Rhizosphere Bacillus proteolyticus Strain Enhances the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Growth in Roots and Soil Nutrient Status While Enriching the Plant-Beneficial Bacteria in Rhizosphere
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. B. proteolyticus Suspension and Soil Preparation
2.3. Plant Materials
2.4. Determination of Seed Germination and Root Growth
2.5. Determination of Metabolic Characteristics in Roots
2.6. Determination of Soil Characteristics
2.7. Determination of Rhizosphere Soil Bacterial Communities
2.8. Statistical Analysis
3. Results
3.1. Identification of Rhizosphere B. proteolyticus
3.2. Promotion of E. senticosus Seed Germination and Root Growth by B. proteolyticus
3.3. Analysis of Metabolic Characteristics of Root
3.4. Effects on Soil Biochemical Characteristics
3.5. Correlation Analysis
3.6. Analysis of the Rhizosphere Soil Bacterial Community Diversity and Community Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Q.; Han, D.; Jiang, J.; Yan, G.; Kong, L.; Sun, H.; Han, Y.; Zhang, X.; Wang, X.; Wang, X. Extraction, structural characteristics, bioactivities and application of polysaccharides from Acanthopanax senticosus (Rupr. & Maxim.) Harms: A review. Int. J. Biol. Macromol. 2025, 299, 139972. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, R.; Tian, L.; Xu, Z. Integrated microbiome and metabolomics analysis reveal the relationship between plant-specialized metabolites and microbial community in Phellodendron amurense. Front. Plant Sci. 2024, 15, 1363063. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, Z.; Han, Y.; Li, S.; Bi, X.; Ren, S.; Pan, Y.; Wang, D.; Liu, X. The bacterial and fungal compositions in the rhizosphere of Asarum heterotropoides Fr. Schmidt var. mandshuricum (Maxim.) Kitag. in a typical planting region. Microorganisms 2024, 12, 692. [Google Scholar] [CrossRef]
- Huang, Y.; Zhai, L.; Chai, X.; Liu, Y.; Lv, J.; Pi, Y.; Gao, B.; Wang, X.; Wu, T.; Zhang, X.; et al. Bacillus B2 promotes root growth and enhances phosphorus absorption in apple rootstocks by affecting MhMYB15. Plant J. 2024, 119, 1880–1899. [Google Scholar] [CrossRef]
- Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T.; Williams, S.T. (Eds.) Bergey’s Manual of Determinative Bacteriology, 9th ed.; Williams & Wilkins: Philadelphia, PA, USA, 1994. [Google Scholar]
- Visen, A.; Bohra, M.; Singh, P.N.; Srivastava, P.C.; Kumar, S.; Sharma, A.K.; Chakraborty, B. Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere 2017, 3, 196–202. [Google Scholar] [CrossRef]
- Zaki, R.M.; Afify, A.H.; Ashour, E.H.; El-Sawah, A.M. Salt-Tolerant Bacteria Support Salinity Stress Mitigating Impact of Arbuscular Mycorrhizal Fungi in Maize (Zea mays L.). Microorganisms 2025, 13, 1345. [Google Scholar] [CrossRef]
- Braglia, C.; Alberoni, D.; Baffoni, L.; Angeli, S.; Di Gioia, D. PGPB Administration Influences the Cross-Talk and Interactions of Rhizosphere and Endophyte Microbial Communities in Sunflower. Curr. Res. Microb. Sci. 2025, 9, 100478. [Google Scholar] [CrossRef]
- Chu, W.; Wang, Y.Y.; Guo, Y.; Peng, Y.H.; Wu, Z.Y.; Lin, W.X. Screening of plant growth-promoting rhizobacteria from Casuarina equisetifolia rhizosphere and their effects on seed germination and seedling growth. Chin. J. Appl. Ecol. 2024, 35, 2159–2166. [Google Scholar]
- Ghayoumi, M.; Emamjomeh, A.; Kavousi, K.; Najafi, A. Rhizosphere soil bacteria community vary and correlate with Crocus sativus (saffron) quality at four locations. Rhizosphere 2022, 24, 100627. [Google Scholar] [CrossRef]
- Tripathi, P.; Yadav, R.; Das, P.; Singh, S.; Singh, A.; Singh, P.; Kandasamy, P.; Kalra, A.; Khare, P. Endophytic bacterium CIMAP-A7 mediated amelioration of atrazine induced phyto-toxicity in Andrographis paniculata. Environ. Pollut. 2021, 287, 117635. [Google Scholar] [CrossRef]
- Khan, W.; Zhu, Y.; Khan, A.; Zhao, L.; Yang, Y.-M.; Wang, N.; Hao, M.; Ma, Y.; Nepal, J.; Ullah, F.; et al. Above-and below-ground feedback loop of Zea mays (maize) is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil. Sci. Total Environ. 2024, 917, 170417. [Google Scholar] [CrossRef]
- Mortezaei, Z.; Ramezan, D.; Mohkami, Z.; Aran, M.; Rahimi, M.; Nejad, M.S.; Zargar, M. Effects of Mycorrhizal Fungi, Plant Growth-Promoting Bacteria, and Vermicompost on Enhance Growth Characteristics of Physalis alkekengi L. Russ. J. Plant Physiol. 2025, 72, 188. [Google Scholar] [CrossRef]
- Kang, H.Y.; Wang, W.; Liu, J.L.; Guo, D.L.; Guo, C.H. Isolation, purification and identification of two endophytes with growth-promoting effects from Medicago sativa. Microbiol. China 2015, 42, 280–288. [Google Scholar] [CrossRef]
- Yang, R.; Meng, X.; Zhao, W.; Xu, S.Q.; Wang, S.Y.; Li, M.M.; Guan, W.; Chen, Q.S.; Zhang, L.L.; Kuang, H.X.; et al. Phenylpropanoids of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Alleviate oxidative stress in Alzheimer’s disease in vitro and in vivo models by regulating Mst1 and affecting the Nrf2/Sirt3 pathway. Bioorganic Chem. 2025, 159, 108347. [Google Scholar] [CrossRef]
- Ahmad, M.; Hussain, A.; Dar, A.; Luqman, M.; Ditta, A.; Iqbal, Z.; Ahmad, H.T.; Nazli, F.; Soufan, W.; Almutairi, K.; et al. Combating iron and zinc malnutrition through mineral biofortification in Zea mays (maize) through plant growth promoting Bacillus and Paenibacillus species. Front. Plant Sci. 2023, 13, 1094551. [Google Scholar] [CrossRef] [PubMed]
- Raklami, A.; Quintas-Nunes, F.; Nascimento, F.X.; Jemo, M.; Oufdou, K.; Syed, A.; Bahkali, A.H.; Verma, M.; Nafis, A. Assessing the growth-promoting traits of actinobacteria spp. isolated from Cleome africana: Implications on growth and root enhancement of Medicago sativa. J. King Saud Univ.—Sci. 2023, 35, 102722. [Google Scholar] [CrossRef]
- Liu, Y. Comparative Study on the Metabolic Basis of Two Astragalus membranaceus Species in Response to UV-B and Drought Stress by Metabonomics. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2018. [Google Scholar]
- Fu, J.Y.; Yang, C.; Li, D.W. Effects of elevated UV-B radiation on photosynthesis and contents of active substance of Eucommia ulmoides plantation. Anhui Agric. Sci. 2017, 45, 6–10. [Google Scholar] [CrossRef]
- Ru, R.K. Soil Agricultural Chemical Analysis Methods; Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Khalediyan, N.; Weisany, W.; Schenk, P.M. Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Ind. Crops Prod. 2021, 160, 113163. [Google Scholar] [CrossRef]
- Widnyana, I.K.; Javandira, C. Activities of Pseudomonas spp. and Bacillus sp. to Stimulate Germination and Seedling Growth of Solanum lycopersicum (Tomato) Plants. Agric. Agric. Sci. Procedia 2016, 9, 419–423. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, Q.; Gao, Y.N.; Long, Q.G.; Yan, W.J.; Zhang, P.D. Restoration of degraded seagrass meadows: Effects of plant growth-promoting rhizobacteria (PGPR) inoculation on Zostera marina growth, rhizosphere microbiome and ecosystem functionality. J. Environ. Manag. 2024, 371, 123286. [Google Scholar] [CrossRef]
- Keskes, S.; Ben Khedher, S.; Masmoudi, F.; Saadaoui, I.; Tounsi, S. Spore production optimization of a biofertilizer based on Bacillus cabrialesii HB7 for enhancing plant growth under saline stress. Int. Microbiol. 2025. [Google Scholar] [CrossRef]
- Jung, B.K.; Ibal, J.C.; Pham, H.Q.; Kim, M.C.; Park, G.S.; Hong, S.J.; Jo, H.W.; Park, C.E.; Choi, S.D.; Jung, Y.; et al. Quorum Sensing System Affects the Plant Growth Promotion Traits of Serratia fonticola GS2. Front. Microbiol. 2020, 11, 536865. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Singh, P.C.; Chaudhry, V.; Shirke, P.A.; Chakrabarty, D.; Farooqui, A.; Nautiyal, C.S.; Sane, A.P.; Sane, V.A. PGPR-induced OsASR6 improves plant growth and yield by altering root auxin sensitivity and the xylem structure in transgenic Arabidopsis thaliana. J. Plant Physiol. 2019, 240, 153010. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Guo, L.P.; Chen, B.D.; Hao, Z.P.; Wang, J.Y.; Huang, L.Q.; Yang, G.; Cui, X.M.; Yang, L.; Wu, Z.X.; et al. Arbuscular mycorrhizal symbiosis for sustainable cultivation of Chinese medicinal plants: A promising research direction. Am. J. Chin. Med. 2013, 41, 1199–1221. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Mora, M.R.; Gómez, P.A.J.; Reguero, D.G.; Lobo, A.P. Effect of plant Growth-Promoting bacteria on biometrical parameters and antioxidant enzymatic activities of Lupinus albus var. orden dorado under mercury stress. Front. Microbiol. 2022, 13, 891882. [Google Scholar] [CrossRef]
- Corrales-Ramírez MSc, L.C.; Caycedo-Lozano, L.; Gómez-Méndez, M.A.; Ramos-Rojas, S.J.; Rodríguez-Torres, J.N. Bacillus spp: Una alternativa para la promoción vegetal por dos caminos enzimáticos. Nova 2017, 15, 46–65. [Google Scholar] [CrossRef]
- González-Reguero, D.; Robas-Mora, M.; Probanza, A.; Jiménez, P.A. Evaluation of the oxidative stress alleviation in Lupinus albus var. Orden dorado by the inoculation of four plant growth-promoting bacteria and their mixtures in Mercury-polluted soils. Front. Microbiol. 2022, 13, 907557. [Google Scholar]
- Lv, J.; Yang, S.; Zhou, W.; Liu, Z.; Tan, J.; Wei, M. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects. Microbiol. Res. 2024, 283, 127688. [Google Scholar] [CrossRef]
- Wang, G.; Ren, Y.; Bai, X.; Su, Y.; Han, J. Contributions of Beneficial Microorganisms in Soil Remediation and Quality Improvement of Medicinal Plants. Plants 2022, 11, 3200. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, H.; Yue, E.; Ying, W.; Niu, T.; Yan, J.; Lu, Q.; Ruan, S. Role of plant metabolites in the formation of bacterial communities in the rhizosphere of Tetrastigma hemsleyanum. Front. Microbiol. 2023, 14, 1292896. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Optimization of Extraction Process and Preliminary Evaluation of Activity of Main Active Components from Acanthopanax senticosus. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2022. [Google Scholar]
- Çakmakçı, R.; Mosber, G.; Milton, A.H.; Alatürk, F.; Ali, B. The Effect of Auxin and Auxin-Producing Bacteria on the Growth, Essential Oil Yield, and Composition in Medicinal and Aromatic Plants. Curr. Microbiol. 2020, 77, 564–577. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, B.; Thakur, V.; Thakur, A.; Thakur, N.; Pandey, D.; Chand, D. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. 2019, 24, e00395. [Google Scholar] [CrossRef] [PubMed]
- Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Mohana Kumar, P.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Uma Shaanker, R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. exArn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 2010, 71, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Patani, A.; Patel, M.; Islam, S.; Yadav, V.K.; Prajapati, D.; Patel, A. Recent advances in Bacillus-mediated plant growth enhancement: A paradigm shift in redefining crop resilience. World J. Microbiol. Biotechnol. 2024, 40, 77. [Google Scholar] [CrossRef]
- Li, H.; Qiu, Y.; Yao, T.; Ma, Y.; Zhang, H.; Yang, X. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil Tillage Res. 2020, 199, 104577. [Google Scholar] [CrossRef]
- Li, N.; Wen, J.; Wu, R.; Hu, D.; Zhang, L.; Zhang, W.; Zhang, M. Dual effects of plant growth-promoting rhizobacteria (PGPR) on the Moso bamboo-soil system: Plant growth promotion and microbial community stability. Ind. Crops Prod. 2023, 203, 117151. [Google Scholar] [CrossRef]
- Deng, J.; Bai, X.; Zhou, Y.; Zhu, W.; Yin, Y. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Sci. Total Environ. 2020, 704, 135243. [Google Scholar] [CrossRef]
- Liu, M.L.; Li, X.R.; Zhu, R.Q.; Chen, N.; Ding, L.; Chen, C.Y. Vegetation richness, species identity and soil nutrients drive the shifts in soil bacterial communities during restoration process. Environ. Microbiol. Rep. 2021, 13, 411–424. [Google Scholar] [CrossRef]
- Wei, J.L.; Qin, Y.; Xie, X.Q.; Chen, J.Y.; Dong, D.F.; Xing, Y.X.; Li, Y.R. Effects of plant growth-promoting rhizobacteria on soil nutrients, enzyme activities and functional diversity of bacterial communities. J. South. Agric. 2020, 51, 2348–2357. [Google Scholar]
- Zhang, X.; Zhang, Q.; Yu, M.; Zhang, Y.; He, T.; Qiu, Z.; Qiu, Y.; Wang, W. Integrating serum pharmacochemistry and network pharmacology to explore the molecular mechanisms of Acanthopanax senticosus (Rupr. & Maxim.) Harms on attenuating doxorubicin-induced myocardial injury. J. Ethnopharmacol. 2024, 319 Pt 3, 117349. [Google Scholar] [CrossRef]
- Liu, Z.G. Effects of Phosphate-Solubilizing Bacteria and Controlled Release Fertilizer on Phosphorus Activities of Soil. Ph.D. Thesis, Shandong Agricultural University, Taian, China, 2014. [Google Scholar]
- Huang, L.Z.; Huang, B.K.; Ye, Q.; Qin, L.P. Bioactivity-guided fractionation for anti-fatigue property of Acanthopanax senticosus. J. Ethnopharmacol. 2011, 133, 213–219. [Google Scholar] [CrossRef]










| Reagent Composition | Volume | Thermal Cycling Condition | Temperature | Time |
|---|---|---|---|---|
| 5xBuffer | 10 μL | Initial Denaturation | 94 °C | 2 min |
| dNTP (10 mM) | 1 μL | Denaturation | 94 °C | 30 s |
| Phusion High-Fidelity DNA Polymerase | 1 μL | Annealing | 56 °C | 30 s |
| F/R primer (10 μM) | 1 μL | Extension | 72 °C | 90 s |
| Template DNA | 1–3 μL | 27 Cycles | Hold | |
| ddH2O | Supplement to 50 μL | Final Extension | 72 °C | 5 min |
| Bacillus proteolyticus | Fostering Capacity |
|---|---|
| Phosphate solubilization | 22.79 ± 0.92 μg/mg |
| IAA production | 14.99 ± 0.83 mg/L |
| Atmospheric nitrogen fixation | + |
| Bacteria OTU Number | Domain | Phylum | Class | Order | Family | Genus | Species | |
|---|---|---|---|---|---|---|---|---|
| CK | 10,240 | 1 | 26 | 65 | 144 | 232 | 368 | 149 |
| T50 | 18,813 | 1 | 37 | 96 | 210 | 317 | 471 | 163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tang, X.; Qi, J.; Zhong, W.; Li, X.; Tang, Z.; Liu, Y.; Li, D. Rhizosphere Bacillus proteolyticus Strain Enhances the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Growth in Roots and Soil Nutrient Status While Enriching the Plant-Beneficial Bacteria in Rhizosphere. Biology 2025, 14, 1633. https://doi.org/10.3390/biology14121633
Zhang Y, Tang X, Qi J, Zhong W, Li X, Tang Z, Liu Y, Li D. Rhizosphere Bacillus proteolyticus Strain Enhances the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Growth in Roots and Soil Nutrient Status While Enriching the Plant-Beneficial Bacteria in Rhizosphere. Biology. 2025; 14(12):1633. https://doi.org/10.3390/biology14121633
Chicago/Turabian StyleZhang, Ye, Xiaoqing Tang, Jiaying Qi, Weixue Zhong, Xiaohui Li, Zhonghua Tang, Ying Liu, and Dewen Li. 2025. "Rhizosphere Bacillus proteolyticus Strain Enhances the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Growth in Roots and Soil Nutrient Status While Enriching the Plant-Beneficial Bacteria in Rhizosphere" Biology 14, no. 12: 1633. https://doi.org/10.3390/biology14121633
APA StyleZhang, Y., Tang, X., Qi, J., Zhong, W., Li, X., Tang, Z., Liu, Y., & Li, D. (2025). Rhizosphere Bacillus proteolyticus Strain Enhances the Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. Growth in Roots and Soil Nutrient Status While Enriching the Plant-Beneficial Bacteria in Rhizosphere. Biology, 14(12), 1633. https://doi.org/10.3390/biology14121633

