Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery
Abstract
Simple Summary
Abstract
1. Introduction
2. Anaplastic Thyroid Cancer
3. Differentiated Thyroid Cancer
3.1. Papillary Thyroid Cancer
3.2. Follicular Thyroid Cancer
4. Anaplastic Thyroid Cancer vs. Well-Differentiated Thyroid Cancers (Papillary Thyroid Cancer and Follicular Thyroid Cancer)
5. Current Thyroid Cancer Treatment Modalities
6. Studying lncRNAs
7. lncRNAs in Anaplastic Thyroid Cancer
8. lncRNAs in Well-Differentiated Thyroid Cancer
8.1. Papillary Thyroid Cancer
8.2. Follicular Thyroid Cancer
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TC | Thyroid cancer |
FNA | Fine needle aspiration |
PTC | Papillary thyroid cancer |
FTC | Follicular thyroid cancer |
ATC | Anaplastic thyroid cancer |
MAPK | Mitogen Activated Protein Kinase |
lncRNA | Long Non-Coding RNA |
nt | Nucleotides |
miRNA | MicroRNA |
mRNA | Messenger RNA |
Ce | Competing endogenous |
LN | Lymph node |
ETE | Extrathyroidal extension |
GEO | Gene Expression Omnibus |
NCBI | National Center for Biotechnology Information |
TANRIC | The Atlas of non-coding RNA in cancer |
BTN | Benign thyroid nodule |
MALAT1 | Metastasis Associated Lung Adenocarcinoma Transcript 1 |
FOXA1 | Forkhead Box A1 |
HOTAIRM1 | HOXA Transcript Antisense RNA |
pri-miRNA | Primary miRNA |
EMT | Epithelial-to-mesenchymal |
c-Myc | Cellular myc |
UCA1 | Urothelial Carcinoma-Associated 1 |
TME | Tumor microenvironment |
PD-L1 | Programmed death ligand-1 |
PD-1 | Programmed death-1 |
CTL | Cytotoxic T lymphocyte |
OS | Overall survival |
MANCR | Mitotically Associated Long Non-Coding RNA |
RNAi | RNA-interference |
siRNA | Short-interfering RNAs |
NEAT1 | Nuclear Paraspeckle Assembly Transcript 1 |
DDP | cis-diamminedichloroplatinum(II) |
SPAG9 | Sperm-Associated Antigen 9 |
PAR5 | Prader Willi/Angelman Region RNA5 |
(SOX2OT | SOX2 overlapping transcript |
DANCR | Differentiation antagonizing non-coding RNA |
TINCR | Tissue differentiation-induced non-coding RNA |
LUCAT1 | Lung Cancer Associated Transcript 1 |
HOTTIP | HOXA Transcript at the Distal Tip |
LINC | Long Intergenic Non-Coding |
BANCR | BRAF-Activated Non-Coding RNA |
COMET | Correlated-to-MET |
CASC2 | Cancer Susceptibility Candidate 2 |
ZEB1 | Zinc Finger E-box-Binding Homeobox 1 |
VEGF | Vascular Endothelial Growth Factor |
HCP5 | HLA complex P5 |
GAS5 | Growth arrest specific transcript 5 |
References
- Seib, C.D.; Sosa, J.A. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol. Metab. Clin. 2019, 48, 23–35. [Google Scholar] [CrossRef]
- Kim, J.; Gosnell, J.E.; Roman, S.A. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol. 2020, 16, 17–29. [Google Scholar] [CrossRef]
- Bellevicine, C.; Migliatico, I.; Sgariglia, R.; Nacchio, M.; Vigliar, E.; Pisapia, P.; Iaccarino, A.; Bruzzese, D.; Fonderico, F.; Salvatore, D.; et al. Evaluation of BRAF, RAS, RET/PTC, and PAX8/PPARg alterations in different Bethesda diagnostic categories: A multicentric prospective study on the validity of the 7-gene panel test in 1172 thyroid FNAs deriving from different hospitals in South Italy. Cancer Cytopathol. 2019, 128, 107–118. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; McFadden, D.G.; Durante, C. Thyroid Cancer. Lancet 2016, 388, 2783–2795. [Google Scholar] [CrossRef]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J., Jr.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 3. [Google Scholar] [CrossRef]
- Fonseca-Montaño, M.A.; Blancas, S.; Herrera-Montalvo, L.A.; Hidalgo-Miranda, A. Cancer Genomics. Arch. Med. Res. 2022, 53, 723–731. [Google Scholar] [CrossRef]
- Khatami, F.; Tavangar, S.M. A Review of Driver Genetic Alterations in Thyroid Cancers. Iran. J. Pathol. 2018, 13, 125–135. [Google Scholar] [CrossRef]
- Ciampi, R.; Nikiforov, Y.E. RET/PTC Rearrangements and BRAF Mutations in Thyroid Tumorigenesis. Endocrinology 2007, 148, 936–941. [Google Scholar] [CrossRef]
- Zhao, H.; De Souza, C.; Kumar, V.E.; Nambiar, R.; Hao, D.; Zhu, X.; Luo, Y.; Zhang, L.; Zhu, J. Long non-coding RNA signatures as predictors of prognosis in thyroid cancer: A narrative review. Ann. Transl. Med. 2021, 9, 359. [Google Scholar] [CrossRef]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef]
- Winkler, L.; Dimitrova, N. A mechanistic view of long noncoding RNAs in cancer. WIREs RNA 2021, 13, e1699. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef]
- Aprile, M.; Costa, V.; Cimmino, A.; Calin, G. Emerging role of oncogenic long noncoding RNA as cancer biomarkers. Int. J. Cancer 2022, 152, 822–834. [Google Scholar] [CrossRef]
- Fisher, R.; Pusztai, L.; Swanton, C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer 2013, 108, 479–485. [Google Scholar] [CrossRef]
- Alarcón-Sánchez, B.R.; Pérez-Carreón, J.I.; Villa-Treviño, S.; Arellanes-Robledo, J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem. Pharmacol. 2021, 194, 114818. [Google Scholar] [CrossRef]
- Qi, X.; Lin, Y.; Chen, J.; Shen, B. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief. Bioinform. 2019, 21, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Y.; Liu, Z.; Dai, Y.; Jiao, X. Targeted inhibition of long non-coding RNA H19 blocks anaplastic thyroid carcinoma growth and metastasis. Bioengineered 2019, 10, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, R.M.; Haugen, B.; Perrier, N.D. Updated American Joint Committee on Cancer/ Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eigth Edition): What Changed and Why? Thyroid 2017, 6, 751–756. [Google Scholar] [CrossRef]
- Zivaljevic, V.; Tausanovic, K.; Paunovic, I.; Diklic, A.; Kalezic, N.; Zoric, G.; Sabljak, V.; Vekic, B.; Zivic, R.; Marinkovic, J.; et al. Age as a prognostic factor in anaplastic thyroid cancer. Int. J. Endocrinol. 2014, 2014, 240513. [Google Scholar] [CrossRef]
- Schlumberger, M.; Leboulleux, S. Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 2021, 17, 176–188. [Google Scholar] [CrossRef]
- Khan, U.; Al Afif, A.; Aldaihani, A.; MacKay, C.; Rigby, M.H.; Rajaraman, M.; Imran, S.A.; Bullock, M.J.; Taylor, S.M.; Trites, J.R.B.; et al. Patient and tumor factors contributing to distant metastasis in well-differentiated thyroid cancer: A retrospective cohort study. J. Otolaryngol.-Head Neck Surg. 2020, 49, 1. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.L.; Kloos, R.T.; Aunins, B.; Holm, T.M.; Roth, M.Y.; Yeh, M.W.; Randolph, G.W.; Tabangin, M.E.; Altaye, M.; Steward, D.L. Pathologic Features Associated With Molecular Subtypes of Well-Differentiated Thyroid Cancer. Endocr. Pract. 2021, 27, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Kilfoy, B.A.; Devesa, S.S.; Ward, M.H.; Zhang, Y.; Rosenberg, P.S.; Holford, T.R.; Anderson, W.F. Gender is an Age-Specific Effect Modifier for Papillary Cancers of the Thyroid Gland. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2022, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Jonklaas, J.; Nogueras-Gonzalez, G.; Munsell, M.; Litofsky, D.; Ain, K.B.; Bigos, S.T.; Brierley, J.D.; Cooper, D.S.; Haugen, B.R.; Ladenson, P.W.; et al. The Impact of Age and Gender on Papillary Thyroid Cancer Survival. J. Clin. Endocrinol. Metab. 2012, 97, E878–E887. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, J.; Kukulska, A.; Oczko-Wojciechowska, M.; Kotecka-Blicharz, A.; Drosik-Rutowicz, K.; Haras-Gil, M.; Jarzab, B.; Handkiewicz-Junak, D. Early Diagnosis of Low-Risk Papillary Thyroid Cancer Results Rather in Overtreatment Than in a Better Survival. Front. Endocrinol. 2020, 11, 571421. [Google Scholar] [CrossRef] [PubMed]
- Maksimovic, S.; Jakovljevic, B.; Gojkovic, Z. Lymph Node Metastases Papillary Thyroid Carcinoma and their Importance in Recurrence of Disease. Med. Arch. 2018, 72, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Mao JZhang, Q.; Zhang, H.; Zheng, L.; Wang, R.; Wang, G. Risk factors for Lymph Node Metastasis in Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 265. [Google Scholar] [CrossRef]
- Grebe, S.K.G.; Hay, I.D. Follicular Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 1995, 24, 761–801. [Google Scholar] [CrossRef]
- Santacroce, L.; Balducci, L. Follicular Thyroid Carcinoma; Medscape: New York, NY, USA, 2022. [Google Scholar]
- Zheng, H.; Xiao, Z.; Luo, S.; Wu, S.; Huang, C.; Hong, T.; He, Y.; Guo, Y.; Du, G. Improve follicular thyroid carcinoma diagnosis using computer aided diagnosis system on ultrasound images. Front. Oncol. 2022, 12, 939418. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Miao, Y.; Zhu, Q.; Gao, M.; Hao, F. Expression of long non-coding RNA H19 predicts distant metastasis in minimally invasive follicular thyroid carcinoma. Bioengineered 2019, 10, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Lee, Y.; Lu, Y.; Lin, S. Risk Factors and Prognosis for Metastatic Follicular Thyroid Cancer. Front. Endocrinol. 2022, 13, 791826. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Domrchev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Gugnoni, M.; Lorenzini, E.; Faria do Valle, I.; Remondini, D.; Castellani, G.; Torricelli EDonati, B.; Ragazzi, M.; Ghini, F.; Piana, S.; Ciarrocchi, A.; et al. Adding pieces to the puzzle of differentiated-to-anaplastic thyroid cancer evolution: The oncogene E2F7. Cell Death Dis. 2023, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Li, L.; Qian, Y.; Ge, X.; Hu, X.; Zhang, Y.; Ge, M.; Huang, P. The differences of regulatory networks between papillary and anaplastic thyroid carcinoma: An integrative transcriptomics study. Cancer Biol. Ther. 2020, 21, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Tiedje, V.; Stuschke, M.; Weber, F.; Dralle, H.; Moss, L.; Führer, D. Anaplastic thyroid carcinoma: Review of treatment protocols. Endocr.-Relat. Cancer 2018, 25, R153–R161. [Google Scholar] [CrossRef] [PubMed]
- Smallridge, R.C.; Copland, J.A. Anaplastic Thyroid Carcinoma: Pathogenesis and Emerging Therapies. Clin. Oncol. 2010, 22, 486–497. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Trevisan, M.; Fugazzola, L. Recent advances in the management of anaplastic thyroid cancer. Thyroid. Res. 2020, 13, 17. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Zeng, P.; Wang, J.; Geng, B.; Yang, J.; Cui, Q. LncTar: A tool for predicting the RNA targets of long noncoding RNAs. Brief. Bioinform. 2015, 16, 806–812. [Google Scholar] [CrossRef]
- Perron, U.; Provero, P.; Molineris, I. In silico prediction of lncRNA function using tissue specific and evolutionary conserved expression. BMC Bioinform. 2017, 18, 144. [Google Scholar] [CrossRef] [PubMed]
- Paraskevopoulou, M.D.; Hatzigeorgiou, A.G. Analyzing MiRNA-LncRNA Interactions. Methods Mol. Biol. 2016, 1402, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, T.; Khalaj-Kondori, M.; Feizi MA, H.; Asadi, P. lncRNA-miRNA-mRNA interaction network for colorectal cancer; An in silico analysis. Comput. Biol. Chem. 2020, 89, 107370. [Google Scholar] [CrossRef]
- Rodrigues de Bastos, D.; Nagai, M.A. In silico analyses identify lncRNAs: WDFY3-AS2, BDNF-AS and APAF1-AS1 as potential prognostic factors for patients with triple-negative breast tumors. PLoS ONE 2020, 15, e0232284. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, Y.-Z.; Guan, N.-N.; Qu, J.; Huang, Z.-A.; Zhu, Z.-X.; Li, J.-Q. Computational models for lncRNA function prediction and functional similarity calculation. Brief. Funct. Genom. 2019, 18, 58–82. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, P.; Tian, R.; Wang, S.; Guo, Q.; Luo, M.; Guiyou, L.; Jiang, H.; Jiang, Q. LncRNA2Target v2.0: A comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res. 2019, 47, D140–D144. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wang, J.; Wu, X.; Ma, R.; Zhang, T.; Jin, S.; Han, Z.; Tan, R.; Peng, J.; Liu, G.; et al. LncRNA2Target: A database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res. 2015, 43, D193–D196. [Google Scholar] [CrossRef]
- Karagkouni, D.; Parasekevopoulou, M.D.; Tastsoglou, S.; Skoufos, G.; Karavangeli, A.; Pierros, V.; Zacharopoulou, E.; Hatzigeorgiou, A.G. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res. 2020, 48, D101–D110. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.; Wright, P.R.; Backofen, R. IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 2017, 45, W435–W439. [Google Scholar] [CrossRef]
- Wright, P.R.; Georg, J.; Mann, M.; Sorescu, D.A.; Richter, A.S.; Lott, S.; Kleinkauf, R.; Hess, W.R.; Backofen, R. CopraRNA and IntaRNA: Predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 2014, 42, W119–W123. [Google Scholar] [CrossRef]
- Busch, A.; Ritcher, A.S.; Backofen, R. IntaRNA: Efficient prediction of bacterial sRNA target site accessibility and seed regions. Bioinformatics 2008, 24, 2849–2859. [Google Scholar] [CrossRef] [PubMed]
- Raden, M.; Ali, S.M.; Alkhnbashi, O.S.; Busch, A.; Costa, F.; Davis, J.A.; Eggenhofer, F.; Gelhausen, R.; Georg, J.; Heyne, S.; et al. Freiburg RNA tools: A central online resource for RNA-focused research and teaching. Nucleic Acids Res. 2018, 46, W25–W29. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Gao, C.; Zheng, Y.-M.; Yi, L.; Lu, J.-C.; Huang, X.-Y.; Cai, J.-B.; Zhang, P.-F.; Cui, Y.-H.; Ke, A.-W. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol. Cancer 2022, 21, 57. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, T.; Yamamoto, T. Acceleration of cancer science with genome editing and related technologies. Cancer Sci. 2018, 109, 3679–3685. [Google Scholar] [CrossRef] [PubMed]
- Volante, M.; Lam, A.K.; Papotti, M.; Tallini, G. Molecular Pathology of Poorly Differentiated and Anaplastic Thyroid Cancer: What Do Pathologists Need to Know? Endocr. Pathol. 2021, 32, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.; Nucera, C. Personalized Therapy in Patients With Anaplastic Thyroid Cancer: Targeting Genetic and Epigenetics Alterations. J. Clin. Endocrinol. Metab. 2015, 100, 35–42. [Google Scholar] [CrossRef]
- Sugitani, I.; Miyauchi, A.; Sugino, K.; Okamoto, T.; Yoshida, A.; Suzuki, S. Prognostic Factors and Treatment Outcomes for Anaplastic Thyroid Carcinoma: ATC Research Consortium of Japan Cohort Study of 677 Patients. World J. Surg. 2012, 36, 1247–1254. [Google Scholar] [CrossRef]
- Pozdeyev, N.; Rose, M.M.; Bowles, D.W.; Schweppe, R.E. Molecular therapeutics for anaplastic thyroid cancer. Semin. Cancer Biol. 2020, 61, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Raveh, E.; Matouk, I.J.; Gilon, M.; Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression, and metastasis—A proposed unifying theory. Mol. Cancer 2015, 14, 184. [Google Scholar] [CrossRef]
- Liang, W.C.; Fu, W.M.; Wong, C.W.; Wang, Y.; Wang, W.M.; Hu, G.X.; Zhang, L.; Xiao, L.J.; Wan, D.C.C.; Zhang, J.F.; et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 2015, 6, 22513–22525. [Google Scholar] [CrossRef]
- Xing, M. Genetic Alterations in the Phosphatidylinositol-3 Kinase/ Akt Pathway in Thyroid Cancer. Thyroid 2020, 20, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, R.; Wang, J.; Cui, Z.; Wang, Y.; Zhao, Y. Upregulation of lncRNA H19 promotes nasopharyngeal carcinoma proliferation and metastasis in let-7 dependent manner. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Dey, B.K.; Pfeifer, K.; Dutta, A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Gene Dev. 2014, 28, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Gabory, A.; Jammes, H.; Dandolo, L. The H19 locus: Role of an imprinted non-coding RNA in growth and development. Bioessays 2020, 32, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-X.; Zhu, Q.-N.; Zhang, H.-B.; Hu, Y.; Wang, G.; Zhu, Y.-S. MALAT1: A potential biomarker in cancer. Cancer Manag. Res. 2018, 10, 6757–6768. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Feng, P.; Zhu, X.; He, S.; Duan, J.; Zhao, D. Long non-coding RNA MALAT1 promotes neurite outgrowth through activation of ERK/MAPK signaling pathway in N2a cells. J. Cell. Mol. Med. 2016, 20, 2102–2110. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yan, G.; Zhang, J.; Yu, L. Knockdown of Long Noncoding RNA (lncRNA) Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Inhibits Proliferation, Migration, and Invasion and Promotes Apoptosis by Targeting miR-124 in Retinoblastoma. Oncol. Res. 2018, 26, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.-C.; Qian, Y.; Ma, Y.-Y.; Jiang, Y.; Qian, W.-F. Long Non-coding RNA RP11-395G23.3 Acts as a Competing Endogenous RNA of miR-124-3p to Regulate ROR1 in Anaplastic Thyroid Cancer. Frontiers 2021, 12, 673242. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Zou, H.; Beibei, L. Long noncoding RNA MALAT1 knockdown inhibits progression of anaplastic thyroid carcinoma by regulating miR-200a-3p/FOXA1. Cancer Biol. Ther. 2019, 20, 1355–1365. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Li, S.; Xhang, Y.; Liu, Y.; Dong, J.; Zhao, W.; Yu, B.; Wang HLiu, J. Genomic amplification of long noncoding RNA HOTAIRM1 drives anaplastic thyroid cancer progression via repressing miR-144 biogenesis. RNA Biol. 2020, 18, 547–562. [Google Scholar] [CrossRef]
- Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and Cancer Metabolism. Clin. Cancer Res. 2012, 18, 5546–5553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, Z.; Li, D. Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR-135a-mediated c-myc activation. Mol. Med. Rep. 2018, 18, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Y.; Zheng, J.; Yao, C.; Lu, X. LncRNA UCA1 attenuated the killed effect of cytotoxic CD8+ T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway. Cancer Immunol. Immunother. 2021, 70, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Chintakuntlawar, A.V.; Rumilla, K.M.; Smith, C.Y.; Jenkins, S.M.; Foote, R.L.; Kasperbauer, J.L.; Morris, J.C.; Ryder, M.; Alsidawi, S.; Hilger, C.; et al. Expression of PD-1 and PD-L1 in Anaplastic Thyroid Cancer Patients Treated With Multimodal Therapy: Results From a Retrospective Study. J. Clin. Endocrinol. Metab. 2017, 102, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.-S.; Lei, B.-W.; Tan, L.-C.; Yu, P.-C.; Shi, X.; Wang, Y.; Ji, Q.-H.; Wei, W.-J.; Lu, A.-W.; Wang, Y.-L. Mitotically associated long non-coding RNA is a tumor promoter in anaplastic thyroid cancer. Ann. Transl. Med. 2020, 8, 1226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, H.; Wen, P.; Wang, Y.; Cui, Y.; Wu, J. circRNA circMED27 acts as a prognostic factor and mediator to promote levatinib resistance of hepatocellular carcinoma. Mol. Ther. Nucleic Acids 2022, 27, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Su, Z.; Zhang, Z.; Gao, Z. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR-9-5p and regulating SPAG9 expression. Int. J. Oncol. 2019, 55, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.; Turchinovich, A.; Wang, Y.; Golobova, O.; Buschmann, D.; Zieger, M.; Umbricht, C.; Witwer, K. miR-210 Expression Is Strongly Hypoxia-Induced in Anaplastic Thyroid Cancer Cell Lines and Is Associated with Extracellular Vesicles and Argonaute-2. Int. J. Mol. Sci. 2021, 24, 4507. [Google Scholar] [CrossRef]
- Tan, X.; Wang, P.; Lou, J.; Zhao, J. Knockdown of lncRNA NEAT1 suppresses hypoxia-induced migration, invasion and glycolysis in anaplastic thyroid carcinoma cells through regulation of miR-206 and miR-599. Cancer Cell Int. 2020, 20, 132. [Google Scholar] [CrossRef]
- Pellecchia, S.; Sepe, R.; Decaussin-Petrucci, M.; Ivan, C.; Shimizu, M.; Coppola, C.; Testa, D.; Calin, G.; Fusco, A.; Pallante, P. The Long Non-Coding RNA Prader Willi/Angelman Region RNA5 (PAR5) Is Downregulated in Anaplastic Thyroid Carcinomas Where It Acts as a Tumor Suppressor by Reducing EZH2 Activity. Cancers 2020, 12, 235. [Google Scholar] [CrossRef]
- Chaw, S.Y.; Majeed, A.A.; Dalley, A.J.; Chan, A.; Stei, S.; Farah, C.S. Epithelial to mesenchymal transition (EMT) markers—E-cadherin, beta-catenin, APC and Vimentin—I noral sequamous cell carcinogenesis and transformation. Oral Oncol. 2012, 48, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Icduygu, F.M.; Akgun, E.; Sengul, D.; Ozgoz, A.; Alp, E. Expression of SOX2OT, DANCR, and TINCR long non-coding RNAs in papillary thyroid cancer and its effects on clinicopathological features. Mol. Med. Rep. 2022, 25, 120. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, Q.; Yuan, X.; Xue, C.; Shen, S.; He, Y. DANCR: An emerging therapeutic target for cancer. Am. J. Transl. Res. 2020, 12, 4031–4032. [Google Scholar] [PubMed]
- Ghafouri-Fard, S.; Dashti, S.; Taheri, M.; Omrani, M.D. An lncRNA with dual functions in the carcinogenesis process. Non-Coding RNA Res. 2020, 5, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang Bo Wang, W.; Su, D.; Xia, F.; Li, X. Identifying the Transcriptional Regulatory Network Associated with Extrathyroidal Extension in Papillary Thyroid Carcinoma by Comprehensive Bioinformatics Analysis. Font. Genet. 2020, 11, 453. [Google Scholar] [CrossRef] [PubMed]
- Luzon-Toro, B.; Fernandez, R.M.; MArtos-Martinez, J.M.; Rubio-Manzanares-Dorado, M.; Antinolo, G.; Borrego, S. LncRNA LUCAT1 as a novel prognostic biomarker for patient papillary thyroid cancer. Sci. Rep. 2019, 9, 14374. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, Y.; Fan, Y.; Liu, Z.; Wang, Z.; Jia, M.; Geng, Z.; Lu, X. LncRNA HOTTIP promotes papillary thyroid carcinoma cell proliferation, invasion and migration by regulating miR-637. Int. J. Biochem. Cell Biol. 2018, 98, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yin, H.; Hu, J.; Wei, X. Long noncoding RNA LINC00313 modulates papillary thyroid cancer tumorigenesis via sponging miR-4429. Neoplasma 2018, 65, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Sun, W.; Dong, W.; Wang, Z.; Zhang, T.; He, L.; Zhang, H. Downregulation of long noncoding RNA H19 contributes to the proliferation and migration of papillary thyroid carcinoma. Gene 2018, 10, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Q.; Jin, X.; Guo, H.; Li, H. Long non-coding RNA H19 knockdown inhibits the cell viability and promotes apoptosis of thyroid cancer cells through regulating the PI3K/AKT pathway. Exp. Ther. Med. 2019, 18, 1863–1869. [Google Scholar] [CrossRef]
- Sahin, Y. LncRNA H19 is a potential biomarker and correlated with immune infiltration in thyroid carcinoma. Clin. Exp. Med. 2022, 23, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Qu, N.; Shi, R.-L.; Guo, K.; Ma, B.; Cao, Y.-M.; Xiang, J.; Lu, Z.-W.; Zhu, Y.-X.; Li, D.-S.; et al. BRAF-activated lncRNA functions as a tumor suppressor in papillary thyroid cancer. Oncotarget 2017, 8, 238–247. [Google Scholar] [CrossRef]
- Esposito, R.; Esposito, D.; Pallante, P.; Fusco, A.; Ciccodicola, A.; Costa, V. Oncogenic Properties of the Antisense lncRNA COMET in BRAF- and RET-Driven Papillary Thyroid Carcinomas. Cancer Res. 2019, 79, 2124–2135. [Google Scholar] [CrossRef]
- Byeon, H.K.; Na, H.J.; Yang, Y.J.; Kwon, H.J.; Chang, J.W.; Ban, M.J.; Kim, W.S.; Shin, D.Y.; Lee, E.J.; Koh, Y.W.; et al. c-Met-mediated reactivation of PI3K/AKT signaling contributes to insensitivity of BRAF(V600E) mutant thyroid cancer to BRAF inhibition. Mol. Carcinog. 2016, 55, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Eigentler, T.K. Vemurafenib. Small Mol. Oncol. 2018, 211, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, C.; Wang, X.; Cui, C.; Cui, H.; Zhu, B.; Chen, A.; Zhang, L.; Xin, J.; Fu, Q.; et al. Long non-cdoing RNA MFSD4A-AS1 promotes lym[phangiogenesis and pymphatic metastasis of papillary thyroid cancer. Endocr.-Relat. Cacner 2023, 30, e220221. [Google Scholar] [CrossRef]
- Zhou, T.; Zhong, M.; Zhang, S.; Wang, Z.; Xie, R.; Xiong, C.; Lc, Y.; Chen, W.; Yu, J. LncRNA CASC2 expression is downregulated in papillary thyroid cancer and promotes cell invasion by affecting EMT pathway. Cancer Biomark. 2018, 23, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-M.; Lo, C.-Y.; Lam, A.-K.; Lang, B.; Leung, P.L.; Luk, J.M. The potential clinical relevance of serum vascular endothelial growth factor (VEGF) and VEGF-C in recurrent papillary thyroid cancer. Surgery 2008, 144, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Medici, M.; Porcu, E.; Pistis, G.; Temur, A.; Brown, S.; Jensen, R.A.; Rawal, R.; Roef, G.L.; Plantinga, T.S.; Vermeulen, S.H.; et al. Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease. PLoS Genet. 2014, 10, e1004123. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Xu, J.; Wang, M.; Xu, G.; Zhang, N.; Wang, G.; Zhao, Y. LncRNA HCP5 promotes follicular thyroid carcinoma progression via miRNAs sponge. Cell Death Dis. 2018, 9, 372. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, X.; Liang, L.; Pan, X.; Lv, H.; Zhao, Y. Sialyltransferase ST3GAL6 mediates the effect of microRNA-26a on cell growth, migration, and invasion in hepatocellular carcinoma through the protein kinase B/mammalian target of rapamycin pathway. Cancer Sci. 2017, 108, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Y.; Ma, W.; Dong, W.; Zhou, H.; Song, X.; Zhang, J.; Jia, L. Modification of Sialylation Mediates the Invasive Properties and Chemosensitivity of Human Hepatocellular Carcinoma. Mol. Cell. Proteom. 2014, 13, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Shanmugalingam, T.; Bosco, C.; Ridley, A.J.; Hemelrijck, M.V. Is there a role for IGF-1 in the development of secondary primary cancers? Cancer Med. 2016, 5, 3353–3367. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Yuan, Y.; Wang, M.; Yang, J.; Wang, H.; Sun, Y.; Xu, J.; Zhao, Y. LncRNA H19 Suppresses Metstasis of Follicular Thyroid Carcinoma via the IGF1/JAK/STAT Pathway. SSRN 2019. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Liu, J.; Deng, Z.; Zeng, L.; Zhou, W. Long Noncoding RNA GAS5 Targeting miR-221-3p/Cyclin-Dependent Kinase Inhibitor 2B Axis Regulates Follicular Thyroid Carcinoma Cell Cycle and Proliferation. Pathobiology 2021, 88, 298–300. [Google Scholar] [CrossRef]
- Silva, A.; Bullock, M.; Calin, G. The Clinical Relevance of Long Non-Coding RNAs in Cancer. Cancers 2015, 7, 2169–2182. [Google Scholar] [CrossRef]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- Shi, T.; Gao, G.; Cao, Y. Long Noncoding RNAs as Novel Biomarkers Have a Promising Future in Cancer Diagnostics. Dis. Markers 2016, 2016, 9085195. [Google Scholar] [CrossRef]
- Vaghari-Tabari, M.; Hassanpour, P.; Sadeghsoltani, F.; Malakoti, F.; Alemi, F.; Qujeq, D.; Asemi, Z.; Yousefi, B. CRISPR/Cas9 gene editing: A new approach for overcoming drug resistance in cancer. Cell. Mol. Biol. Lett. 2022, 27, 49. [Google Scholar] [CrossRef]
- Sartori, D.A.; Chan, D.W. Biomarkers in prostate cancer: What’s new? Curr. Opin. Oncol. 2014, 26, 259–264. [Google Scholar] [CrossRef]
- Shao, Y.; Ye, M.; Jiang, X.; Sun, W.; Ding, X.; Liu, Z.; Ye, G.; Zhang, X.; Xiao, B.; Guo, J. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer 2014, 120, 3320–3328. [Google Scholar] [CrossRef] [PubMed]
- Kara, G.; Calin, G.A.; Ozpolat, B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv. Drug Deliv. Rev. 2022, 182, 114113. [Google Scholar] [CrossRef] [PubMed]
Thyroid Cancer Subtype | lncRNA Name | Expression Pattern | Role in Thyroid Cancer |
---|---|---|---|
Anaplastic Thyroid Cancer | MALAT1 | ↑ | miR-200p-3a repression and FOXA1 activation impacting proliferation, migration/invasion, autophagy, and apoptosis |
HOTAIRM1 | ↑ | Correlated with decreased patient survival; prevents functional miR-144 and induces EMT | |
UCA1 | ↑ | Drives aberrant c-myc expression and oncogenesis [49]; sponges miR-148a, increases PD-L1 expression, and CTL activity | |
MANCR | ↑ | Drives apoptotic inhibition and proliferative and invasive induction | |
NEAT1 | ↑ | Associated with advanced TNM stage, LN metastasis, and chemoresistance [54]; inhibits miR-9-5p; drives hypoxia-induced carcinogenic behavior | |
PAR5 | ↓ | Unable to inhibit EZH2, leading to its overexpression and increased oncogenic activity | |
H19 | ↑ ≠ | Influences proliferation, colony-forming capacity, invasive potential, migratory propensity, and apoptotic induction | |
Papillary Thyroid Cancer | H19 | ↑↓ ≠ | Conflicting roles: low levels may promote carcinogenesis and modulate TME activity; high levels may serve as an oncogene |
SOX2OT | ↑ | Biomarker in PTC; correlated with cancer onset and progression | |
DANCR | ↑ | Biomarker in PTC; correlated with cancer onset | |
TINCR | = | Reported biomarker in PTC; associated with various clinicopathological features of PTC | |
lnc-OMD-1 | ↑ * | Significantly correlated with ETE and more aggressive PTC | |
LUCAT1 | ↑ | Correlated with advanced TNM stage; impacts G1 cell cycle control (p21/p53 axis), proliferation, invasion, and apoptotic prevention | |
HOTTIP | ↑ | Promotes cellular proliferation and metastasis via miR-637 repression and Akt1 activation; correlates with tumor volume | |
LINC00313 | ↑ | Correlated with worse prognosis; promotes migration and clonogenicity; inhibits apoptosis; downregulates miR-4429 | |
BANCR | ↓ * | Low levels correlated with advanced TNM staging and poorly differentiated PTC | |
COMET | ↑ | Oncogenic driver in PTC (via MET/MAPK activation) leading to cellular proliferation, survival, and metastasis | |
CASC2 | ↓ | Correlated with LN metastasis; associated with growth rate, migratory and invasive capabilities, and EMT | |
MFSD4A-AS1 | ↑ | Correlated with LN metastasis; promotes lymphangiogenic formation, and enhances PTC cell invasiveness | |
Follicular Thyroid Cancer | HCP5 | ↑ | Drives proliferation, migration, angiogenesis, and tumorigenesis in FTC; correlated with more invasive FTC |
H19 | ↓ ≠ | Inversely correlated with tumor size, vascular invasion, and distant metastases; associated with ETE and likelihood of recurrence | |
GAS5 | ↓ | Regulates G0/G1 cell cycle control and cellular proliferation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DeSouza, N.R.; Jarboe, T.; Carnazza, M.; Quaranto, D.; Islam, H.K.; Tiwari, R.K.; Geliebter, J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. Biology 2024, 13, 304. https://doi.org/10.3390/biology13050304
DeSouza NR, Jarboe T, Carnazza M, Quaranto D, Islam HK, Tiwari RK, Geliebter J. Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. Biology. 2024; 13(5):304. https://doi.org/10.3390/biology13050304
Chicago/Turabian StyleDeSouza, Nicole R., Tara Jarboe, Michelle Carnazza, Danielle Quaranto, Humayun K. Islam, Raj K. Tiwari, and Jan Geliebter. 2024. "Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery" Biology 13, no. 5: 304. https://doi.org/10.3390/biology13050304
APA StyleDeSouza, N. R., Jarboe, T., Carnazza, M., Quaranto, D., Islam, H. K., Tiwari, R. K., & Geliebter, J. (2024). Long Non-Coding RNAs as Determinants of Thyroid Cancer Phenotypes: Investigating Differential Gene Expression Patterns and Novel Biomarker Discovery. Biology, 13(5), 304. https://doi.org/10.3390/biology13050304