Differences of Pine Wood Nematode (Bursaphelenchus xylophilus) Developmental Stages under High-Osmotic-Pressure Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nematode Culture
2.2. Phenotypic Changes of PWN under Different Osmolytes
2.3. Survival Rate of PWNs under Different Osmolytes Treatments
2.4. Phenotypic Changes of PWNs at Different Developmental Stages
2.5. Survival Rate Changes of PWNs at Different Developmental Stages
2.6. Total RNA Isolation and Digital Gene Expression (DGE) by Sequencing
2.7. Differentially Expressed Genes (DEGs) Screening and Gene Enrichment Analysis
2.8. RT-qPCR
2.9. Statistical Analyses
3. Results
3.1. Osmobiosis of PWN under Different Osmolytes Treatments
3.2. Survival Rate of PWNs under High Osmotic Pressure Treatment with Different Osmolytes
3.3. Phenotypic Changes at Different PWN Developmental Stages under Glycerol-Induced High-Osmotic-Pressure Stress
3.4. PWN Survival Rate Changes at Different Developmental Stages under Glycerol-Induced High-Osmotic-Pressure Stress
3.5. DGE Sequencing and Differently Expressed Genes Identification
3.6. Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis Results of DEGs in DJ3
3.7. Candidate Gene Screening and Expression Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Futai, K. Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 2013, 51, 61–83. [Google Scholar] [CrossRef]
- Kiyohara, T.; Tokushige, Y. Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J. Jpn. For. Soc. 1971, 53, 210–218. [Google Scholar]
- Braasch, H. Morphology of Bursaphelenchus xylophilus compared with other Bursaphelenchus species. In The Pinewood Nematode, Bursaphelenchus xylophilus; Brill: Leiden, The Netherlands, 2004; pp. 127–143. [Google Scholar]
- Bolla, R.I.; Winter, R.; Fitzsimmons, K. Pathotypes of the pinewood nematode Bursaphelenchus xylophilus. J. Nematol. 1986, 18, 230. [Google Scholar]
- Handa, S.; Bressan, R.A.; Handa, A.K.; Carpita, N.C.; Hasegawa, P.M. Solutes contributing to osmotic adjustment in cultured plant cells adapted to water stress. Plant Physiol. 1983, 73, 834–843. [Google Scholar] [CrossRef]
- Blum, A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Limousin, J.M.; Roussel, A.; Rodríguez-Calcerrada, J.; Torres-Ruiz, J.M.; Moreno, M.; Garcia de Jalon, L.; Ourcival, J.M.; Simioni, G.; Cochard, H.; Martin-StPaul, N. Drought acclimation of Quercus ilex leaves improves tolerance to moderate drought but not resistance to severe water stress. Plant Cell Environ. 2022, 45, 1967–1984. [Google Scholar] [CrossRef]
- Athani, S. Low temperature stress induced changes in plants and their management. In Abiotic Biotic Stress Management in Plants: Volume-I: Abiotic Stress; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Islam, M.S.; Bakker, J. Pinewood nematode bursaphelenchus xylophilus. Biol. Durable Control 2014, 4, 14–15. [Google Scholar]
- Kikuchi, T.; Aikawa, T.; Kosaka, H.; Pritchard, L.; Ogura, N.; Jones, J.T. Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Mol. Biochem. Parasitol. 2007, 155, 9–17. [Google Scholar] [CrossRef]
- Tanaka, S.E.; Dayi, M.; Maeda, Y.; Tsai, I.J.; Tanaka, R.; Bligh, M.; Takeuchi-Kaneko, Y.; Fukuda, K.; Kanzaki, N.; Kikuchi, T. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci. Rep. 2019, 9, 60–80. [Google Scholar] [CrossRef]
- Ishibashi, N.; Kondo, E. Occurrence and survival of the dispersal forms of pine wood nematode, Bursaphelenchus lignicolus mamiya and kiyohara: Ecological significance of dormancy in plant parasitic nematodes. V. Appl. Entomol. Zool. 1977, 12, 293–302. [Google Scholar] [CrossRef]
- Keilin, D. The Leeuwenhoek Lecture-the problem of anabiosis or latent life: History and current concept. Proc. R. Soc. London. Ser. B-Biol. Sci. 1959, 150, 149–191. [Google Scholar]
- Chen, Q.; Li, D.; Wang, F.; Zhang, R.; Ling, Y. Trehalose metabolism genes of Aphelenchoides besseyi (Nematoda: Aphelenchoididae) in hypertonic osmotic pressure survival. Biol. Open 2017, 6, 664–672. [Google Scholar] [CrossRef]
- Chen, S.; Glazer, I. A novel method for long-term storage of the entomopathogenic nematode Steinernema feltiae at room temperature. Biol. Control 2005, 32, 104–110. [Google Scholar] [CrossRef]
- Glazer, I.; Salame, L. Osmotic survival of the entomopathogenic nematode Steinernema carpocapsae. Biol. Control 2000, 18, 251–257. [Google Scholar] [CrossRef]
- Van Gundy, S.D. Factors in survival of nematodes. Annu. Rev. Phytopathol. 1965, 3, 43–68. [Google Scholar] [CrossRef]
- Pan, L.; Cui, R.; Li, Y.; Zhang, W.; Bai, J.; Li, J.; Zhang, X. Third-stage dispersal juveniles of Bursaphelenchus xylophilus can resist low-temperature stress by entering cryptobiosis. Biology 2021, 10, 785. [Google Scholar] [CrossRef]
- Ritonga, F.N.; Chen, S. Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants 2020, 9, 560. [Google Scholar] [CrossRef]
- Ogura, N. A method for the cryopreservation of the pinewood nematode, Bursaphelenchus xylophilus. Nematol. Res. 2003, 33, 77–79. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, R.; Li, D.; Wang, F. Genetic characteristics of Bursaphelenchus xylophilus third-stage dispersal juveniles. Sci. Rep. 2021, 11, 3908. [Google Scholar] [CrossRef]
- Landete, J.M.; García Haro, L.; Blasco, A.; Manzanares, P.; Berbegal, C.; Monedero, V.; Zúñiga, M. The Lactobacillus casei MaeKR two component system is required for L-malic acid utilization through a malic enzyme pathway. Appl. Environ. Microbiol. 2010, 76, 84–95. [Google Scholar] [CrossRef]
- Kondo, E.; Ishibashi, N. Ecological significance of dormancy in plant parasitic nematodes. VIII. Ultrastructural changes associated with development of pin nematode, Gracilacus sp., with special reference to its survival. Appl. Entomol. Zool. 1979, 14, 1–11. [Google Scholar] [CrossRef]
- Glazer, I.; Navon, A. Activity and persistence of entomoparasitic nematodes tested against Heliothis armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 1990, 83, 1795–1800. [Google Scholar] [CrossRef]
- Wang, F.; Li, D.; Chen, Q.; Ma, L. Genome-wide survey and characterization of the small heat shock protein gene family in Bursaphelenchus xylophilus. Gene 2016, 579, 153–161. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Langmead, B. Ultrafast andmemory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R5. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 3–23. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Jiang, Z.-M.; Xiao, P.-T.; Jiang, Y.-Q.; Liu, W.-J.; Liu, E.-H. The mechanisms of baicalin ameliorate obesity and hyperlipidemia through a network pharmacology approach. Eur. J. Pharmacol. 2020, 878, 73–103. [Google Scholar] [CrossRef]
- Li, D.; Zou, Q.; Cheng. The osmotic adjustment of plants in response to stress. J. Shandong Agric. Univ. 1989, 20, 75–80. [Google Scholar]
- Blum, A.J.P.g.r. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul. 1996, 20, 135–148. [Google Scholar] [CrossRef]
- Møbjerg, N.; Halberg, K.; Jørgensen, A.; Persson, D.; Bjørn, M.; Ramløv, H.; Kristensen, R. Survival in extreme environments–on the current knowledge of adaptations in tardigrades. Acta Physiol. 2011, 202, 409–420. [Google Scholar] [CrossRef]
- Withers, P.C.; Cooper, C.E. Metabolic Depression: A Historical Perspective; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–23. [Google Scholar]
- Kim, K.; Gade, V.R.; Kurzchalia, T.V.; Guck, J. Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition. Biophys. Journa 2022, 121, 1219–1229. [Google Scholar] [CrossRef]
- Mamiya, Y. The life history of the pine wood nematode, Bursaphelenchus lignicolus. Jpn. J. Nematol. 1975, 5, 16–25. [Google Scholar]
- Zhao, L.L.; Wei, W.; Kulhavy, D.L.; Zhang, X.Y.; Sun, J.H. Low temperature induces two growth-arrested stages and change of secondary metabolites in Bursaphelenchus xylophilus. Nematology 2007, 9, 663–670. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, R.; Li, D.; Wang, F.; Jiang, S.; Wang, J. Trehalose in pine wood nematode participates in DJ3 formation and confers resistance to low-temperature stress. BMC Genom. 2021, 22, 5–24. [Google Scholar] [CrossRef]
- Qin, L.; Liu, L.; Zeng, A.-P.; Wei, D. From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour. Technol. 2017, 245, 1507–1519. [Google Scholar] [CrossRef]
- Oliver, D.J.; Nikolau, B.J.; Wurtele, E.S. Acetyl-CoA—Life at the metabolic nexus. Plant Sci. 2009, 176, 597–601. [Google Scholar] [CrossRef]
- Shi, L.; Tu, B.P. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences. Curr. Opin. Cell Biol. 2015, 33, 125–131. [Google Scholar] [CrossRef]
- Fernie, A. Respiratory metabolism: Glycolysis, theTCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 2004, 7, 254–261. [Google Scholar] [CrossRef]
- Pacini, F.; Cantara, S. Molecular diagnosis of thyroid cancer. In Genetic Diagnosis of Endocrine Disorders; Elsevier: Amsterdam, The Netherlands, 2016; pp. 153–162. [Google Scholar]
- Hardie, D. AMPK: A key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. 2008, 32, S7–S12. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Fullerton, M.D.; Galic, S.; Marcinko, K.; Sikkema, S.; Pulinilkunnil, T.; Chen, Z.-P.; O’neill, H.M.; Ford, R.J.; Palanivel, R.; O’brien, M. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 2013, 19, 1649–1654. [Google Scholar] [CrossRef]
- Hasenour, C.M.; Ridley, D.E.; Hughey, C.C.; James, F.D.; Donahue, E.P.; Shearer, J.; Viollet, B.; Foretz, M.; Wasserman, D.H. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J. Biol. Chem. 2014, 289, 5950–5959. [Google Scholar] [CrossRef]
- Momcilovic, M.; Shackelford, D. Targeting LKB1 in cancer–exposing and exploiting vulnerabilities. Br. J. Cancer 2015, 113, 574–584. [Google Scholar] [CrossRef]
- Hawley, S.A.; Ross, F.A.; Gowans, G.J.; Tibarewal, P.; Leslie, N.R.; Hardie, D.G. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 2014, 459, 275–287. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, Q.; Wang, F. Differences of Pine Wood Nematode (Bursaphelenchus xylophilus) Developmental Stages under High-Osmotic-Pressure Stress. Biology 2024, 13, 123. https://doi.org/10.3390/biology13020123
Wang S, Chen Q, Wang F. Differences of Pine Wood Nematode (Bursaphelenchus xylophilus) Developmental Stages under High-Osmotic-Pressure Stress. Biology. 2024; 13(2):123. https://doi.org/10.3390/biology13020123
Chicago/Turabian StyleWang, Shuting, Qiaoli Chen, and Feng Wang. 2024. "Differences of Pine Wood Nematode (Bursaphelenchus xylophilus) Developmental Stages under High-Osmotic-Pressure Stress" Biology 13, no. 2: 123. https://doi.org/10.3390/biology13020123
APA StyleWang, S., Chen, Q., & Wang, F. (2024). Differences of Pine Wood Nematode (Bursaphelenchus xylophilus) Developmental Stages under High-Osmotic-Pressure Stress. Biology, 13(2), 123. https://doi.org/10.3390/biology13020123