, L.N.; Verdonk, H.E.; Kooyers, N.J.; Blackman, B.K. Adaptive and nonadaptive causes of heterogeneity in genetic differentiation across the Mimulus guttatus genome. Mol. Ecol. 2021, 30, 6486–6507. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Xia, H.X.; Yuan, M.J.; Gao, F.; Bao, W.H.; Jin, L.; Li, M.; Li, Y. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut. Plant Divers. 2024, 46, 309–320. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, P.; Zhou, M.; Wang, T.; Fang, S.; Shang, X.; Fu, X. Geographic Variation in the Chemical Composition and Antioxidant Properties of Phenolic Compounds from Cyclocarya paliurus (Batal) Iljinskaja Leaves. Molecules 2018, 23, 2440. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Liu, Y.; Shang, X.; Fang, S. Identification and Expression Analysis of R2R3-MYB Family Genes Associated with Salt Tolerance in Cyclocarya paliurus. Int. J. Mol. Sci. 2022, 23, 3429. [Google Scholar] [CrossRef]
- Qu, Y.; Kong, W.; Wang, Q.; Fu, X. Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut (Cyclocarya paliurus). Int. J. Mol. Sci. 2021, 22, 10128. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Fang, S.; Zhou, M.; Qin, J. Responses of Morphology, Gas Exchange, Photochemical Activity of Photosystem II, and Antioxidant Balance in Cyclocarya paliurus to Light Spectra. Front. Plant Sci. 2018, 9, 1704. [Google Scholar] [CrossRef]










| Variable | Name | Unit |
|---|---|---|
| Bio1 | Annual mean temperature | °C |
| Bio2 | Mean diurnal temperature range | °C |
| Bio3 | Isothermality | / |
| Bio4 | Temperature seasonality | / |
| Bio5 | Maximum temperature of the warmest month | °C |
| Bio6 | Minimum temperature of the coldest month | °C |
| Bio7 | Mean temperature of the wettest quarter | °C |
| Bio8 | Mean temperature of the wettest quarter | °C |
| Bio9 | Mean temperature of the driest quarter | °C |
| Bio10 | Mean temperature of the warmest quarter | °C |
| Bio11 | Mean temperature of the coldest quarter | °C |
| Bio12 | Annual precipitation | mm |
| Bio13 | Precipitation of the wettest month | mm |
| Bio14 | Precipitation of the driest month | mm |
| Bio15 | Precipitation seasonality | / |
| Bio16 | Precipitation of the wettest quarter | mm |
| Bio17 | Precipitation of the driest quarter | mm |
| Bio18 | Precipitation of the warmest quarter | mm |
| Bio19 | Precipitation of the coldest quarter | mm |
| Awc_class | Soil available water content | % |
| Slope | Slope | ◦ |
| Elev | Elevation | m |
| Aspect | Aspect | / |
| T_ph_h2o | Topsoil pH | −log(H+) |
| S_ph_h2o | Subsoil pH | −log(H+) |
| T_oc | Topsoil organic carbon content | %weight |
| S_oc | Subsoil organic carbon content | %weight |
| T_clay | Topsoil clay content | %weight |
| S_clay | Subsoil clay content | %weight |
| T_sand | Topsoil sand content | %weight |
| S_sand | Subsoil sand content | %weight |
| T_silt | Topsoil silt content | %weight |
| S_silt | Subsoil silt content | %weight |
| T_ece | Topsoil electrical conductivity | ds/m |
| S_ece | Subsoil electrical conductivity | ds/m |
| T_caco3 | Topsoil carbonate or lime content | %weight |
| S_caco3 | Subsoil carbonate or lime content | %weight |
| Variables | Name | Unit |
|---|---|---|
| Bio2 | Mean diurnal range (Mean of monthly (max temp-min temp)) | °C |
| Bio4 | Temperature seasonality | / |
| Bio5 | Maximum temperature of warmest month | °C |
| Bio6 | Minimum temperature of coldest month | °C |
| Bio8 | Mean temperature of wettest quarter | °C |
| Bio12 | Annual precipitation | mm |
| Bio15 | Precipitation seasonality | / |
| Bio17 | Precipitation of driest quarter | mm |
| Bio18 | Precipitation of warmest quarter | mm |
| S_oc | Substratesoil organic carbon | % weight |
| S_ph_h2o | Substratesoil pH | −log(H+) |
| T_oc | Topsoil organic carbon | % weight |
| T_silt | Topsoil silt content | % |
| T_sand | Topsoil sand content | % |
| T_clay | Topsoil clay content | % weight |
| Aspect | Aspect | / |
| Slope | Slope | ◦ |
| Variables | Name | Percent Contribution (%) |
|---|---|---|
| Bio2 | Mean diurnal range (Mean of monthly (max temp-min temp)) | 1.4 |
| Bio4 | Temperature seasonality | 5.4 |
| Bio5 | Maximum temperature of warmest month | 0.6 |
| Bio6 | Minimum temperature of coldest month | 11.3 |
| Bio8 | Mean temperature of wettest quarter | 3.6 |
| Bio12 | Annual precipitation | 32.0 |
| Bio15 | Precipitation seasonality | 0.4 |
| Bio17 | Precipitation of driest quarter | 34.0 |
| Bio18 | Precipitation of warmest quarter | 0.4 |
| S_oc | Substratesoil organic carbon | 0.2 |
| S_ph_h2o | Substratesoil pH | 2.2 |
| T_oc | Topsoil organic carbon | 0.6 |
| T_silt | Topsoil silt content | 0.5 |
| T_sand | Topsoil sand content | 2.4 |
| T_clay | Topsoil clay content | 0.8 |
| Aspect | Aspect | 1.3 |
| Slope | Slope | 3.0 |
| Variable | Suitable Range | Adaptive Threshold |
|---|---|---|
| Bio17 | 57.7~589.6 mm | 563.2 mm |
| Bio12 | 1078.4~2172.6 mm | 1280.5 mm |
| Bio6 | −1.9~6.8 °C | 2.1 °C |
| Bio4 | 594.3~879.4 | 807.3 |
| Bio2 | 6.9~9.2 °C | 8.3 °C |
| Periods | Climate Scenarios | Highly Suitable (×104 km2) | Moderately Suitable (×104 km2) | Generally Suitable (×104 km2) | Total Suitable Area (×104 km2) |
|---|---|---|---|---|---|
| 2050s | SSP126 | 61.21 | 62.58 | 82.88 | 206.67 |
| SSP585 | 67.99 | 60.47 | 83.49 | 211.94 | |
| 2090s | SSP126 | 74.57 | 60.38 | 88.40 | 223.35 |
| SSP585 | 46.13 | 69.15 | 79.50 | 194.77 |
| Climate Scenarios | Periods | Longitude (°E) | Latitude (°N) | Migration Distance (km) |
|---|---|---|---|---|
| Present | 110.65 | 27.79 | ||
| SSP126 | 2050s | 109.31 | 27.81 | 132.57 |
| SSP126 | 2090s | 108.90 | 28.00 | 45.04 (2050s to 2090s) |
| SSP585 | 2050s | 108.23 | 27.77 | 238.58 |
| SSP585 | 2090s | 109.49 | 27.84 | 124.56 (2050s to 2090s) |
| Variable | Quercetin | Kaempferol |
|---|---|---|
| Precipitation of the warmest quarter (Bio18) | 0.432 * | 0.390 * |
| Aspect | 0.584 ** | 0.458 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Chen, H.; Wang, H.; Huang, B.; Chen, T. Establishment of Integrated Quality Regions for the Rare Medicine Food Homology Plant Cyclocarya paliurus (Batal.) Iljinsk in China. Biology 2025, 14, 1639. https://doi.org/10.3390/biology14121639
Jiang H, Chen H, Wang H, Huang B, Chen T. Establishment of Integrated Quality Regions for the Rare Medicine Food Homology Plant Cyclocarya paliurus (Batal.) Iljinsk in China. Biology. 2025; 14(12):1639. https://doi.org/10.3390/biology14121639
Chicago/Turabian StyleJiang, Heng, Haijun Chen, Haiming Wang, Bin Huang, and Ting Chen. 2025. "Establishment of Integrated Quality Regions for the Rare Medicine Food Homology Plant Cyclocarya paliurus (Batal.) Iljinsk in China" Biology 14, no. 12: 1639. https://doi.org/10.3390/biology14121639
APA StyleJiang, H., Chen, H., Wang, H., Huang, B., & Chen, T. (2025). Establishment of Integrated Quality Regions for the Rare Medicine Food Homology Plant Cyclocarya paliurus (Batal.) Iljinsk in China. Biology, 14(12), 1639. https://doi.org/10.3390/biology14121639

