The Chromosome-Scale Genome of Chitala ornata Illuminates the Evolution of Early Teleosts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Library Construction and Sequencing
2.2. Genome Assessment
2.3. Genome Annotation
2.4. Identification of Repetitive Sequences
2.5. Construct Whole Genome Alignments (WGAs)
2.6. Phylogeny Reconstruction
2.7. Analysis of Conserved Elements
3. Results and Discussion
3.1. Genome Assembly and Annotation of a Chromosome-Level C. ornata
3.2. Phylogenetic and Divergence Time Analysis of Early Teleosts
3.3. Genomic Repetitive Sequences and Conserved Features
3.4. Ancient Genetic Regulation Associated with Pectoral Fin Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parey, E.; Louis, A.; Montfort, J.; Bouchez, O.; Roques, C.; Iampietro, C.; Lluch, J.; Castinel, A.; Donnadieu, C.; Desvignes, T. Genome structures resolve the early diversification of teleost fishes. Science 2023, 379, 572–575. [Google Scholar] [CrossRef]
- Coates, M.I.; Cohn, M.J. Fins, limbs, and tails: Outgrowths and axial patterning in vertebrate evolution. BioEssays 1998, 20, 371–381. [Google Scholar] [CrossRef]
- Coates, M.I. The origin of vertebrate limbs. Development 1994, 1994, 169–180. [Google Scholar] [CrossRef]
- Don, E.K.; Currie, P.D.; Cole, N.J. The evolutionary history of the development of the pelvic fin/hindlimb. J. Anat. 2013, 222, 114–133. [Google Scholar] [CrossRef] [PubMed]
- Cass, A.N.; Elias, A.; Fudala, M.L.; Knick, B.D.; Davis, M.C. Conserved mechanisms, novel anatomies: The developmental basis of fin evolution and the origin of limbs. Diversity 2021, 13, 384. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kudoh, H.; Abe, G.; Yonei-Tamura, S.; Tamura, K. Evo-Devo of the Fin-to-Limb Transition. In Evolutionary Developmental Biology: A Reference Guide; Springer: Berlin/Heidelberg, Germany, 2021; pp. 907–920. [Google Scholar]
- Bi, X.; Wang, K.; Yang, L.; Pan, H.; Jiang, H.; Wei, Q.; Fang, M.; Yu, H.; Zhu, C.; Cai, Y. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 2021, 184, 1377–1391.e14. [Google Scholar] [CrossRef]
- Fricke, R. Eschmeyer’s catalog of fishes: Genera/species by family/subfamily. Recuperado 2021, 11, 1–230. [Google Scholar]
- Wang, O.; Chin, R.; Cheng, X.; Wu, M.K.Y.; Mao, Q.; Tang, J.; Sun, Y.; Anderson, E.; Lam, H.K.; Chen, D. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 2019, 29, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Servant, N.; Varoquaux, N.; Lajoie, B.R.; Viara, E.; Chen, C.-J.; Vert, J.-P.; Heard, E.; Dekker, J.; Barillot, E. HiC-Pro: An optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015, 16, 259. [Google Scholar] [CrossRef]
- Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016, 3, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Diekhans, M.; Baertsch, R.; Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008, 24, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Majoros, W.H.; Pertea, M.; Salzberg, S.L. TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20, 2878–2879. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J. BLAT—The BLAST-like alignment tool. Genome Res. 2002, 12, 656–664. [Google Scholar] [PubMed]
- Birney, E.; Clamp, M.; Durbin, R. GeneWise and genomewise. Genome Res. 2004, 14, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Elsik, C.G.; Mackey, A.J.; Reese, J.T.; Milshina, N.V.; Roos, D.S.; Weinstock, G.M. Creating a honey bee consensus gene set. Genome Biol. 2007, 8, R13. [Google Scholar] [CrossRef] [PubMed]
- De Bie, T.; Cristianini, N.; Demuth, J.P.; Hahn, M.W. CAFE: A computational tool for the study of gene family evolution. Bioinformatics 2006, 22, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Jurka, J.; Kapitonov, V.V.; Pavlicek, A.; Klonowski, P.; Kohany, O.; Walichiewicz, J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 2005, 110, 462–467. [Google Scholar] [CrossRef]
- Chen, N. Using Repeat Masker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 2004, 5, 4.10.1–4.10.14. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef]
- Harris, R.S. Improved Pairwise Alignment of Genomic DNA; The Pennsylvania State University: University Park, PA, USA, 2007. [Google Scholar]
- Blanchette, M.; Kent, W.J.; Riemer, C.; Elnitski, L.; Smit, A.F.; Roskin, K.M.; Baertsch, R.; Rosenbloom, K.; Clawson, H.; Green, E.D. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004, 14, 708–715. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Supiwong, W.; Tanomtong, A.; Khakhong, S.; Silawong, K.; Aoki, S.; Sanoamuang, L.-O. The first chromosomal characteristics of nucleolar organizer regions and karyological analysis of clown knife fish, Chitala ornata (Osteoglossiformes, Notopteridae) by T-lymphocyte cell culture. Cytologia 2012, 77, 393–399. [Google Scholar] [CrossRef]
- Hughes, L.C.; Ortí, G.; Huang, Y.; Sun, Y.; Baldwin, C.C.; Thompson, A.W.; Arcila, D.; Betancur, R.; Li, C.; Becker, L. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci. USA 2018, 115, 6249–6254. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Han, K.; Meng, L.; Huang, X.; Cao, W.; Shi, C.; Zhang, M.; Wang, Y.; Liu, Q.; Zhang, Y. African Arowana genome provides insights on ancient teleost evolution. Iscience 2020, 23, 101662. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qiu, Q.; Jiang, Y.; Wang, K.; Lin, Z.; Li, Z.; Bibi, F.; Yang, Y.; Wang, J.; Nie, W. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 2019, 364, eaav6202. [Google Scholar] [CrossRef]
- Christmas, M.J.; Kaplow, I.M.; Genereux, D.P.; Dong, M.X.; Hughes, G.M.; Li, X.; Sullivan, P.F.; Hindle, A.G.; Andrews, G.; Armstrong, J.C. Evolutionary constraint and innovation across hundreds of placental mammals. Science 2023, 380, eabn3943. [Google Scholar] [CrossRef]
- Foley, N.M.; Mason, V.C.; Harris, A.J.; Bredemeyer, K.R.; Damas, J.; Lewin, H.A.; Eizirik, E.; Gatesy, J.; Karlsson, E.K.; Lindblad-Toh, K. A genomic timescale for placental mammal evolution. Science 2023, 380, eabl8189. [Google Scholar] [CrossRef] [PubMed]
- Stiller, J.; Feng, S.; Chowdhury, A.-A.; Rivas-González, I.; Duchêne, D.A.; Fang, Q.; Deng, Y.; Kozlov, A.; Stamatakis, A.; Claramunt, S. Complexity of avian evolution revealed by family-level genomes. Nature 2024, 629, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Phylogenetics, U.B. Resolution of the Early Placental Mammal Radiation. Science 1998, 282, 1871. [Google Scholar]
- Meyer, A.; Schloissnig, S.; Franchini, P.; Du, K.; Woltering, J.M.; Irisarri, I.; Wong, W.Y.; Nowoshilow, S.; Kneitz, S.; Kawaguchi, A. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 2021, 590, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, J.; Zhu, C.; Yang, L.; Ren, Y.; Ruan, J.; Fan, G.; Hu, J.; Xu, W.; Bi, X. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 2021, 184, 1362–1376.e18. [Google Scholar] [CrossRef] [PubMed]
- Braasch, I.; Gehrke, A.R.; Smith, J.J.; Kawasaki, K.; Manousaki, T.; Pasquier, J.; Amores, A.; Desvignes, T.; Batzel, P.; Catchen, J. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 2016, 48, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Wu, D.-D.; Ren, J.-L.; Peng, Z.-L.; Ma, Z.; Wu, W.; Lv, Y.; Wang, Z.; Deng, C.; Jiang, K. Large-scale snake genome analyses provide insights into vertebrate development. Cell 2023, 186, 2959–2976.e22. [Google Scholar] [CrossRef]
- Seki, R.; Li, C.; Fang, Q.; Hayashi, S.; Egawa, S.; Hu, J.; Xu, L.; Pan, H.; Kondo, M.; Sato, T. Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat. Commun. 2017, 8, 14229. [Google Scholar] [CrossRef] [PubMed]
- Wilga, C.; Lauder, G.V. Locomotion in sturgeon: Function of the pectoral fins. J. Exp. Biol. 1999, 202, 2413–2432. [Google Scholar] [CrossRef]
- Hawkins, M.B.; Henke, K.; Harris, M.P. Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell 2021, 184, 899–911.e13. [Google Scholar] [CrossRef]
- Stewart, T.A.; Lemberg, J.B.; Taft, N.K.; Yoo, I.; Daeschler, E.B.; Shubin, N.H. Fin ray patterns at the fin-to-limb transition. Proc. Natl. Acad. Sci. USA 2020, 117, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Yu, X. Stem sarcopterygians have primitive polybasal fin articulation. Biol. Lett. 2009, 5, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Woltering, J.M.; Irisarri, I.; Ericsson, R.; Joss, J.M.; Sordino, P.; Meyer, A. Sarcopterygian fin ontogeny elucidates the origin of hands with digits. Sci. Adv. 2020, 6, eabc3510. [Google Scholar] [CrossRef] [PubMed]
- Tulenko, F.J.; Augustus, G.J.; Massey, J.L.; Sims, S.E.; Mazan, S.; Davis, M.C. HoxD expression in the fin-fold compartment of basal gnathostomes and implications for paired appendage evolution. Sci. Rep. 2016, 6, 22720. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.; Zhang, G.; Cohn, M.J. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PLoS ONE 2007, 2, e754. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, C.T.; Alföldi, J.; Lee, A.P.; Fan, S.; Philippe, H.; MacCallum, I.; Braasch, I.; Manousaki, T.; Schneider, I.; Rohner, N. The African coelacanth genome provides insights into tetrapod evolution. Nature 2013, 496, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.W.; Hawkins, M.B.; Parey, E.; Wcisel, D.J.; Ota, T.; Kawasaki, K.; Funk, E.; Losilla, M.; Fitch, O.E.; Pan, Q. The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nat. Genet. 2021, 53, 1373–1384. [Google Scholar] [CrossRef]
- Marlétaz, F.; de la Calle-Mustienes, E.; Acemel, R.D.; Paliou, C.; Naranjo, S.; Martínez-García, P.M.; Cases, I.; Sleight, V.A.; Hirschberger, C.; Marcet-Houben, M. The little skate genome and the evolutionary emergence of wing-like fins. Nature 2023, 616, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. Fins into limbs: Autopod acquisition and anterior elements reduction by modifying gene networks involving 5′Hox, Gli3, and Shh. Dev. Biol. 2016, 413, 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Rüther, U.; Wang, B. The Shh-independent activator function of the full-length Gli3 protein and its role in vertebrate limb digit patterning. Dev. Biol. 2007, 305, 460–469. [Google Scholar] [CrossRef]
- Zhang, J.; Wagh, P.; Guay, D.; Sanchez-Pulido, L.; Padhi, B.K.; Korzh, V.; Andrade-Navarro, M.A.; Akimenko, M.-A. Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 2010, 466, 234–237. [Google Scholar] [CrossRef] [PubMed]
Scientific Name | Chitala ornata |
---|---|
English name | Clown featherback |
Contig number | 126 |
Contig N50 (bp) | 32,781,493 |
Contig N90 (bp) | 10,454,454 |
Chromosome number | 21 |
Scaffold N50 (bp) | 40,727,490 |
Scaffold N90 (bp) | 22,642,485 |
Hi-C-anchored ratio | 94.78% |
Assembled genome size (bp) | 837,264,786 |
GC content | 41.92% |
Genome-complete BUSCOs (C) | 96.40% |
Complete and single-copy BUSCOs (S) | 93.10% |
Complete and duplicated BUSCOs (D) | 3.30% |
Fragmented BUSCOs (F) | 1.40% |
Missing BUSCOs (M) | 2.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Song, Y.; Zhang, S.; Chen, Y.; Xu, M.; Fan, G.; Liu, X. The Chromosome-Scale Genome of Chitala ornata Illuminates the Evolution of Early Teleosts. Biology 2024, 13, 478. https://doi.org/10.3390/biology13070478
Yuan Z, Song Y, Zhang S, Chen Y, Xu M, Fan G, Liu X. The Chromosome-Scale Genome of Chitala ornata Illuminates the Evolution of Early Teleosts. Biology. 2024; 13(7):478. https://doi.org/10.3390/biology13070478
Chicago/Turabian StyleYuan, Zengbao, Yue Song, Suyu Zhang, Yadong Chen, Mengyang Xu, Guangyi Fan, and Xin Liu. 2024. "The Chromosome-Scale Genome of Chitala ornata Illuminates the Evolution of Early Teleosts" Biology 13, no. 7: 478. https://doi.org/10.3390/biology13070478
APA StyleYuan, Z., Song, Y., Zhang, S., Chen, Y., Xu, M., Fan, G., & Liu, X. (2024). The Chromosome-Scale Genome of Chitala ornata Illuminates the Evolution of Early Teleosts. Biology, 13(7), 478. https://doi.org/10.3390/biology13070478