The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders
Abstract
:Simple Summary
Abstract
1. Introduction—Background
1.1. Neurodevelopmental Disorders (NDDs)
1.2. Bcl11 Transcription Factor Family
2. Role of Bcl11 TFs in CNS Development and NDDs
2.1. BCL11A-Related NDDs
2.2. Functions of BCL11A in CNS Development
2.3. BCL11B-Related NDDs
2.4. Functions of Bcl11b in CNS Development
2.5. Bcl11a and Bcl11b in CNS Development
3. BCL11 TFs in Animal Models of NDDs
4. Conclusions—Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozlu, C.; Bailey, R.M.; Sinnett, S.; Goodspeed, K.D. Gene Transfer Therapy for Neurodevelopmental Disorders. Dev. Neurosci. 2021, 43, 230–240. [Google Scholar] [CrossRef]
- Sydnor, V.J.; Larsen, B.; Bassett, D.S.; Alexander-Bloch, A.; Fair, D.A.; Liston, C.; Mackey, A.P.; Milham, M.P.; Pines, A.; Roalf, D.R.; et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 2021, 109, 2820–2846. [Google Scholar] [CrossRef]
- Doi, M.; Usui, N.; Shimada, S. Prenatal Environment and Neurodevelopmental Disorders. Front. Endocrinol. 2022, 13, 860110. [Google Scholar] [CrossRef] [PubMed]
- Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems, 11th ed.; World Health Organization: Geneva, Switzerland, 2019; Volume ICD-11.
- Lamsal, R.; Zwicker, J.D. Economic Evaluation of Interventions for Children with Neurodevelopmental Disorders: Opportunities and Challenges. Appl. Health Econ. Health Policy 2017, 15, 763–772. [Google Scholar] [CrossRef] [PubMed]
- John, A.; Friedmann, Y.; DelPozo-Banos, M.; Frizzati, A.; Ford, T.; Thapar, A. Association of school absence and exclusion with recorded neurodevelopmental disorders, mental disorders, or self-harm: A nationwide, retrospective, electronic cohort study of children and young people in Wales, UK. Lancet Psychiatry 2022, 9, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Kochinke, K.; Zweier, C.; Nijhof, B.; Fenckova, M.; Cizek, P.; Honti, F.; Keerthikumar, S.; Oortveld, M.A.; Kleefstra, T.; Kramer, J.M.; et al. Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules. Am. J. Hum. Genet. 2016, 98, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Leblond, C.S.; Le, T.L.; Malesys, S.; Cliquet, F.; Tabet, A.C.; Delorme, R.; Rolland, T.; Bourgeron, T. Operative list of genes associated with autism and neurodevelopmental disorders based on database review. Mol. Cell Neurosci. 2021, 113, 103623. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Pourtavakoli, A.; Hussen, B.M.; Taheri, M.; Ayatollahi, S.A. A Review on the Role of Genetic Mutations in the Autism Spectrum Disorder. Mol. Neurobiol. 2023, 60, 5256–5272. [Google Scholar] [CrossRef]
- Chen, C.A.; Lattier, J.; Zhu, W.; Rosenfeld, J.; Wang, L.; Scott, T.M.; Du, H.; Patel, V.; Dang, A.; Magoulas, P.; et al. Retrospective analysis of a clinical exome sequencing cohort reveals the mutational spectrum and identifies candidate disease-associated loci for BAFopathies. Genet. Med. 2022, 24, 364–373. [Google Scholar] [CrossRef]
- Rotaru, D.C.; Mientjes, E.J.; Elgersma, Y. Angelman Syndrome: From Mouse Models to Therapy. Neuroscience 2020, 445, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Estruch, S.B.; Graham, S.A.; McRae, J.; Sawiak, S.J.; Hurst, J.A.; Joss, S.K.; Holder, S.E.; Morton, J.E.; Turner, C.; et al. BCL11A Haploinsufficiency Causes an Intellectual Disability Syndrome and Dysregulates Transcription. Am. J. Hum. Genet. 2016, 99, 253–274. [Google Scholar] [CrossRef]
- Lessel, D.; Gehbauer, C.; Bramswig, N.C.; Schluth-Bolard, C.; Venkataramanappa, S.; van Gassen, K.L.I.; Hempel, M.; Haack, T.B.; Baresic, A.; Genetti, C.A.; et al. BCL11B mutations in patients affected by a neurodevelopmental disorder with reduced type 2 innate lymphoid cells. Brain 2018, 141, 2299–2311. [Google Scholar] [CrossRef] [PubMed]
- Satterwhite, E.; Sonoki, T.; Willis, T.G.; Harder, L.; Nowak, R.; Arriola, E.L.; Liu, H.; Price, H.P.; Gesk, S.; Steinemann, D.; et al. The BCL11 gene family: Involvement of BCL11A in lymphoid malignancies. Blood 2001, 98, 3413–3420. [Google Scholar] [CrossRef] [PubMed]
- Avram, D.; Fields, A.; Pretty On Top, K.; Nevrivy, D.J.; Ishmael, J.E.; Leid, M. Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J. Biol. Chem. 2000, 275, 10315–10322. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Du, X.; Li, Y. The role of BCL11B in hematological malignancy. Exp. Hematol. Oncol. 2012, 1, 22. [Google Scholar] [CrossRef]
- Fox, P.M.; Tang, J.L.Y.; Brand, A.H. The Drosophila homologue of CTIP1 (Bcl11a) and CTIP2 (Bcl11b) regulates neural stem cell temporal patterning. Development 2022, 149, dev200677. [Google Scholar] [CrossRef]
- Kominami, R. Role of the transcription factor Bcl11b in development and lymphomagenesis. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012, 88, 72–87. [Google Scholar] [CrossRef]
- Leid, M.; Ishmael, J.E.; Avram, D.; Shepherd, D.; Fraulob, V.; Dolle, P. CTIP1 and CTIP2 are differentially expressed during mouse embryogenesis. Gene Expr. Patterns 2004, 4, 733–739. [Google Scholar] [CrossRef]
- Avram, D.; Fields, A.; Senawong, T.; Topark-Ngarm, A.; Leid, M. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem. J. 2002, 368, 555–563. [Google Scholar] [CrossRef]
- Katsuragi, Y.; Anraku, J.; Nakatomi, M.; Ida-Yonemochi, H.; Obata, M.; Mishima, Y.; Sakuraba, Y.; Gondo, Y.; Kodama, Y.; Nishikawa, A.; et al. Bcl11b transcription factor plays a role in the maintenance of the ameloblast-progenitors in mouse adult maxillary incisors. Mech. Dev. 2013, 130, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.J.; Guha, G.; Li, S.; Kyrylkova, K.; Kioussi, C.; Leid, M.; Ganguli-Indra, G.; Indra, A.K. Selective ablation of Ctip2/Bcl11b in epidermal keratinocytes triggers atopic dermatitis-like skin inflammatory responses in adult mice. PLoS ONE 2012, 7, e51262. [Google Scholar] [CrossRef] [PubMed]
- Kyrylkova, K.; Kyryachenko, S.; Biehs, B.; Klein, O.; Kioussi, C.; Leid, M. BCL11B regulates epithelial proliferation and asymmetric development of the mouse mandibular incisor. PLoS ONE 2012, 7, e37670. [Google Scholar] [CrossRef] [PubMed]
- Cismasiu, V.B.; Adamo, K.; Gecewicz, J.; Duque, J.; Lin, Q.; Avram, D. BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene 2005, 24, 6753–6764. [Google Scholar] [CrossRef] [PubMed]
- Grabarczyk, P.; Delin, M.; Roginska, D.; Schulig, L.; Forkel, H.; Depke, M.; Link, A.; Machalinski, B.; Schmidt, C.A. Nuclear import of BCL11B is mediated by a classical nuclear localization signal and not the Kruppel-like zinc fingers. J. Cell Sci. 2021, 134, jcs258655. [Google Scholar] [CrossRef] [PubMed]
- Grabarczyk, P.; Winkler, P.; Delin, M.; Sappa, P.K.; Bekeschus, S.; Hildebrandt, P.; Przybylski, G.K.; Volker, U.; Hammer, E.; Schmidt, C.A. The N-Terminal CCHC Zinc Finger Motif Mediates Homodimerization of Transcription Factor BCL11B. Mol. Cell Biol. 2018, 38, e00368-17. [Google Scholar] [CrossRef]
- Nakamura, T.; Yamazaki, Y.; Saiki, Y.; Moriyama, M.; Largaespada, D.A.; Jenkins, N.A.; Copeland, N.G. Evi9 encodes a novel zinc finger protein that physically interacts with BCL6, a known human B-cell proto-oncogene product. Mol. Cell Biol. 2000, 20, 3178–3186. [Google Scholar] [CrossRef]
- Liu, H.; Ippolito, G.C.; Wall, J.K.; Niu, T.; Probst, L.; Lee, B.S.; Pulford, K.; Banham, A.H.; Stockwin, L.; Shaffer, A.L.; et al. Functional studies of BCL11A: Characterization of the conserved BCL11A-XL splice variant and its interaction with BCL6 in nuclear paraspeckles of germinal center B cells. Mol. Cancer 2006, 5, 18. [Google Scholar] [CrossRef]
- Simon, R.; Wiegreffe, C.; Britsch, S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front. Mol. Neurosci. 2020, 13, 51. [Google Scholar] [CrossRef]
- Samocha, K.E.; Robinson, E.B.; Sanders, S.J.; Stevens, C.; Sabo, A.; McGrath, L.M.; Kosmicki, J.A.; Rehnstrom, K.; Mallick, S.; Kirby, A.; et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 2014, 46, 944–950. [Google Scholar] [CrossRef]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; Alföldi, J.; Watts, N.A.; Vittal, C.; Gauthier, L.D.; et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. bioRxiv 2022. [Google Scholar] [CrossRef]
- Liu, P.; Keller, J.R.; Ortiz, M.; Tessarollo, L.; Rachel, R.A.; Nakamura, T.; Jenkins, N.A.; Copeland, N.G. Bcl11a is essential for normal lymphoid development. Nat. Immunol. 2003, 4, 525–532. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Watanabe, H.; Inoue, J.; Takeda, N.; Sakata, J.; Mishima, Y.; Hitomi, J.; Yamamoto, T.; Utsuyama, M.; Niwa, O.; et al. Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat. Immunol. 2003, 4, 533–539. [Google Scholar] [CrossRef]
- Liu, P.; Li, P.; Burke, S. Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol. Rev. 2010, 238, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, V.G.; Menne, T.F.; Xu, J.; Akie, T.E.; Lettre, G.; Van Handel, B.; Mikkola, H.K.; Hirschhorn, J.N.; Cantor, A.B.; Orkin, S.H. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008, 322, 1839–1842. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Brendel, C.; Vinjamur, D.S.; Zhou, Y.; Harris, C.; McGuinness, M.; Manis, J.P.; Bauer, D.E.; Xu, H.; Williams, D.A. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat beta-hemoglobinopathies. Mol. Ther. 2022, 30, 2693–2708. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R.; Schiller, G.J.; Vercellotti, G.M.; Kwiatkowski, J.L.; Krishnamurti, L.; Esrick, E.B.; Williams, D.A.; Miller, W.P.; Woolfson, A.; Walters, M.C. Preliminary Results of a Phase 1/2 Clinical Study of Zinc Finger Nuclease-Mediated Editing of BCL11A in Autologous Hematopoietic Stem Cells for Transfusion-Dependent Beta Thalassemia. Blood 2019, 134, 3544. [Google Scholar] [CrossRef]
- Cisneros, G.S.; Thein, S.L. Recent Advances in the Treatment of Sickle Cell Disease. Front. Physiol. 2020, 11, 435. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.C.; Luc, S.; Croney, D.M.; Woodworth, M.B.; Greig, L.C.; Fujiwara, Y.; Nguyen, M.; Sher, F.; Macklis, J.D.; Bauer, D.E.; et al. Strict in vivo specificity of the Bcl11a erythroid enhancer. Blood 2016, 128, 2338–2342. [Google Scholar] [CrossRef]
- Canver, M.C.; Smith, E.C.; Sher, F.; Pinello, L.; Sanjana, N.E.; Shalem, O.; Chen, D.D.; Schupp, P.G.; Vinjamur, D.S.; Garcia, S.P.; et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015, 527, 192–197. [Google Scholar] [CrossRef]
- Wong, C. UK first to approve CRISPR treatment for diseases: What you need to know. Nature 2023, 623, 676–677. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, C. The world’s first CRISPR therapy is approved: Who will receive it? Nat. Biotechnol. 2023, 42, 3–4. [Google Scholar] [CrossRef]
- Punwani, D.; Zhang, Y.; Yu, J.; Cowan, M.J.; Rana, S.; Kwan, A.; Adhikari, A.N.; Lizama, C.O.; Mendelsohn, B.A.; Fahl, S.P.; et al. Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B. N. Engl. J. Med. 2016, 375, 2165–2176. [Google Scholar] [CrossRef] [PubMed]
- Shimbo, H.; Yokoi, T.; Aida, N.; Mizuno, S.; Suzumura, H.; Nagai, J.; Ida, K.; Enomoto, Y.; Hatano, C.; Kurosawa, K. Haploinsufficiency of BCL11A associated with cerebellar abnormalities in 2p15p16.1 deletion syndrome. Mol. Genet. Genom. Med. 2017, 5, 429–437. [Google Scholar] [CrossRef]
- Rajcan-Separovic, E.; Harvard, C.; Liu, X.; McGillivray, B.; Hall, J.G.; Qiao, Y.; Hurlburt, J.; Hildebrand, J.; Mickelson, E.C.; Holden, J.J.; et al. Clinical and molecular cytogenetic characterisation of a newly recognised microdeletion syndrome involving 2p15-16.1. J. Med. Genet. 2007, 44, 269–276. [Google Scholar] [CrossRef]
- Miceli, M.; Failla, P.; Saccuzzo, L.; Galesi, O.; Amata, S.; Romano, C.; Bonaglia, M.C.; Fichera, M. Trait—Driven analysis of the 2p15p16.1 microdeletion syndrome suggests a complex pattern of interactions between candidate genes. Genes. Genom. 2023, 45, 491–505. [Google Scholar] [CrossRef]
- Balci, T.B.; Sawyer, S.L.; Davila, J.; Humphreys, P.; Dyment, D.A. Brain malformations in a patient with deletion 2p16.1: A refinement of the phenotype to BCL11A. Eur. J. Med. Genet. 2015, 58, 351–354. [Google Scholar] [CrossRef]
- Peter, B.; Matsushita, M.; Oda, K.; Raskind, W. De novo microdeletion of BCL11A is associated with severe speech sound disorder. Am. J. Med. Genet. A 2014, 164A, 2091–2096. [Google Scholar] [CrossRef]
- Peron, A.; Bradbury, K.; Viskochil, D.H.; Dias, C. BCL11A-Related Intellectual Disability. In GeneReviews((R)); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2019. [Google Scholar]
- Peron, A.; D’Arco, F.; Aldinger, K.A.; Smith-Hicks, C.; Zweier, C.; Gradek, G.A.; Bradbury, K.; Accogli, A.; Andersen, E.F.; Au, P.Y.B.; et al. BCL11A intellectual developmental disorder: Defining the clinical spectrum and genotype-phenotype correlations. medRxiv 2021. [Google Scholar] [CrossRef]
- Kuo, T.Y.; Hong, C.J.; Hsueh, Y.P. Bcl11A/CTIP1 regulates expression of DCC and MAP1b in control of axon branching and dendrite outgrowth. Mol. Cell Neurosci. 2009, 42, 195–207. [Google Scholar] [CrossRef] [PubMed]
- John, A.; Brylka, H.; Wiegreffe, C.; Simon, R.; Liu, P.; Juttner, R.; Crenshaw, E.B., 3rd; Luyten, F.P.; Jenkins, N.A.; Copeland, N.G.; et al. Bcl11a is required for neuronal morphogenesis and sensory circuit formation in dorsal spinal cord development. Development 2012, 139, 1831–1841. [Google Scholar] [CrossRef]
- Wiegreffe, C.; Simon, R.; Peschkes, K.; Kling, C.; Strehle, M.; Cheng, J.; Srivatsa, S.; Liu, P.; Jenkins, N.A.; Copeland, N.G.; et al. Bcl11a (Ctip1) Controls Migration of Cortical Projection Neurons through Regulation of Sema3c. Neuron 2015, 87, 311–325. [Google Scholar] [CrossRef]
- Du, H.; Wang, Z.; Guo, R.; Yang, L.; Liu, G.; Zhang, Z.; Xu, Z.; Tian, Y.; Yang, Z.; Li, X.; et al. Transcription factors Bcl11a and Bcl11b are required for the production and differentiation of cortical projection neurons. Cereb. Cortex 2022, 32, 3611–3632. [Google Scholar] [CrossRef]
- Wiegreffe, C.; Wahl, T.; Joos, N.S.; Bonnefont, J.; Liu, P.; Britsch, S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6-dependent pathway. EMBO Rep. 2022, 23, e54104. [Google Scholar] [CrossRef] [PubMed]
- Notwell, J.H.; Heavner, W.E.; Darbandi, S.F.; Katzman, S.; McKenna, W.L.; Ortiz-Londono, C.F.; Tastad, D.; Eckler, M.J.; Rubenstein, J.L.; McConnell, S.K.; et al. TBR1 regulates autism risk genes in the developing neocortex. Genome Res. 2016, 26, 1013–1022. [Google Scholar] [CrossRef]
- Canovas, J.; Berndt, F.A.; Sepulveda, H.; Aguilar, R.; Veloso, F.A.; Montecino, M.; Oliva, C.; Maass, J.C.; Sierralta, J.; Kukuljan, M. The Specification of Cortical Subcerebral Projection Neurons Depends on the Direct Repression of TBR1 by CTIP1/BCL11a. J. Neurosci. 2015, 35, 7552–7564. [Google Scholar] [CrossRef] [PubMed]
- Sanders, S.J.; Murtha, M.T.; Gupta, A.R.; Murdoch, J.D.; Raubeson, M.J.; Willsey, A.J.; Ercan-Sencicek, A.G.; DiLullo, N.M.; Parikshak, N.N.; Stein, J.L.; et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012, 485, 237–241. [Google Scholar] [CrossRef] [PubMed]
- den Hoed, J.; Sollis, E.; Venselaar, H.; Estruch, S.B.; Deriziotis, P.; Fisher, S.E. Functional characterization of TBR1 variants in neurodevelopmental disorder. Sci. Rep. 2018, 8, 14279. [Google Scholar] [CrossRef] [PubMed]
- Sollis, E.; den Hoed, J.; Quevedo, M.; Estruch, S.B.; Vino, A.; Dekkers, D.H.W.; Demmers, J.A.A.; Poot, R.; Deriziotis, P.; Fisher, S.E. Characterization of the TBR1 interactome: Variants associated with neurodevelopmental disorders disrupt novel protein interactions. Hum. Mol. Genet. 2023, 32, 1497–1510. [Google Scholar] [CrossRef] [PubMed]
- Tolve, M.; Ulusoy, A.; Patikas, N.; Islam, K.U.S.; Bodea, G.O.; Ozturk, E.; Broske, B.; Mentani, A.; Wagener, A.; van Loo, K.M.J.; et al. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep. 2021, 36, 109697. [Google Scholar] [CrossRef] [PubMed]
- Goos, J.A.C.; Vogel, W.K.; Mlcochova, H.; Millard, C.J.; Esfandiari, E.; Selman, W.H.; Calpena, E.; Koelling, N.; Carpenter, E.L.; Swagemakers, S.M.A.; et al. A de novo substitution in BCL11B leads to loss of interaction with transcriptional complexes and craniosynostosis. Hum. Mol. Genet. 2019, 28, 2501–2513. [Google Scholar] [CrossRef]
- Homma, T.K.; Freire, B.L.; Honjo Kawahira, R.S.; Dauber, A.; Funari, M.F.A.; Lerario, A.M.; Nishi, M.Y.; Albuquerque, E.V.; Vasques, G.A.; Collett-Solberg, P.F.; et al. Genetic Disorders in Prenatal Onset Syndromic Short Stature Identified by Exome Sequencing. J. Pediatr. 2019, 215, 192–198. [Google Scholar] [CrossRef]
- Qiao, F.; Wang, C.; Luo, C.; Wang, Y.; Shao, B.; Tan, J.; Hu, P.; Xu, Z. A De Novo heterozygous frameshift mutation identified in BCL11B causes neurodevelopmental disorder by whole exome sequencing. Mol. Genet. Genom. Med. 2019, 7, e897. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Balci, T.B.; Prasad, C.; Andrews, J.D.; Lee, R.; Jurkiewicz, M.T.; Napier, M.P.; Colaiacovo, S.; Guillen Sacoto, M.J.; Karp, N. BCL11B-related disorder in two canadian children: Expanding the clinical phenotype. Eur. J. Med. Genet. 2020, 63, 104007. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Kang, Q.; Hou, Y.; Wang, L.; Li, L.; Liu, S.; Liao, H.; Cao, Z.; Yang, L.; Xiao, Z. Mutant BCL11B in a Patient With a Neurodevelopmental Disorder and T-Cell Abnormalities. Front. Pediatr. 2020, 8, 544894. [Google Scholar] [CrossRef] [PubMed]
- Baxter, S.K.; Walsh, T.; Casadei, S.; Eckert, M.M.; Allenspach, E.J.; Hagin, D.; Segundo, G.; Lee, M.K.; Gulsuner, S.; Shirts, B.H.; et al. Molecular diagnosis of childhood immune dysregulation, polyendocrinopathy, and enteropathy, and implications for clinical management. J. Allergy Clin. Immunol. 2022, 149, 327–339. [Google Scholar] [CrossRef]
- Che, F.; Tie, X.; Lei, H.; Zhang, X.; Duan, M.; Zhang, L.; Yang, Y. Identification of two novel variants of the BCL11B gene in two Chinese pedigrees associated with neurodevelopmental disorders. Front. Mol. Neurosci. 2022, 15, 927357. [Google Scholar] [CrossRef]
- Gaillard, L.; Goverde, A.; van den Bosch, Q.C.C.; Jehee, F.S.; Brosens, E.; Veenma, D.; Magielsen, F.; de Klein, A.; Mathijssen, I.M.J.; van Dooren, M.F. Case Report and Review of the Literature: Congenital Diaphragmatic Hernia and Craniosynostosis, a Coincidence or Common Cause? Front. Pediatr. 2021, 9, 772800. [Google Scholar] [CrossRef]
- Yu, Y.; Jia, X.; Yin, H.; Jiang, H.; Du, Y.; Yang, F.; Yang, Z.; Li, H. A novel variant in BCL11B in an individual with neurodevelopmental delay: A case report. Mol. Genet. Genom. Med. 2023, 11, e2132. [Google Scholar] [CrossRef]
- Pande, S.; Mascarenhas, S.; Venkatraman, A.; Bhat, V.; Narayanan, D.L.; Siddiqui, S.; Bielas, S.; Girisha, K.M.; Shukla, A. Further validation of craniosynostosis as a part of phenotypic spectrum of BCL11B-related BAFopathy. Am. J. Med. Genet. A 2023, 191, 2175–2180. [Google Scholar] [CrossRef]
- Sabbagh, Q.; Haghshenas, S.; Piard, J.; Trouve, C.; Amiel, J.; Attie-Bitach, T.; Balci, T.; Barat-Houari, M.; Belonis, A.; Boute, O.; et al. Clinico-biological refinement of BCL11B-related disorder and identification of an episignature: A series of 20 unreported individuals. Genet. Med. 2023, 26, 101007. [Google Scholar] [CrossRef]
- Harrer, P.; Leppmeier, V.; Berger, A.; Demund, S.; Winkelmann, J.; Berweck, S.; Zech, M. A de novo BCL11B variant case manifesting with dystonic movement disorder regarding the article “BCL11B-related disorder in two canadian children: Expanding the clinical phenotype (Prasad et al., 2020)”. Eur. J. Med. Genet. 2022, 65, 104635. [Google Scholar] [CrossRef]
- Lu, H.Y.; Sertori, R.; Contreras, A.V.; Hamer, M.; Messing, M.; Del Bel, K.L.; Lopez-Rangel, E.; Chan, E.S.; Rehmus, W.; Milner, J.D.; et al. A Novel Germline Heterozygous BCL11B Variant Causing Severe Atopic Disease and Immune Dysregulation. Front. Immunol. 2021, 12, 788278. [Google Scholar] [CrossRef]
- Eto, K.; Machida, O.; Yanagishita, T.; Shimojima Yamamoto, K.; Chiba, K.; Aihara, Y.; Hasegawa, Y.; Nagata, M.; Ishihara, Y.; Miyashita, Y.; et al. Novel BCL11B truncation variant in a patient with developmental delay, distinctive features, and early craniosynostosis. Hum. Genome Var. 2022, 9, 43. [Google Scholar] [CrossRef]
- Alfei, E.; Cattaneo, E.; Spaccini, L.; Iascone, M.; Veggiotti, P.; Doneda, C. Progressive Clinical and Neuroradiological Findings in a Child with BCL11B Missense Mutation: Expanding the Phenotypic Spectrum of Related Disorder. Neuropediatrics 2022, 53, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Sbodio, J.I.; Harraz, M.M.; Tyagi, R.; Grima, J.C.; Albacarys, L.K.; Hubbi, M.E.; Xu, R.; Kim, S.; Paul, B.D.; et al. Huntington’s disease: Neural dysfunction linked to inositol polyphosphate multikinase. Proc. Natl. Acad. Sci. USA 2015, 112, 9751–9756. [Google Scholar] [CrossRef]
- Nagahara, A.H.; Merrill, D.A.; Coppola, G.; Tsukada, S.; Schroeder, B.E.; Shaked, G.M.; Wang, L.; Blesch, A.; Kim, A.; Conner, J.M.; et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat. Med. 2009, 15, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Lennon, M.J.; Jones, S.P.; Lovelace, M.D.; Guillemin, G.J.; Brew, B.J. Bcl11b: A New Piece to the Complex Puzzle of Amyotrophic Lateral Sclerosis Neuropathogenesis? Neurotox. Res. 2016, 29, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Whitton, L.; Cosgrove, D.; Clarkson, C.; Harold, D.; Kendall, K.; Richards, A.; Mantripragada, K.; Owen, M.J.; O’Donovan, M.C.; Walters, J.; et al. Cognitive analysis of schizophrenia risk genes that function as epigenetic regulators of gene expression. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Arlotta, P.; Molyneaux, B.J.; Chen, J.; Inoue, J.; Kominami, R.; Macklis, J.D. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005, 45, 207–221. [Google Scholar] [CrossRef]
- Simon, R.; Brylka, H.; Schwegler, H.; Venkataramanappa, S.; Andratschke, J.; Wiegreffe, C.; Liu, P.; Fuchs, E.; Jenkins, N.A.; Copeland, N.G.; et al. A dual function of Bcl11b/Ctip2 in hippocampal neurogenesis. EMBO J. 2012, 31, 2922–2936. [Google Scholar] [CrossRef]
- Enomoto, T.; Ohmoto, M.; Iwata, T.; Uno, A.; Saitou, M.; Yamaguchi, T.; Kominami, R.; Matsumoto, I.; Hirota, J. Bcl11b/Ctip2 controls the differentiation of vomeronasal sensory neurons in mice. J. Neurosci. 2011, 31, 10159–10173. [Google Scholar] [CrossRef]
- Torres, V.I.; Vallejo, D.; Inestrosa, N.C. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plast. 2017, 2017, 8081758. [Google Scholar] [CrossRef] [PubMed]
- Arlotta, P.; Molyneaux, B.J.; Jabaudon, D.; Yoshida, Y.; Macklis, J.D. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J. Neurosci. 2008, 28, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Baumann, L.; Fischer, J.; Seigfried, F.A.; De Bruyckere, E.; Liu, P.; Jenkins, N.A.; Copeland, N.G.; Schwegler, H.; Britsch, S. Structure-function integrity of the adult hippocampus depends on the transcription factor Bcl11b/Ctip2. Genes. Brain Behav. 2016, 15, 405–419. [Google Scholar] [CrossRef] [PubMed]
- De Bruyckere, E.; Simon, R.; Nestel, S.; Heimrich, B.; Katzel, D.; Egorov, A.V.; Liu, P.; Jenkins, N.A.; Copeland, N.G.; Schwegler, H.; et al. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2. Front. Mol. Neurosci. 2018, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Koumoundourou, A.; Rannap, M.; Bruyckere, E.D.; Nestel, S.; Reißner, C.; Egorov, A.V.; Liu, P.; Missler, M.; Heimrich, B.; Draguhn, A.; et al. Regulation of hippocampal mossy fiber-CA3 synapse function by a Bcl11b/C1ql2/Nrxn3(25b+) pathway. bioRxiv 2023. [Google Scholar] [CrossRef]
- McKenna, B.; Koomar, T.; Vervier, K.; Kremsreiter, J.; Michaelson, J.J. Whole-genome sequencing in a family with twin boys with autism and intellectual disability suggests multimodal polygenic risk. Cold Spring Harb. Mol. Case Stud. 2018, 4, a003285. [Google Scholar] [CrossRef] [PubMed]
- Spoto, G.; Valentini, G.; Saia, M.C.; Butera, A.; Amore, G.; Salpietro, V.; Nicotera, A.G.; Di Rosa, G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front. Neurol. 2022, 13, 826211. [Google Scholar] [CrossRef] [PubMed]
- Lepeta, K.; Lourenco, M.V.; Schweitzer, B.C.; Martino Adami, P.V.; Banerjee, P.; Catuara-Solarz, S.; de La Fuente Revenga, M.; Guillem, A.M.; Haidar, M.; Ijomone, O.M.; et al. Synaptopathies: Synaptic dysfunction in neurological disorders—A review from students to students. J. Neurochem. 2016, 138, 785–805. [Google Scholar] [CrossRef]
- Zhu, L.J.; Zhang, C.; Chen, C. Research progress on vesicle cycle and neurological disorders. J. Pharm. Pharm. Sci. 2021, 24, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, T.; Hirose, S.; Masuda, K.; Kakugawa, K.; Satoh, R.; Shibano-Satoh, A.; Kominami, R.; Katsura, Y.; Kawamoto, H. An essential developmental checkpoint for production of the T cell lineage. Science 2010, 329, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Isshiki, T.; Pearson, B.; Holbrook, S.; Doe, C.Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 2001, 106, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Huynh, M.A.; Chiyonobu, T.; Yoshida, H. Knockdown of Chronophage in the nervous system mimics features of neurodevelopmental disorders caused by BCL11 A/B variants. Exp. Cell Res. 2023, 433, 113827. [Google Scholar] [CrossRef] [PubMed]
- Nikouei, K.; Munoz-Manchado, A.B.; Hjerling-Leffler, J. BCL11B/CTIP2 is highly expressed in GABAergic interneurons of the mouse somatosensory cortex. J. Chem. Neuroanat. 2016, 71, 1–5. [Google Scholar] [CrossRef]
- Woodworth, M.B.; Greig, L.C.; Liu, K.X.; Ippolito, G.C.; Tucker, H.O.; Macklis, J.D. Ctip1 Regulates the Balance between Specification of Distinct Projection Neuron Subtypes in Deep Cortical Layers. Cell Rep. 2016, 15, 999–1012. [Google Scholar] [CrossRef]
- Thapar, A.; Cooper, M.; Rutter, M. Neurodevelopmental disorders. Lancet Psychiatry 2017, 4, 339–346. [Google Scholar] [CrossRef]
- Katz, D.M.; Berger-Sweeney, J.E.; Eubanks, J.H.; Justice, M.J.; Neul, J.L.; Pozzo-Miller, L.; Blue, M.E.; Christian, D.; Crawley, J.N.; Giustetto, M.; et al. Preclinical research in Rett syndrome: Setting the foundation for translational success. Dis. Model. Mech. 2012, 5, 733–745. [Google Scholar] [CrossRef]
- Wiegreffe, C.; Ehricke, S.; Schmid, L.; Andratschke, J.; Britsch, S. Using i-GONAD for Cell-Type-Specific and Systematic Analysis of Developmental Transcription Factors In Vivo. Biology 2023, 12, 1236. [Google Scholar] [CrossRef]
- Ohtsuka, M.; Sato, M.; Miura, H.; Takabayashi, S.; Matsuyama, M.; Koyano, T.; Arifin, N.; Nakamura, S.; Wada, K.; Gurumurthy, C.B. i-GONAD: A robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 2018, 19, 25. [Google Scholar] [CrossRef]
- Kyrylkova, K.; Iwaniec, U.T.; Philbrick, K.A.; Leid, M. BCL11B regulates sutural patency in the mouse craniofacial skeleton. Dev. Biol. 2016, 415, 251–260. [Google Scholar] [CrossRef]
- Stoodley, C.J. The Cerebellum and Neurodevelopmental Disorders. Cerebellum 2016, 15, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Kloth, A.D.; Badura, A. The cerebellum, sensitive periods, and autism. Neuron 2014, 83, 518–532. [Google Scholar] [CrossRef] [PubMed]
- Sonzogni, M.; Wallaard, I.; Santos, S.S.; Kingma, J.; du Mee, D.; van Woerden, G.M.; Elgersma, Y. A behavioral test battery for mouse models of Angelman syndrome: A powerful tool for testing drugs and novel Ube3a mutants. Mol. Autism 2018, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; Limperopoulos, C. Structure-function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin. Fetal Neonatal Med. 2016, 21, 356–364. [Google Scholar] [CrossRef]
- Abbas, S.; Sanders, M.A.; Zeilemaker, A.; Geertsma-Kleinekoort, W.M.; Koenders, J.E.; Kavelaars, F.G.; Abbas, Z.G.; Mahamoud, S.; Chu, I.W.; Hoogenboezem, R.; et al. Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations. Haematologica 2014, 99, 848–857. [Google Scholar] [CrossRef]
ICD-11 Neurodevelopmental Disorders |
---|
6A00 Disorders of intellectual development |
6A00.0 mild; 6A00.1 moderate; 6A00.2 severe; 6A00.3 profound; 6A00.4 provisional |
6A01 Developmental speech or language disorders |
6A01.0 Developmental speech sound disorder; 6A01.1 Developmental speech |
fluency disorder |
6A02 Autism spectrum disorder (ASD) |
6A02.0 without disorder of intellectual development and with mild/no impairment |
of functional language; 6A02.1 with disorder of intellectual development and with |
mild/no impairment of functional language; 6A02.2 without disorder of intellectual |
development and with impairment of functional language; 6A02.3 with disorder of |
intellectual development and with impairment of functional language; 6A02.5 with |
disorder of intellectual development and with absence of functional language |
6A03 Developmental learning disorder |
6A03.0 with impairment in reading; 6A03.1 with impairment in written expression; |
6A03.2 with impairment in mathematics; 6A03.3 with other specified impairment in |
learning |
6A04 Developmental motor coordination disorder |
6A05 Attention deficit hyperactivity disorder (ADHD) |
6A05.0 predominantly inattentive presentation; 6A05.1 predominantly hyperactive- |
impulsive presentation; 6A05.2 combined presentation |
6A06 Stereotyped movement disorder |
6A06.0 without self-injury; 6A06.1 with self-injury |
Bcl11a | Bcl11b | |
---|---|---|
Gene ID | 53335 | 64919 |
NCBI RefSeq | NM_022893.4 | NM_138576.4 |
Synonyms | Ctip1, Dilos, Evi9, Hbtqtl5, Smarcm1, Znf856 | Atl1, Ctip2, Iddfsta, Imad49, Rit1, Smarcm2, Znf856b |
Human Isoforms | XL (835 aa) L (773 aa) S (243 aa) | Alpha (823 aa) Beta (812 aa) |
Isoforms in mice | XL (835 aa) L (773 aa) S (243 aa) XS (191 aa) | Alpha (884 aa) Beta (882 aa) Gamma (690 aa) |
#MIM | 606557 | 606558 |
#Phenotype (MIM) | 617101 (Dias-Logan syndrome) 612513 (Chromosome 2p16.1-p15 deletion syndrome) | 617237 (Immunodeficiency 49, severe combined) 618092 (Intellectual developmental disorder with dysmorphic facies, speech delay, and T-cell abnormalities |
#sysndd | 1235 | 2475, 2476 |
Symptom | + | − | +/n | % | n.a. |
---|---|---|---|---|---|
Intellectual delay (ID) | 45 | 9 | 45/54 | 83.3 | 3 |
Developmental speech delay | 40 | 11 | 40/51 | 78.4 | 6 |
Motor development delay | 30 | 22 | 30/52 | 57.7 | 5 |
Altered craniofacial anatomy | 43 | 2 | 43/45 | 95.6 | 12 |
Abn. brain MRI | 14 | 20 | 14/34 | 41.2 | 23 |
Abn. of the eyes | 18 | 24 | 18/42 | 42.9 | 15 |
Autism spectrum disorders (ASD) | 11 | 15 | 11/26 | 42.3 | 31 |
Affected immune system | 34 | 12 | 34/46 | 73.9 | 11 |
Dental anomalies | 14 | 18 | 14/32 | 43.8 | 25 |
Craniosynostosis | 13 | 17 | 13/30 | 43.3 | 27 |
Genetic Model | Species | References |
---|---|---|
Bcl11a+/− | Mus musculus | [77] |
Bcl11a flox/floxDatIRES-Cre/+ | Mus musculus | [62] |
Bcl11ab knockdown BCL11A p.Cys826Tyr | Danio rerio | [75] |
Neuron-specific Chronophage knockdown | Drosophila melanogaster | [96] |
Bcl11bflox/floxEmx1Cre Bcl11bflox/floxCamkTetOCre | Mus musculus | [83,87,88,89] |
BCL11B p.Asn441Lys | Danio rerio | [44] |
BCL11B p.Gly820Alafs*67 | Mus musculus | [14] |
BCL11B p.Arg3Ser | Mus musculus | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seigfried, F.A.; Britsch, S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. Biology 2024, 13, 126. https://doi.org/10.3390/biology13020126
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. Biology. 2024; 13(2):126. https://doi.org/10.3390/biology13020126
Chicago/Turabian StyleSeigfried, Franziska Anna, and Stefan Britsch. 2024. "The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders" Biology 13, no. 2: 126. https://doi.org/10.3390/biology13020126
APA StyleSeigfried, F. A., & Britsch, S. (2024). The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. Biology, 13(2), 126. https://doi.org/10.3390/biology13020126