Assessment of Cadmium (Cd) and Lead (Pb) Blood Concentration on the Risk of Endometrial Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Methodology
2.3. Statistical Analysis
3. Results
3.1. Distribution of Heavy Metal Concentration between Different Groups of Patients
3.2. Distribution of Cd and Pb Based on the Patients’ Characteristics
3.3. Endometrial Cancer Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Pair * | Mean Rank Difference | Z | Critical Value | p-Value |
---|---|---|---|---|---|
Cd | X1–X2 | 18.94 | 1.95 | 25.60 | 0.051 |
X1–X3 | 25.91 | 3.40 | 20.13 | <0.001 | |
X1–X4 | 3.78 | 0.42 | 23.79 | 0.675 | |
X2–X3 | 6.96 | 0.79 | 23.16 | 0.428 | |
X2–X4 | −15.17 | 1.50 | 26.61 | 0.133 | |
X3–X4 | −22.13 | 2.76 | 21.19 | 0.006 | |
Cd/Pb | X1–X2 | 18.19 | 2.18 | 22.04 | 0.0294 |
X1–X3 | 18.48 | 2.76 | 17.64 | 0.0057 | |
X1–X4 | −4.04 | 0.54 | 19.66 | 0.5877 | |
X2–X3 | 0.28 | 0.04 | 20.52 | 0.971 | |
X2–X4 | −22.24 | 2.63 | 22.28 | 0.0042 | |
X3–X4 | −22.52 | 3.31 | 17.94 | <0.001 |
Variable | Pair * | Mean Rank Difference | Z | Critical Value | p-Value |
---|---|---|---|---|---|
Age | X1–X2 | −17.00 | 1.6674 | 26.9 | 0.095 |
X1–X3 | −16.6 | 2.1366 | 20.6 | 0.033 | |
X1–X4 | −48.0 | 5.1103 | 24.8 | <0.001 | |
X2–X3 | 0.35 | 0.0340 | 24.0 | 0.969 | |
X2–X4 | −31.0 | 2.9543 | 27.7 | 0.003 | |
X3–X4 | −31.4 | 3.8348 | 21.6 | <0.001 | |
BMI | X1–X2 | −19.51 | 1.95 | 26.39 | 0.0511 |
X1–X3 | −2.31 | 0.30 | 20.43 | 0.7651 | |
X1–X4 | −21.13 | 2.29 | 24.35 | 0.0220 | |
X2–X3 | 17.20 | 1.94 | 23.44 | 0.0529 | |
X2–X4 | −1.617 | 0.16 | 26.92 | 0.8741 | |
X3–X4 | −18.81 | 2.35 | 21.11 | 0.0187 |
Appendix B
Variable | Underweight (<18.5 kg/m2) | Normal Weight (18.5–25 kg/m2) | Overweight (25–30 kg/m2) | Obese (≥30 kg/m2) | p-Value |
---|---|---|---|---|---|
Cd (mg/L) | 0.0010 | 0.0028 | 0.0024 | 0.0030 | 0.4412 |
Pb (mg/L) | 0.0408 | 0.0300 | 0.0208 | 0.0232 | 0.2176 |
Cd/Pb ratio | 0.0278 | 0.1078 | 0.0717 | 0.1562 | 0.0776 |
References
- Lortet-Tieulent, J.; Ferlay, J.; Bray, F.; Jemal, A. International Patterns and Trends in Endometrial Cancer Incidence, 1978–2013. J. Natl. Cancer Inst. 2018, 110, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Mínguez-Alarcón, L.; Mendiola, J.; Roca, M.; Lpez-Espín, J.J.; Guillén, J.J.; Moreno, J.M.; Moreno-Grau, S.; Martínez-García, M.J.; Vergara-Juárez, N.; Elvira-Rendueles, B.; et al. Correlations between Different Heavy Metals in Diverse Body Fluids: Studies of Human Semen Quality. Adv. Urol. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martón, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2016, 27. [Google Scholar] [CrossRef] [PubMed]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry. IARC Monogr. Eval. Carcinog. Risks Hum. 1993, 58, 1–415. [Google Scholar]
- Chen, C.; Xun, P.; Nishijo, M.; He, K. Cadmium Exposure and Risk of Lung Cancer: A Meta-Analysis of Cohort and Case-Control Studies among General and Occupational Populations. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 437–444. [Google Scholar] [CrossRef]
- Verougstraete, V.; Lison, D.; Hotz, P. Cadmium, Lung and Prostate Cancer: A Systematic Review of Recent Epidemiological Data. J. Toxicol. Environ. Health–Part B Crit. Rev. 2003, 6, 227–256. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Martens, D.S.; Hara, A.; Plusquin, M.; Vangronsveld, J.; Roels, H.A.; Staessen, J.A. Association of Total Cancer and Lung Cancer with Environmental Exposure to Cadmium: The Meta-Analytical Evidence. Cancer Causes Control 2015, 26, 1281–1288. [Google Scholar] [CrossRef]
- Lener, M.R.; Reszka, E.; Marciniak, W.; Lesicka, M.; Baszuk, P.; Jabłońska, E.; Białkowska, K.; Muszyńska, M.; Pietrzak, S.; Derkacz, R.; et al. Blood Cadmium Levels as a Marker for Early Lung Cancer Detection. J. Trace Elem. Med. Biol. 2021, 64, 126682. [Google Scholar] [CrossRef]
- Il’yasova, D.; Schwartz, G.G. Cadmium and Renal Cancer. Toxicol. Appl. Pharmacol. 2005, 207, 179–186. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Woo, H.D.; Kim, D.W.; Choi, I.J.; Kim, Y., II; Kim, J. Association between Dietary Cadmium Intake and Early Gastric Cancer Risk in a Korean Population: A Case–Control Study. Eur. J. Nutr. 2019, 58, 3255–3266. [Google Scholar] [CrossRef]
- Filippini, T.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Naska, A.; Kasdagli, M.I.; Malavolti, M.; Orsini, N.; Vinceti, M. Cadmium Exposure and Risk of Breast Cancer: A Dose-Response Meta-Analysis of Cohort Studies. Environ. Int. 2020, 142, 105879. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P. Cadmium Carcinogenesis. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 533, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, A. Cadmium and Cancer. Met. Ions Life Sci. 2013, 11, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.B.; Reiter, R.; Pham, T.; Avellanet, Y.R.; Camara, J.; Lahm, M.; Pentecost, E.; Pratap, K.; Gilmore, B.A.; Divekar, S.; et al. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 2003, 144, 2425–2436. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; O’Brien, K.M.; Jackson, B.P.; Karagas, M.R. Urine and toenail cadmium levels in pregnant women: A reliability study. Environ. Int. 2018, 118, 86–91. [Google Scholar] [CrossRef]
- IARC IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Cadmium and Cadmium Compounds. IARC Monogr. 2012, 1993, 121–145.
- Hays, S.M.; Nordberg, M.; Yager, J.W.; Aylward, L.L. Biomonitoring Equivalents (BE) Dossier for Cadmium (Cd) (CAS No. 7440-43-9). Regul. Toxicol. Pharmacol. 2008, 51, S49–S56. [Google Scholar] [CrossRef]
- Hurst, D.T. Chapter 6.3 Six-Membered Ring Systems: Triazines, Tetrazines, and Fused Ring Polyaza Systems. Prog. Heterocycl. Chem. 1995, 7, 244–267. [Google Scholar] [CrossRef]
- Lemen, R.A.; Lee, J.S.; Wagoner, J.K.; Blejer, H.P. Cancer Mortality Among Cadmium Production Workers. Ann. N. Y. Acad. Sci. 1976, 271, 273–279. [Google Scholar] [CrossRef]
- Stohs, S.J.; Bagchi, D.; Hassoun, E.; Bagchi, M. Oxidative Mechanisms in the Toxicity of Chromium and Cadmium Ions. J. Environ. Pathol. Toxicol. Oncol. 2001, 20. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, A.; Schwerdtle, T. Interactions by Carcinogenic Metal Compounds with DNA Repair Processes: Toxicological Implications. Toxicol. Lett. 2002, 127, 47–54. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. Lead and lead compounds. Rep. Carcinog. 2011, 12, 251–256. [Google Scholar]
- Meng, Y.; Tang, C.; Yu, J.; Meng, S.; Zhang, W. Exposure to Lead Increases the Risk of Meningioma and Brain Cancer: A Meta-Analysis. J. Trace Elem. Med. Biol. 2020, 60, 126474. [Google Scholar] [CrossRef]
- Lin, X.; Peng, L.; Xu, X.; Chen, Y.; Zhang, Y.; Huo, X. Connecting Gastrointestinal Cancer Risk to Cadmium and Lead Exposure in the Chaoshan Population of Southeast China. Environ. Sci. Pollut. Res. 2018, 25, 17611–17619. [Google Scholar] [CrossRef]
- McElroy, J.A.; Shafer, M.M.; Gangnon, R.E.; Crouch, L.A.; Newcomb, P.A. Urinary Lead Exposure and Breast Cancer Risk in a Population-Based Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2311–2317. [Google Scholar] [CrossRef]
- Steenland, K.; Boffetta, P. Lead and Cancer in Humans: Where Are We Now? Am. J. Ind. Med. 2000, 38, 295–299. [Google Scholar] [CrossRef]
- Gaudet, M.M.; Deubler, E.L.; Kelly, R.S.; Ryan Diver, W.; Teras, L.R.; Hodge, J.M.; Levine, K.E.; Haines, L.G.; Lundh, T.; Lenner, P.; et al. Blood Levels of Cadmium and Lead in Relation to Breast Cancer Risk in Three Prospective Cohorts. Int. J. Cancer 2019, 144, 1010–1016. [Google Scholar] [CrossRef]
- Lim, J.T.; Tan, Y.Q.; Valeri, L.; Lee, J.; Geok, P.P.; Chia, S.E.; Ong, C.N.; Seow, W.J. Association between serum heavy metals and prostate cancer risk—A multiple metal analysis. Environ. Int. 2019, 132, 105109. [Google Scholar] [CrossRef]
- Menke, A.; Muntner, P.; Batuman, V.; Silbergeld, E.K.; Guallar, E. Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation 2006, 114, 1388–1394. [Google Scholar] [CrossRef]
- Kim, M.G.; Ryoo, J.H.; Chang, S.J.; Kim, C.B.; Park, J.K.; Koh, S.B.; Ahn, Y.S. Blood lead levels and cause-specific mortality of inorganic lead-exposed workers in South Korea. PLoS ONE 2015, 10, e0140360. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Wang, Y.T.; Tzeng, D.W.; Yang, J.L. Lead Acetate Induces EGFR Activation Upstream of SFK and PKCα Linkage to the Ras/Raf-1/ERK Signaling. Toxicol. Appl. Pharmacol. 2009, 235, 244–252. [Google Scholar] [CrossRef]
- Xu, J.; Lian, L.J.; Wu, C.; Wang, X.F.; Fu, W.Y.; Xu, L.H. Lead Induces Oxidative Stress, DNA Damage and Alteration of P53, Bax and Bcl-2 Expressions in Mice. Food Chem. Toxicol. 2008, 46, 1488–1494. [Google Scholar] [CrossRef]
- Jarzȩcki, A.A. Lead-Poisoned Zinc Fingers: Quantum Mechanical Exploration of Structure, Coordination, and Electronic Excitations. Inorg. Chem. 2007, 46, 7509–7521. [Google Scholar] [CrossRef] [PubMed]
- Jurczuk, M.; Moniuszko-Jakoniuk, J.; Brzóska, M.M. Involvement of Some Low-Molecular Thiols in the Peroxidative Mechanisms of Lead and Ethanol Action on Rat Liver and Kidney. Toxicology 2006, 219, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Yadav, S.; Singh, I. Trace Metal Concentration in Different Indian Tobacco Products and Related Health Implications. Food Chem. Toxicol. 2010, 48, 2291–2297. [Google Scholar] [CrossRef] [PubMed]
- Callan, A.; Hinwood, A.; Devine, A. Metals in Commonly Eaten Groceries in Western Australia: A Market Basket Survey and Dietary Assessment. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 1968–1981. [Google Scholar] [CrossRef]
- Rzymski, P.; Niedzielski, P.; Kaczmarek, N.; Jurczak, T.; Klimaszyk, P. The Multidisciplinary Approach to Safety and Toxicity Assessment of Microalgae-Based Food Supplements Following Clinical Cases of Poisoning. Harmful Algae 2015, 46, 34–42. [Google Scholar] [CrossRef]
- Laouali, N.; Benmarhnia, T.; Lanphear, B.P.; Oulhote, Y. Associations with Blood Lead and Urinary Cadmium Concentrations in Relation to Mortality in the US Population: A Causal Survival Analysis with G-Computation. Toxics 2023, 11, 133. [Google Scholar] [CrossRef]
- Stoica, A.; Katzenellenbogen, B.S.; Martin, M.B. Activation of Estrogen Receptor-α by the Heavy Metal Cadmium. Mol. Endocrinol. 2000, 14, 545–553. [Google Scholar] [CrossRef]
- Darbre, P.D. Metalloestrogens: An Emerging Class of Inorganic Xenoestrogens with Potential to Add to the Oestrogenic Burden of the Human Breast. J. Appl. Toxicol. 2006, 26, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet 2016, 387, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
- Kaaks, R.; Lukanova, A.; Kurzer, M.S. Obesity, endogenous hormones, and endometrial cancer risk: A synthetic review. Cancer Epidemiol. Biomarkers Prev. 2002, 11, 1531–1543. [Google Scholar] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Niedzielski, P.; Rzymski, P.; Tomczyk, K.; Kozak, L.; Poniedziałek, B. Metal Accumulation in the Human Uterus Varies by Pathology and Smoking Status. Fertil. Steril. 2016, 105, 1511–1518.e3. [Google Scholar] [CrossRef] [PubMed]
- Abadin, H.; Ashizawa, A.; Stevens, Y.W.; Llados, F.; Diamond, G.; Sage, G.; Citra, M.; Quinones, A.; Bosch, S.J.; Swarts, S.G. Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2007. Available online: https://www.ncbi.nlm.nih.gov/books/NBK158766/ (accessed on 8 May 2023).
- Everson, J.; Patterson, C.C. “Ultra-Clean” Isotope Dilution/Mass Spectrometric Analyses for Lead in Human Blood Plasma Indicate That Most Reported Values Are Artificially High. Clin. Chem. 1980, 26, 1603–1607. [Google Scholar] [CrossRef]
- Schultze, B.; Lind, P.M.; Larsson, A.; Lind, L. Whole blood and serum concentrations of metals in a Swedish population-based sample. Scand. J. Clin. Lab. Investig. 2013, 74, 143–148. [Google Scholar] [CrossRef]
- Burtis, C.A.; Ashwood, E.R.; Bruns, D.E. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics; Elsevier Health Sciences: St. Louis, MO, USA, 2012. [Google Scholar]
- Nordberg, G.F.; Jin, T.; Kong, Q.; Ye, T.; Cai, S.; Wang, Z.; Zhuang, F.; Wu, X. Biological monitoring of cadmium exposure and renal effects in a population group residing in a polluted area in China. Sci. Total Environ. 1997, 199, 111–114. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2008.
- Lauwerys, R.; Roels, H.; Regniers, M.; Buchet, J.P.; Bernard, A.; Goret, A. Significance of cadmium concentration in blood and in urine in workers exposed to cadmium. Environ. Res. 1979, 20, 375–391. [Google Scholar] [CrossRef]
- Järup, L.; Rogenfelt, A.; Elinder, C.G.; Nogawa, K.; Kjellström, T. Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand. J. Work Environ. Health 1983, 9, 327–331. [Google Scholar] [CrossRef]
- Friberg, L.; Piscator, M.; Nordberg, G.F.; Kjellstrom, T. Cadmium in the Environment, 2nd ed.; CRC Press: Cleveland, OH, USA, 1974. [Google Scholar]
- Brama, M.; Gnessi, L.; Basciani, S.; Cerulli, N.; Politi, L.; Spera, G.; Mariani, S.; Cherubini, S.; d’Abusco, A.S.; Scandurra, R.; et al. Cadmium Induces Mitogenic Signaling in Breast Cancer Cell by an ERα-Dependent Mechanism. Mol. Cell. Endocrinol. 2007, 264, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Morales, P.; Saceda, M.; Kenney, N.; Kim, N.; Salomon, D.S.; Gottardis, M.M.; Solomon, H.B.; Sholler, P.F.; Jordan, V.C.; Martini, M.B. Effect of Cadmium on Estrogen Receptor Levels and Estrogen-Induced Responses in Human Breast Cancer Cells. J. Biol. Chem. 1994, 269, 16896–16901. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, L. Endometrial Perivascular Progenitor Cells and Uterus Regeneration. J. Pers. Med. 2021, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Zuber, T.J. Endometrial biopsy. Am. Fam. Physician 2001, 63, 1131. [Google Scholar] [PubMed]
- Wieder-Huszla, S.; Chudecka-Głaz, A.; Cymbaluk-Płoska, A.; Karakiewicz, B.; Bosiacki, M.; Chlubek, D.; Jurczak, A. Evaluation of the Concentration of Selected Elements in Patients with Cancer of the Reproductive Organs with Respect to Treatment Stage—Preliminary Study. Nutrients 2022, 14, 2368. [Google Scholar] [CrossRef]
- Scimeca, M.; Orlandi, A.; Terrenato, I.; Bischetti, S.; Bonanno, E. Assessment of Metal Contaminants in Non-Small Cell Lung Cancer by EDX Microanalysis. Eur. J. Histochem. 2014, 58. [Google Scholar] [CrossRef]
- Ionescu, J.G.; Novotny, J.; Stejskal, V.; Lätsch, A.; Blaurock-Busch, E.; Eisenmann-Klein, M. Increased Levels of Transition Metals in Breast Cancer Tissue. Neuroendocrinol. Lett. 2006, 27, 36–39. [Google Scholar]
- McElroy, J.A.; Kruse, R.L.; Guthrie, J.; Gangnon, R.E.; Robertson, J.D. Cadmium Exposure and EndometrialCancer Risk: A Large Midwestern, U.S. Population-Based Case-Control Study. PLoS ONE 2017, 12, e0179360. [Google Scholar] [CrossRef]
- Åkesson, A.; Julin, B.; Wolk, A. Long-Term Dietary Cadmium Intake and Postmenopausal Endometrial Cancer Incidence: A Population-Based Prospective Cohort Study. Cancer Res. 2008, 68, 6435–6441. [Google Scholar] [CrossRef]
- Eriksen, K.T.; Halkjær, J.; Sørensen, M.; Meliker, J.R.; McElroy, J.A.; Tjønneland, A.; Raaschou-Nielsen, O. Dietary Cadmium Intake and Risk of Breast, Endometrial and Ovarian Cancer in Danish Postmenopausal Women: A Prospective Cohort Study. PLoS ONE 2014, 9, e100815. [Google Scholar] [CrossRef]
- Adams, S.V.; Quraishi, S.M.; Shafer, M.M.; Passarelli, M.N.; Freney, E.P.; Chlebowski, R.T.; Luo, J.; Meliker, J.R.; Mu, L.; Neuhouser, M.L.; et al. Dietary Cadmium Exposure and Risk of Breast, Endometrial, and Ovarian Cancer in the Women’s Health Initiative. Environ. Health Perspect. 2014, 122, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Freeland-Graves, J.H.; Sanjeevi, N.; Lee, J.J. Global perspectives on trace element requirements. J. Trace Elem. Med. Biol. 2015, 31, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.; Kim, M.J.; Sohn, I.; Kim, S.; Kim, I.; Ryu, J.M.; Choi, H.J.; Kim, J.M.; Lee, S.K.; Yu, J.; et al. Serum Trace Elements and Their Associations with Breast Cancer Subgroups in Korean Breast Cancer Patients. Nutrients 2018, 11, 37. [Google Scholar] [CrossRef] [PubMed]
Element | Reference Values (mg/kg) | Obtained Values, n = 3 (mg/kg) | % of Reference Value |
---|---|---|---|
Cd | 0.013 ± 0.01 | 0.018 ± 0.004 | 138% |
Pb | 0.38 ± 0.24 | 0.42 ± 0.11 | 111% |
Variable | Study Population (N = 110) | Myoma (N = 25) | Normal Endometrium (N = 16) | Endometrial Polyp (N = 48) | Endometrial Cancer (N = 21) | p-Value |
---|---|---|---|---|---|---|
Cd (mg/L) | 0.0028 (0.0012; 0.0044) | 0.0042 | 0.0018 | 0.0014 | 0.00 | 0.0020 |
Pb (mg/L) | 0.244 (0.0088; 0.0373) | 0.0232 | 0.0312 | 0.0264 | 0.0160 | 0.7175 |
Cd/Pb ratio | 0.0925 (0.0286; 0.1811) | 0.1456 | 0.0439 | 0.0400 | 0.1569 | 0.0011 |
Age (years) | 52 (45; 62) | 45 | 52 | 51 | 70 | <0.0001 |
Weight (kg) | 72.0 (60.0; 86.0) | 69.8 ± 13.4 | 79.1 ± 15.0 | 71.1 ± 15.5 | 78.7 ± 21.2 | 0.1284 * |
BMI (kg/m2) | 27.06 (22.76; 32.26) | 25.28 | 29.72 | 26.56 | 30.27 | 0.0252 |
Cd (mg/L) | Pb (mg/L) | Cd/Pb Ratio | |
---|---|---|---|
Before menopause [n = 45] | 0.0036 ± 0.0018 | 0.0300 ± 0.0224 | 0.1200 ± 0.2875 |
After menopause [n = 63] | 0.0024 ± 0.0021 | 0.0228 ± 0.0171 | 0.1034 ± 0.2015 |
p-value | 0.1513 | 0.5682 | 0.8494 |
BMI < 25 kg/m2 [n = 35] | 0.0024 ± 0.0021 | 0.0348 ± 0.0164 | 0.1078 ± 0.0886 |
BMI ≥ 25 kg/m2 [n = 69] | 0.0028 ± 0.0020 | 0.0188 ± 0.0187 | 0.1456 ± 0.2401 |
p-value | 0.6576 | 0.1239 | 0.1030 |
No diabetes [n = 93] | 0.0028 ± 0.0020 | 0.0268 ± 0.0201 | 0.1034 ± 0.1782 |
Diabetes type 2 [n = 15] | 0.0028 ± 0.0021 | 0.0204 ± 0.0163 | 0.1609 ± 0.1851 |
p-value | 0.4981 | 0.3782 | 0.0764 |
Non-smoking [n = 101] | 0.0028 ± 0.0020 | 0.0264 ± 0.0188 | 0.1034 ± 0.1318 |
Smoking [n = 7] | 0.0028 ± 0.0024 | 0.0024 ± 0.0077 | 1.0000 ± 2.4080 |
p-value | 0.7078 | 0.0160 | 0.0011 |
Characteristics | OR | 95%CI | p-Value | |
---|---|---|---|---|
Cd | >Q1 | 1.70 | 0.34–8.55 | 0.5195 |
>Q2 | 5.25 | 1.56–17.72 | 0.0075 | |
>Q3 | 1.92 | 0.63–5.80 | 0.2496 | |
Pb | >Q1 | 0.87 | 0.26–2.90 | 0.8163 |
>Q2 | 0.37 | 0.12–1.13 | 0.0802 | |
>Q3 | - | - | - | |
Cd/Pb | >Q1 | 4.47 | 0.52–38.22 | 0.1716 |
>Q2 | 3.50 | 0.85–14.33 | 0.0815 | |
>Q3 | 3.19 | 0.78–13.06 | 0.1071 | |
Age * | 8.28 | 2.20–31.16 | 0.0018 | |
Weight * | 1.27 | 0.46–3.55 | 0.6452 | |
BMI * | 2.189 | 0.77–6.24 | 0.1428 | |
Menopause | 14.77 | 1.86–117.17 | 0.0108 | |
Smoking | 2.69 | 0.55–13.20 | 0.2225 | |
Diabetes type 2 | 2.944 | 0.99–8.78 | 0.5260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczyk, K.; Kupnicka, P.; Witczak, G.; Tousty, P.; Bosiacki, M.; Kurzawski, M.; Chlubek, D.; Cymbaluk-Płoska, A. Assessment of Cadmium (Cd) and Lead (Pb) Blood Concentration on the Risk of Endometrial Cancer. Biology 2023, 12, 717. https://doi.org/10.3390/biology12050717
Michalczyk K, Kupnicka P, Witczak G, Tousty P, Bosiacki M, Kurzawski M, Chlubek D, Cymbaluk-Płoska A. Assessment of Cadmium (Cd) and Lead (Pb) Blood Concentration on the Risk of Endometrial Cancer. Biology. 2023; 12(5):717. https://doi.org/10.3390/biology12050717
Chicago/Turabian StyleMichalczyk, Kaja, Patrycja Kupnicka, Grzegorz Witczak, Piotr Tousty, Mateusz Bosiacki, Mateusz Kurzawski, Dariusz Chlubek, and Aneta Cymbaluk-Płoska. 2023. "Assessment of Cadmium (Cd) and Lead (Pb) Blood Concentration on the Risk of Endometrial Cancer" Biology 12, no. 5: 717. https://doi.org/10.3390/biology12050717
APA StyleMichalczyk, K., Kupnicka, P., Witczak, G., Tousty, P., Bosiacki, M., Kurzawski, M., Chlubek, D., & Cymbaluk-Płoska, A. (2023). Assessment of Cadmium (Cd) and Lead (Pb) Blood Concentration on the Risk of Endometrial Cancer. Biology, 12(5), 717. https://doi.org/10.3390/biology12050717