Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson’s Disease: A Systematic Review of Diffusion Tensor Imaging Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Strategy and Data Extraction
3. Result
4. Cingulum
4.1. PD
4.2. Motor Symptoms
4.3. Non-Motor Symptoms
4.4. Correlation
5. Uncinate Fasciculus
5.1. PD
5.2. Motor Symptoms
5.3. Non-Motor Symptoms
5.4. Correlation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalia, L.V.; Lang, A. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Dekker, M.C.; Bonifati, V.; van Duijn, C. Parkinson’s disease: Piecing together a genetic jigsaw. Brain 2003, 126 Pt 8, 1722–1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grayson, M. Parkinson’s disease. Nature 2016, 538, S1. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, A.A.; Chakravarthy, S.; Phillips, J.R.; Gupta, A.; Keri, S.; Polner, B.; Frank, M.J.; Jahanshahi, M. Motor symptoms in Parkinson’s disease: A unified framework. Neurosci. Biobehav. Rev. 2016, 68, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiz, P.J.; Chaudhuri, K.; Martinez-Martin, P. Non-motor symptoms of Parkinson’s disease A review…from the past. J. Neurol. Sci. 2014, 338, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Zesiewicz, T.A.; Sullivan, K.; Hauser, R. Nonmotor symptoms of Parkinson’s disease. Expert Rev. Neurother. 2006, 6, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Remy, P.; Doder, M.; Lees, A.; Turjanski, N.; Brooks, D. Depression in Parkinson’s disease: Loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005, 128 Pt 6, 1314–1322. [Google Scholar] [CrossRef] [Green Version]
- Todorova, P.; Jenner, P.; Chaudhuri, K.R. Non-motor Parkinson’s: Integral to motor Parkinson’s, yet often neglected. Pract. Neurol. 2014, 14, 310–322. [Google Scholar]
- Amanollahi, M.; Jameie, M.; Heidari, A.; Rezaei, N. The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol. Neurobiol. 2022, 60, 923–959. [Google Scholar] [CrossRef]
- Marxreiter, F.; Regensburger, M.; Winkler, J. Adult neurogenesis in Parkinson’s disease. Cell Mol. Life Sci. 2013, 70, 459–473. [Google Scholar]
- Boska, M.D.; Hasan, K.M.; Kibuule, D.; Banerjee, R.; McIntyre, E.; Nelson, J.A.; Hahn, T.; Gendelman, H.E.; Mosley, R.L. Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol. Dis. 2007, 26, 590–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soria, G.; Aguilar, E.; Tudela, R.; Mullol, J.; Planas, A.M.; Marin, C. In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: A T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-hydroxydopamine rat model. Eur. J. Neurosci. 2011, 33, 1551–1560. [Google Scholar] [PubMed]
- Huang, P.; Xu, X.; Gu, Q.; Xuan, M.; Yu, X.; Luo, W.; Zhang, M. Disrupted white matter integrity in depressed versus non-depressed Parkinson’s disease patients: A tract-based spatial statistics study. J. Neurol. Sci. 2014, 346, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.; Skidmore, F.; Liu, Y.; Tian, J.; Li, K. White matter microstructure changes in the thalamus in Parkinson disease with depression: A diffusion tensor MR imaging study. AJNR Am. J. Neuroradiol. 2010, 31, 1861–1866. [Google Scholar] [CrossRef] [Green Version]
- Kötter, R.; Meyer, N. The limbic system: A review of its empirical foundation. Behav. Brain Res. 1992, 52, 105–127. [Google Scholar] [CrossRef]
- Rajmohan, V.; Mohandas, E. The limbic system. Indian J. Psychiatry 2007, 49, 132–139. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Smith, E.E.; Eichler, F.S.; Filley, C.M. Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N. Y. Acad. Sci. 2008, 1142, 266–309. [Google Scholar] [CrossRef] [Green Version]
- Dalgleish, T. The emotional brain. Nat. Rev. Neurosci. 2004, 5, 583–589. [Google Scholar] [CrossRef]
- Shah, A.; Jhawar, S.S.; Goel, A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci. 2012, 19, 289–298. [Google Scholar] [CrossRef]
- Bubb, E.J.; Metzler-Baddeley, C.; Aggleton, J.P. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci. Biobehav. Rev. 2018, 92, 104–127. [Google Scholar] [CrossRef]
- Pierpaoli, C.; Jezzard, P.; Basser, P.J.; Barnett, A.; Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996, 201, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Tak, H.J.; Kim, J.; Son, S. Developmental process of the arcuate fasciculus from infancy to adolescence: A diffusion tensor imaging study. Neural Regen. Res. 2016, 11, 937–943. [Google Scholar] [PubMed]
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion tensor imaging of the brain. Neurotherapeutics 2007, 4, 316–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Park, Y.; Huang, X.; Hollenbeck, A.; Blair, A.; Schatzkin, A.; Chen, H. Physical activities and future risk of Parkinson disease. Neurology 2010, 75, 341–348. [Google Scholar] [CrossRef]
- Mole, J.P.; Subramanian, L.; Bracht, T.; Morris, H.; Metzler-Baddeley, C.; Linden, D.E. Increased fractional anisotropy in the motor tracts of Parkinson’s disease suggests compensatory neuroplasticity or selective neurodegeneration. Eur. Radiol. 2016, 26, 3327–3335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Fan, G.G.; Liu, H.; Wang, S. Changes in anatomical and functional connectivity of Parkinson’s disease patients according to cognitive status. Eur. J. Radiol. 2015, 84, 1318–1324. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Xiao, C.; Wang, X.; Zhang, X.; Yu, M.; Hu, X.; Qian, L. Abnormal white matter microstructures in Parkinson’s disease and comorbid depression: A whole-brain diffusion tensor imaging study. Neurosci. Lett. 2020, 735, 135238. [Google Scholar] [CrossRef]
- Holtbernd, F.; Romanzetti, S.; Oertel, W.H.; Knake, S.; Sittig, E.; Heidbreder, A.; Maier, A.; Krahe, J.; Wojtala, J.; Dogan, I. Convergent patterns of structural brain changes in rapid eye movement sleep behavior disorder and Parkinson’s disease on behalf of the German rapid eye movement sleep behavior disorder study group. Sleep 2021, 44, zsaa199. [Google Scholar] [CrossRef]
- Gorges, M.; Müller, H.-P.; Liepelt-Scarfone, I.; Storch, A.; Dodel, R.; Consortium, L.; Hilker-Roggendorf, R.; Berg, D.; Kunz, M.S.; Kalbe, E. Structural brain signature of cognitive decline in Parkinson’s disease: DTI-based evidence from the LANDSCAPE study. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419843447. [Google Scholar] [CrossRef]
- Sun, J.; Chen, R.; Tong, Q.; Ma, J.; Gao, L.; Fang, J.; Zhang, D.; Chan, P.; He, H.; Wu, T. Convolutional neural network optimizes the application of diffusion kurtosis imaging in Parkinson’s disease. Brain Inform. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Jalakas, M.; Palmqvist, S.; Hall, S.; Svärd, D.; Lindberg, O.; Pereira, J.B.; van Westen, D.; Hansson, O. A quick test of cognitive speed can predict development of dementia in Parkinson’s disease. Sci. Rep. 2019, 9, 15417. [Google Scholar] [CrossRef] [Green Version]
- Andica, C.; Kamagata, K.; Hatano, T.; Saito, A.; Uchida, W.; Ogawa, T.; Takeshige-Amano, H.; Zalesky, A.; Wada, A.; Suzuki, M. Free-water imaging in white and gray matter in Parkinson’s disease. Cells 2019, 8, 839. [Google Scholar] [CrossRef] [Green Version]
- Andica, C.; Kamagata, K.; Hatano, T.; Saito, Y.; Uchida, W.; Ogawa, T.; Takeshige-Amano, H.; Hagiwara, A.; Murata, S.; Oyama, G. Neurocognitive and psychiatric disorders-related axonal degeneration in Parkinson’s disease. J. Neurosci. Res. 2020, 98, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.-K.; Chou, Y.-H.; Sundman, M.; Hickey, P.; Kasoff, W.S.; Bernstein, A.; Trouard, T.P.; Lin, T.; Rapcsak, S.Z.; Sherman, S.J. Alteration of diffusion-tensor magnetic resonance imaging measures in brain regions involved in early stages of parkinson’s disease. Brain Connect. 2018, 8, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Takeshige-Amano, H.; Hatano, T.; Kamagata, K.; Andica, C.; Uchida, W.; Abe, M.; Ogawa, T.; Shimo, Y.; Oyama, G.; Umemura, A. White matter microstructures in Parkinson’s disease with and without impulse control behaviors. Ann. Clin. Transl. Neurol. 2022, 9, 253–263. [Google Scholar] [CrossRef]
- Wu, J.Y.; Zhang, Y.; Wu, W.B.; Hu, G.; Xu, Y. Impaired long contact white matter fibers integrity is related to depression in Parkinson’s disease. CNS Neurosci. Ther. 2018, 24, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jiang, X.; Wu, J.; Wu, H.; Zhou, C.; Guo, T.; Bai, X.; Liu, X.; Wen, J.; Cao, Z. Gray and white matter alterations in different predominant side and type of motor symptom in Parkinson’s disease. CNS Neurosci. Ther. 2022, 28, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Di Tella, S.; Baglio, F.; Pelizzari, L.; Cabinio, M.; Nemni, R.; Traficante, D.; Silveri, M.C. Uncinate fasciculus and word selection processing in Parkinson’s disease. Neuropsychologia 2020, 146, 107504. [Google Scholar] [CrossRef]
- Duncan, G.W.; Firbank, M.J.; Yarnall, A.J.; Khoo, T.K.; Brooks, D.J.; Barker, R.A.; Burn, D.J.; O’Brien, J.T. Gray and white matter imaging: A biomarker for cognitive impairment in early P arkinson’s disease? Mov. Disord. 2016, 31, 103–110. [Google Scholar] [CrossRef]
- Lenka, A.; Ingalhalikar, M.; Shah, A.; Saini, J.; Arumugham, S.S.; Hegde, S.; George, L.; Yadav, R.; Pal, P.K. Abnormalities in the white matter tracts in patients with Parkinson disease and psychosis. Neurology 2020, 94, e1876–e1884. [Google Scholar] [CrossRef]
- Patriat, R.; Pisharady, P.K.; Amundsen-Huffmaster, S.; Linn-Evans, M.; Howell, M.; Chung, J.W.; Petrucci, M.N.; Videnovic, A.; Holker, E.; De Kam, J. White matter microstructure in Parkinson’s disease with and without elevated rapid eye movement sleep muscle tone. Brain Commun. 2022, 4, fcac027. [Google Scholar] [CrossRef]
- Feng, Y.; Yan, W.; Wang, J.; Song, J.; Zeng, Q.; Zhao, C. Local white matter fiber clustering differentiates Parkinson’s disease diagnoses. Neuroscience 2020, 435, 146–160. [Google Scholar] [CrossRef]
- Nilsson, M.; Szczepankiewicz, F.; van Westen, D.; Hansson, O. Extrapolation-based references improve motion and eddy-current correction of high B-value DWI data: Application in Parkinson’s disease dementia. PLoS ONE 2015, 10, e0141825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, L.; Zhang, W.; Li, C.; Shi, X.; Zhou, Z.; Zhong, W.; Chen, T.; Wu, X.; Yang, C.; Guo, D. Structural brain network alteration and its correlation with structural impairments in patients with depression in de novo and drug-naive Parkinson’s disease. Front. Neurol. 2018, 9, 608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guimarães, R.P.; Campos, B.M.; de Rezende, T.J.; Piovesana, L.; Azevedo, P.C.; Amato-Filho, A.C.; Cendes, F.; D’Abreu, A. Is diffusion tensor imaging a good biomarker for early Parkinson’s disease? Front. Neurol. 2018, 9, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Qi, S.; Teng, Y.; Li, C.; Yao, Y.; Ruan, X.; Wei, X. Integrating structural and functional interhemispheric brain connectivity of gait freezing in Parkinson’s disease. Front. Neurol. 2021, 12, 609866. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Y.; Pan, A.; Xu, Z.; Wang, L.; Zhang, Y.; Nie, K.; Huang, B. Identifying Depression in Parkinson’s Disease by Using Combined Diffusion Tensor Imaging and Support Vector Machine. Front. Neurol. 2022, 13, 878691. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Huang, P.; Zeng, Q.; Liu, C.; Wei, H.; Xuan, M.; Gu, Q.; Xu, X.; Wang, N.; Yu, X. Quantitative susceptibility mapping as a biomarker for evaluating white matter alterations in Parkinson’s disease. Brain Imaging Behav. 2019, 13, 220–231. [Google Scholar] [CrossRef]
- Canu, E.; Agosta, F.; Sarasso, E.; Volonte, M.A.; Basaia, S.; Stojkovic, T.; Stefanova, E.; Comi, G.; Falini, A.; Kostic, V.S. Brain structural and functional connectivity in P arkinson’s disease with freezing of gait. Hum. Brain Mapp. 2015, 36, 5064–5078. [Google Scholar] [CrossRef] [Green Version]
- Ji, G.J.; Ren, C.; Li, Y.; Sun, J.; Liu, T.; Gao, Y.; Xue, D.; Shen, L.; Cheng, W.; Zhu, C. Regional and network properties of white matter function in Parkinson’s disease. Hum. Brain Mapp. 2019, 40, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Guan, X.; Zhou, C.; Gao, T.; Wu, J.; Song, Z.; Xuan, M.; Gu, Q.; Huang, P.; Pu, J. Clinically relevant connectivity features define three subtypes of Parkinson’s disease patients. Hum. Brain Mapp. 2020, 41, 4077–4092. [Google Scholar] [CrossRef]
- Xiao, Y.; Peters, T.M.; Khan, A.R. Characterizing white matter alterations subject to clinical laterality in drug-naïve de novo Parkinson’s disease. Hum. Brain Mapp. 2021, 42, 4465–4477. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chen, H.-L.; Chen, P.-C.; Chen, Y.-S.; Chiang, P.-L.; Wang, C.-K.; Lu, C.-H.; Chen, M.-H.; Chou, K.-H.; Huang, Y.-C. Correlation between executive network integrity and sarcopenia in patients with Parkinson’s disease. Int. J. Environ. Res. Public Health 2019, 16, 4884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imperiale, F.; Agosta, F.; Canu, E.; Markovic, V.; Inuggi, A.; Jecmenica-Lukic, M.; Tomic, A.; Copetti, M.; Basaia, S.; Kostic, V. Brain structural and functional signatures of impulsive–compulsive behaviours in Parkinson’s disease. Mol. Psychiatry 2018, 23, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.B.; Lee, J.-Y.; Lee, J.S.; Kang, H.; Kim, Y.K.; Song, I.C.; Lee, D.S.; Jeon, B.S. Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders. J. Clin. Neurol. 2015, 11, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Jiménez, O.; Diez-Cirarda, M.; Ojeda, N.; Pena, J.; Cabrera-Zubizarreta, A.; Ibarretxe-Bilbao, N. Verbal memory in parkinson’s disease: A combined DTI and fMRI study. J. Park. Dis. 2015, 5, 793–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koinuma, T.; Hatano, T.; Kamagata, K.; Andica, C.; Mori, A.; Ogawa, T.; Takeshige-Amano, H.; Uchida, W.; Saiki, S.; Okuzumi, A. Diffusion MRI Captures White Matter Microstructure Alterations in PRKN Disease. J. Park. Dis. 2021, 11, 1221–1235. [Google Scholar] [CrossRef]
- Georgiopoulos, C.; Warntjes, M.; Dizdar, N.; Zachrisson, H.; Engström, M.; Haller, S.; Larsson, E.-M. Olfactory impairment in Parkinson’s disease studied with diffusion tensor and magnetization transfer imaging. J. Park. Dis. 2017, 7, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-R.; Ren, Y.-D.; Cao, B.; Huang, X.-L. Analysis of white matter characteristics with tract-based spatial statistics according to diffusion tensor imaging in early Parkinson’s disease. Neurosci. Lett. 2018, 675, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Akio, H.; Togao, O.; Yamashita, K.; Somehara, R.; Kamei, R.; Baba, S. Structural changes in Parkinson’s disease: Voxel-based morphometry and diffusion tensor imaging analyses based on 123I-MIBG uptake. Eur. Radiol. 2017, 27, 5073–5079. [Google Scholar]
- Mishra, V.R.; Sreenivasan, K.R.; Zhuang, X.; Yang, Z.; Cordes, D.; Walsh, R.R. Influence of analytic techniques on comparing DTI-derived measurements in early stage Parkinson’s disease. Heliyon 2019, 5, e01481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minett, T.; Su, L.; Mak, E.; Williams, G.; Firbank, M.; Lawson, R.A.; Yarnall, A.J.; Duncan, G.W.; Owen, A.M.; Khoo, T.K. Longitudinal diffusion tensor imaging changes in early Parkinson’s disease: ICICLE-PD study. J. Neurol. 2018, 265, 1528–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chondrogiorgi, M.; Astrakas, L.G.; Zikou, A.K.; Weis, L.; Xydis, V.G.; Antonini, A.; Argyropoulou, M.I.; Konitsiotis, S. Multifocal alterations of white matter accompany the transition from normal cognition to dementia in Parkinson’s disease patients. Brain Imaging Behav. 2019, 13, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Koshimori, Y.; Segura, B.; Christopher, L.; Lobaugh, N.; Duff-Canning, S.; Mizrahi, R.; Hamani, C.; Lang, A.E.; Aminian, K.; Houle, S. Imaging changes associated with cognitive abnormalities in Parkinson’s disease. Brain Struct. Funct. 2015, 220, 2249–2261. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.-f.; Shi, F.; Niu, G.-m.; Xie, S.-h.; Yu, S.-y. A novel method for evaluating brain function and microstructural changes in Parkinson’s disease. Neural Regen. Res. 2015, 10, 2025. [Google Scholar] [PubMed]
- Pietracupa, S.; Suppa, A.; Upadhyay, N.; Giannì, C.; Grillea, G.; Leodori, G.; Modugno, N.; Di Biasio, F.; Zampogna, A.; Colonnese, C. Freezing of gait in Parkinson’s disease: Gray and white matter abnormalities. J. Neurol. 2018, 265, 52–62. [Google Scholar] [CrossRef]
- Inguanzo, A.; Sala-Llonch, R.; Segura, B.; Erostarbe, H.; Abós, A.; Campabadal, A.; Uribe, C.; Baggio, H.C.; Compta, Y.; Marti, M. Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson’s disease. Park. Relat. Disord. 2021, 82, 16–23. [Google Scholar] [CrossRef]
- Pelizzari, L.; Di Tella, S.; Laganà, M.M.; Bergsland, N.; Rossetto, F.; Nemni, R.; Baglio, F. White matter alterations in early Parkinson’s disease: Role of motor symptom lateralization. Neurol. Sci. 2020, 41, 357–364. [Google Scholar] [CrossRef]
- Melzer, T.R.; Myall, D.J.; MacAskill, M.R.; Pitcher, T.L.; Livingston, L.; Watts, R.; Keenan, R.J.; Dalrymple-Alford, J.C.; Anderson, T.J. Tracking Parkinson’s disease over one year with multimodal magnetic resonance imaging in a group of older patients with moderate disease. PLoS ONE 2015, 10, e0143923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surova, Y.; Lampinen, B.; Nilsson, M.; Lätt, J.; Hall, S.; Widner, H.; Swedish BioFINDER Study; van Westen, D.; Hansson, O. Alterations of diffusion kurtosis and neurite density measures in deep grey matter and white matter in Parkinson’s disease. PLoS ONE 2016, 11, e0157755. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Hatano, T.; Kamagata, K.; Andica, C.; Takeshige-Amano, H.; Uchida, W.; Saito, Y.; Shimo, Y.; Oyama, G.; Umemura, A. White matter alterations in Parkinson’s disease with levodopa-induced dyskinesia. Park. Relat. Disord. 2021, 90, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chen, L.; Cai, G.; Wang, Y.; Chen, X.; Hong, W.; Ye, Q. Evaluating white matter alterations in Parkinson’s disease-related parkin S/N167 mutation carriers using tract-based spatial statistics. Quant. Imaging Med. Surg. 2022, 12, 4272. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, Y.; Guo, J.; Zhang, H.; Xiang, Y.; Liao, H.; Cai, S.; Zhou, B.; Wang, M.; Liu, S. Impaired white matter microstructure associated with severe depressive symptoms in patients with PD. Brain Imaging Behav. 2022, 16, 169–175. [Google Scholar] [CrossRef]
- Seki, M.; Seppi, K.; Mueller, C.; Potrusil, T.; Goebel, G.; Reiter, E.; Nocker, M.; Kremser, C.; Wildauer, M.; Schocke, M. Diagnostic potential of multimodal MRI markers in atypical parkinsonian disorders. J. Park. Dis. 2019, 9, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, S.; Yuan, Y.; Zhang, L.; Ding, J.; Wang, J.; Zhang, J.; Zhang, K.; Wang, J. Alterations of functional and structural connectivity of freezing of gait in Parkinson’s disease. J. Neurol. 2016, 263, 1583–1592. [Google Scholar] [CrossRef]
- Wen, M.-C.; Heng, H.S.; Lu, Z.; Xu, Z.; Chan, L.L.; Tan, E.K.; Tan, L.C. Differential white matter regional alterations in motor subtypes of early drug-naive Parkinson’s disease patients. Neurorehabilit. Neural Repair 2018, 32, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, F.; Zhao, C.; Zeng, Q.; He, J.; O’Donnell, L.J.; Feng, Y. Investigation of local white matter abnormality in Parkinson’s disease by using an automatic fiber tract parcellation. Behav. Brain Res. 2020, 394, 112805. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Wu, W.; Liu, R.; Pang, L.; Guan, D.; Xu, Y. Reduction of white matter integrity correlates with apathy in Parkinson’s disease. Int. J. Neurosci. 2018, 128, 25–31. [Google Scholar] [CrossRef]
- Chen, M.-H.; Chen, P.-C.; Lu, C.-H.; Chen, H.-L.; Chao, Y.-P.; Li, S.-H.; Chen, Y.-W.; Lin, W.-C. Plasma DNA mediate autonomic dysfunctions and white matter injuries in patients with Parkinson’s disease. Oxidative Med. Cell. Longev. 2017, 2017, 7371403. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wu, T.; Luo, Y.; Li, Z.; Guan, Q.; Meng, X.; Tao, W.; Zhang, H. Amnestic mild cognitive impairment in Parkinson’s disease: White matter structural changes and mechanisms. PLoS ONE 2019, 14, e0226175. [Google Scholar] [CrossRef]
- Lu, C.-S.; Ng, S.-H.; Weng, Y.-H.; Cheng, J.-S.; Lin, W.-Y.; Wai, Y.-Y.; Chen, Y.-L.; Wang, J.-J. Alterations of diffusion tensor MRI parameters in the brains of patients with Parkinson’s disease compared with normal brains: Possible diagnostic use. Eur. Radiol. 2016, 26, 3978–3988. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jiang, J.; Peng, W.; Zhou, X.; Du, J.; Mo, L.; Tan, C.; Liu, X.; Chen, L. Levodopa responsiveness in Parkinson’s disease patients and white matter alterations in diffusion tensor imaging: A cross-sectional tract-based spatial statistics study. NeuroReport 2021, 32, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Rahmani, F.; Dolatshahi, M.; Pooyan, A.; Aarabi, M.H. Brain pathway differences between Parkinson’s disease patients with and without REM sleep behavior disorder. Sleep Breath. 2017, 21, 155–161. [Google Scholar] [CrossRef]
- Kang, S.Y.; Bang, M.; Hong, J.Y.; Oh, J.; Kim, J.S.; Han, Y.M.; Chang, S.K.; Lee, S.A.; Yoon, U.; Shin, N.-Y. Neural and dopaminergic correlates of fatigue in Parkinson’s disease. J. Neural Transm. 2020, 127, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Uhr, L.; Tsolaki, E.; Pouratian, N. Diffusion tensor imaging correlates of depressive symptoms in Parkinson disease. J. Comp. Neurol. 2022, 530, 1729–1738. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, M.; Yao, Z.; Hu, B.; Xie, Y.; Zheng, W.; Hu, T.; Zhao, Y.; Yang, F.; Zhang, Y. Frequency-specific functional connectivity density as an effective biomarker for adolescent generalized anxiety disorder. Front. Hum. Neurosci. 2017, 11, 549. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Cabronero, J.; Williams, G.B.; Pengas, G.; Nestor, P.J. Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain 2010, 133, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Curran, K.M.; Emsell, L.; Leemans, A. Quantitative DTI measures. Diffus. Tensor Imaging A Pract. Handb. 2016, 65–87. [Google Scholar] [CrossRef]
- Chu, Y.; Morfini, G.A.; Langhamer, L.B.; He, Y.; Brady, S.T.; Kordower, J.H. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 2012, 135 Pt 7, 2058–2073. [Google Scholar] [CrossRef] [Green Version]
- Sanjari Moghaddam, H.; Dolatshahi, M.; Salardini, E.; Aarabi, M.H. Association of olfaction dysfunction with brain microstructure in prodromal Parkinson disease. Neurol. Sci. 2019, 40, 283–291. [Google Scholar] [CrossRef]
- Ghazi Sherbaf, F.; Rostam Abadi, Y.; Mojtahed Zadeh, M.; Ashraf-Ganjouei, A.; Sanjari Moghaddam, H.; Aarabi, M.H. Microstructural changes in patients with Parkinson’s disease comorbid with REM sleep behaviour disorder and depressive symptoms. Front. Neurol. 2018, 9, 441. [Google Scholar] [CrossRef]
- Ghazi Sherbaf, F.; Rahmani, F.; Jooyandeh, S.M.; Aarabi, M.H. Microstructural changes in patients with Parkinson disease and REM sleep behavior disorder: Depressive symptoms versus non-depressed. Acta Neurol. Belg. 2018, 118, 415–421. [Google Scholar] [CrossRef]
- Sobhani, S.; Rahmani, F.; Aarabi, M.H.; Sadr, A.V. Exploring white matter microstructure and olfaction dysfunction in early parkinson disease: Diffusion MRI reveals new insight. Brain Imaging Behav. 2019, 13, 210–219. [Google Scholar] [CrossRef]
- Song, S.-K.; Sun, S.-W.; Ju, W.-K.; Lin, S.-J.; Cross, A.H.; Neufeld, A.H. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 2003, 20, 1714–1722. [Google Scholar] [CrossRef]
- Sun, S.-W.; Song, S.-K.; Harms, M.P.; Lin, S.-J.; Holtzman, D.M.; Merchant, K.M.; Kotyk, J.J. Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp. Neurol. 2005, 191, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Gudala, K.; Bansal, D.; Muthyala, H. Role of serum cholesterol in Parkinson’s disease: A meta-analysis of evidence. J. Park. Dis. 2013, 3, 363–370. [Google Scholar] [CrossRef]
- Rahmani, F.; Aarabi, M.H. Does apolipoprotein A1 predict microstructural changes in subgenual cingulum in early Parkinson? J. Neurol. 2017, 264, 684–693. [Google Scholar] [CrossRef]
- Von Der Heide, R.J.; Skipper, L.M.; Klobusicky, E.; Olson, I.R. Dissecting the uncinate fasciculus: Disorders, controversies and a hypothesis. Brain 2013, 136, 1692–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Concha, L. A macroscopic view of microstructure: Using diffusion-weighted images to infer damage, repair, and plasticity of white matter. Neuroscience 2014, 276, 14–28. [Google Scholar] [CrossRef]
- Tighe, S.K.; Oishi, K.; Mori, S.; Smith, G.S.; Albert, M.; Lyketsos, C.G.; Mielke, M.M. Diffusion tensor imaging of neuropsychiatric symptoms in mild cognitive impairment and Alzheimer’s dementia. J. Neuropsychiatry Clin. Neurosci. 2012, 24, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, K.; Watanabe, Y.; Takashima, I. Topographical projections from the nucleus basalis magnocellularis (Meynert) to the frontal cortex: A voltage-sensitive dye imaging study in rats. Brain Stimul. 2017, 10, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Biundo, R.; Weis, L.; Antonini, A. Cognitive decline in Parkinson’s disease: The complex picture. Npj Park. Dis. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schapira, A.H.; Chaudhuri, K.; Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef]
- Delaville, C.; Deurwaerdère, P.D.; Benazzouz, A. Noradrenaline and Parkinson’s disease. Front. Syst. Neurosci. 2011, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Perez-Lloret, S.; Barrantes, F.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. Npj Park. Dis. 2016, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Kwaasteniet, B.; Ruhe, E.; Caan, M.; Rive, M.; Olabarriaga, S.; Groefsema, M.; Heesink, L.; van Wingen, G.; Denys, D. Relation between structural and functional connectivity in major depressive disorder. Biol. Psychiatry 2013, 74, 40–47. [Google Scholar] [CrossRef]
- Delaparte, L.; Yeh, F.-C.; Adams, P.; Malchow, A.; Trivedi, M.H.; Oquendo, M.A.; Deckersbach, T.; Ogden, T.; Pizzagalli, D.A.; Fava, M. A comparison of structural connectivity in anxious depression versus non-anxious depression. J. Psychiatr. Res. 2017, 89, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Hettema, J.M.; Kettenmann, B.; Ahluwalia, V.; McCarthy, C.; Kates, W.R.; Schmitt, J.E.; Silberg, J.L.; Neale, M.C.; Kendler, K.S.; Fatouros, P. Pilot multimodal twin imaging study of generalized anxiety disorder. Depress. Anxiety 2012, 29, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Feldman, H.M.; Yeatman, J.D.; Lee, E.S.; Barde, L.H.; Gaman-Bean, S. Diffusion tensor imaging: A review for pediatric researchers and clinicians. J. Dev. Behav. Pediatr. JDBP 2010, 31, 346. [Google Scholar] [CrossRef] [Green Version]
- Alexander, A.L.; Hurley, S.A.; Samsonov, A.A.; Adluru, N.; Hosseinbor, A.P.; Mossahebi, P.; Tromp, D.P.; Zakszewski, E.; Field, A.S. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011, 1, 423–446. [Google Scholar] [CrossRef] [PubMed]
- Avila Villanueva, M.; Marcos Dolado, A.; Gomez Ramirez, J.; Fernandez-Blazquez, M.A. Brain structural and functional changes in cognitive impairment due to Alzheimer’s disease. Front. Psychol. 2022, 13, 886619. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, C.J.; Ebmeier, K.P. Diffusion tensor imaging in parkinsonian syndromes: A systematic review and meta-analysis. Neurology 2013, 80, 857–864. [Google Scholar] [CrossRef] [Green Version]
- Ofori, E.; Pasternak, O.; Planetta, P.J.; Li, H.; Burciu, R.G.; Snyder, A.F.; Lai, S.; Okun, M.S.; Vaillancourt, D.E. Longitudinal changes in free-water within the substantia nigra of Parkinson’s disease. Brain 2015, 138, 2322–2331. [Google Scholar] [CrossRef]
- Zhang, Y. and M.A. Burock, Diffusion tensor imaging in Parkinson’s disease and parkinsonian syndrome: A systematic review. Front. Neurol. 2020, 11, 531993. [Google Scholar] [CrossRef]
- Bergamino, M.; Keeling, E.G.; Mishra, V.R.; Stokes, A.M.; Walsh, R.R. Assessing white matter pathology in early-stage Parkinson disease using diffusion MRI: A systematic review. Front. Neurol. 2020, 11, 314. [Google Scholar] [CrossRef]
- Atkinson-Clement, C.; Pinto, S.; Eusebio, A.; Coulon, O. Diffusion tensor imaging in Parkinson’s disease: Review and meta-analysis. NeuroImage Clin. 2017, 16, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Tuch, D.S.; Reese, T.G.; Wiegell, M.R.; Makris, N.; Belliveau, J.W.; Wedeen, V.J. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2002, 48, 577–582. [Google Scholar] [CrossRef]
- Wedeen, V.J.; Wang, R.; Schmahmann, J.D.; Benner, T.; Tseng, W.-Y.I.; Dai, G.; Pandya, D.; Hagmann, P.; D’Arceuil, H.; de Crespigny, A.J. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 2008, 41, 1267–1277. [Google Scholar] [CrossRef]
Demographic Features | ||||
---|---|---|---|---|
Study | Groups Studied | Number of Participants (Male) | Mean Age ± SD (Years) or Range | Disease Duration ± SD (Years) or Range |
Boyu Chen et al., 2015 [26] | HC PD-Cu PDD | 21 (11) 19 (10) 11 (6) | 61.10 ± 8.336 59.47 ± 8.771 64.09 ± 11.353 | – 3.21 ± 1.960 3.64 ± 2.693 |
Zonghong Li et al., 2020 [27] | HC non-depressed PD depressed PD | 91 (40) 43 (24) 30 (13) | 57.67 ± 5.27 58.09 ± 6.52 59.23 ± 7.10 | – 6.28 ± 3.38 5.46 ± 4.25 |
Florian Holtbernd et al., 2019 [28] | PD HC RBD | 29 (21) 56 (42) 30 (29) | 63.5 ± 8.3 62.9 ± 11.0 66.8 ± 9.1 | 80.9 ± 85.7 (months) _ 121.0 ± 162.4 |
Martin Gorges et al., 2019 [29] | HC PD | 72 (39) 134 (98) | 65 ± 7 67 ± 8 | 9 ± 4 9 ± 5 |
Junyan Sun et al., 2021 [30] | PD HC | 68 (36) 77 (30) | 58.94 (8.969) 59.58 (8.537) | _ 4 (0.5–20) |
Mattis Jalakas et al., 2019 [31] | HC PD PDD | 51 (0.56) (1 = female) 175 (0.37) 30 (0.3) | 65 (8.5) 65 (10) 72.5 (6.6) | NA 5.1 (4.9) 14 (6.8) |
Christina Andica et al., 2019 [32] | HC PD | 20 (12) 20 (11) | 67.15 1.18 65.05 10.9 | – 6.95 3.93 |
Christina Andica et al., 2020 [33] | HC PD-woNCP PD-wNCP | 25 (10) 19 (6) 20 (12) | 67.88 ± 2.11 67.21 ± 8.16 70.15 ± 4.03 | – 9.84 ± 6.21 9.95 ± 7.69 |
Nan-Kuei Chen et al., 2018 [34] | PD HC | 7 (0) 15 (0) | 64.03–10.30 58.03–9.28 | 62.9–43.6 (months) |
Haruka Takeshige-Amano et al., 2022 [35] | HC PD-ICB PD-nICB | 20 (9) 19 (10) 18 (5) | 66.75 1.07 67.11 7.00 66.28 5.03 | – 14.3 7.75 10.2 4.82 |
Jia-Yong Wu et al., 2017 [36] | PDD PDnD | 31 (18) 37 (23) | 58.8 ± 8.67 59.1 ± 11.4 | 3.23 ± 3.04 2.40 ± 2.53 |
Jingwen Chen et al., 2022 [37] | HC LAR LTD RAR RTD | 50 (28) 38 (17) 32 (16) 43 (25) 48 (34) | 59.2 ± 6.3 59.4 ± 10.3 60.4 ± 8.9 57.9 ± 10.6 59.3 ± 9.7 | – 4.5 ± 4.5 3.9 ± 3.1 3.4 ± 3.2 4.5 ± 4.2 |
Sonia Di Tella et al., 2020 [38] | HC PD | 17 (9) 19 (10) | 64.08 (12.71) 67.75 (13.25) | NA 29.00 (38.00) (months) |
Gordon W. Duncan et al., 2015 [39] | HC PD | 50 (29) 125 (85) | 65.8 ± 8.0 66.0 ± 10.5 | 6.15 (4.66) |
Abhishek Lenka et al., 2020 [40] | PD-NP PD-P | 48 (41) 42 (35) | 57.9 ± 7.0 58.5 ± 7.8 | 5.7 ± 2.4 6.5 ± 3.2 |
Rémi Patriat et al., 2022 [41] | HC PD−RSWA PD + RSWA | 21 (10) 20 (14) 18 (9) | 61.3 + 8.0 63.0 + 8.6 65.8 + 4.8 | – 2.1 + 1.5 2.8 + 2.2 |
Yuanjing Feng et al., 2020 [42] | SWEDD PD HC | 42 (27) 50 (35) 50 (35) | 60.7 ± 9:4 60.3 ± 8:9 60.6 ± 10:3 | 6.9 ± 8:0 6.7 ± 7:3 NA |
Markus Nilsson et al., 2015 [43] | PDD HC | 11 (NA) 27 (NA) | 74 ± 7 70 ± 4 | NA |
Lubin Gou et al., 2018 [44] | d-PD nd-PD HC | 28 (17) 56 (36) 37 (21) | 61.43 ± 10.06 63.97 ± 8.31 60.35 ± 11.70 | NA |
Rachel P. Guimarães et al., 2018 [45] | All PD MPD MoPD SPD HC | 97 24 60 13 137 (83) | 60.93 ± 9.8 61.66 ± 9.6 60.30 ± 10.69 61.96 ± 8.4 58 ± 9.39 | 7.8 ± 6.43 4.15 ± 4.08 8.74 ± 6.62 12.14 ± 5.31 – |
Chaoyang Jin et al., 2021 [46] | HC PD FOG + PD FOG– | 24 (15) 24 (11) 37 (18) | 62.5 ± 3.8 65.5 ± 6.1 64.1 ± 8.2 | – 6.00 ± 5.25 3.01 ± 3.21 |
Yunjun Yang et al., 2022 [47] | Dpd ndPD HC | 37 (19) 35 (21) 25 (9) | 60.73 ± 11.22 62.40 ± 11.10 57.08 ± 7.93 | 5.01 ± 3.01 3.57 ± 3.65 – |
Xiaojun Guan et al., 2018 [48] | HC PD | 46 (21) 65 (32) | 57.8 ± 9.4 55.5 ± 9.5 | – 4.7 ± 3.9 |
Elisa Canu et al., 2015 [49] | PD-FoG HC | 23 35 | 66.9± 8.0 67.7± 7.6 | ≥5 years |
Gong-Jun Ji et al., 2019 [50] | PD HC | 57 (29) 52 (20) | 59.5 1.21 60.6 1.22 | 4.6 0.61 – |
Tao Guo et al., 2020 [51] | S-depression PD S-motor PD mild PD HC | 53 (29) 37 (26) 44 (24) 77 (33) | 60.89 ± 8.68 63.34 ± 10.05 59.38 ± 8.30 60.22 ± 7.40 | 3.86 ± 4.14 4.86 ± 3.03 3.77 ± 3.58 - |
Yiming Xiao et al., 2021 [52] | Left-dominant PD Right-dominant PD PD HC | 62 (34) 79 (56) 141 (90) 62 (22) | 59.8 ± 8.8 63.2 ± 8.8 61.7 ± 8.9 61.4 ± 9.8 | NA |
Chih-Ying Lee et al., 2019 [53] | NC PDNSa PDSa | 19 (10) 31 (9) 21 (12) | 60.3 7.6 60.3 9.8 63.7 11.6 | — 2.4 2.4 1.9 2.0 |
F Imperiale et al., 2017 [54] | PD-ICB PD no-ICB HC | 35 (30) 50 (36) 50 (35) | 62.0 ± 10.4 61.5 ± 8.9 59.0 ± 12.4 | 9.5 ± 5.2 9.0 ± 6.1 NA |
Hye Bin Yoo et al., 2015 [55] | PD-ICD PD-nonICD HC | 10 (7) 9 (6) 18 (10) | 54.5 ± 6.2 59.6 ± 8.6 54.4 ± 6.5 | 10.2 ± 7.3 10.6 ± 3.9 |
Olaia Lucas-Jim’enez et al., 2015 [56] | PD HC | 37 (22) 15 (11) | 67.97 (6.17) 65.07 (7.01) | 6.96 (5.61) – |
Takahiro Koinumaa 2021 [57] | HC PARK2 | 15 (9) 9 (4) | 55.2 (± 20.7) 58.3 (±14.1) | _ 27.5 (±11.9) months |
Charalampos Georgiopoulos et al., 2017 [58] | PD HC | 22 (12) 13 | 68 (95% CI 67 and 70) 68 (95% CI 65 and 70) | 7 (95% CI 5 and 9) |
Xiang-Rong Li et al., 2018 [59] | PD HC | 31 22 | 60.5 ± 9.3 59.7 ± 8.6 | NA |
Kazufumi Kikuchi et al., 2017 [60] | PD-MIBGH PD-MIBGL | 12 12 | 66.8 ± 4.9 67.4 ± 6.1 | 1 ± 1.3 2 ± 1.9 |
Virendra R. Mishra et al., 2019 [61] | HC PD | 44 (29) 81 (52) | 61 ± 10.79 61.35 ± 9.93 | NA 11.46 ± 13.85 |
Thais Minett et al., 2018 [62] | PD-NC PD-MCI HC | 93 27 48 | 64.3 ± 10.8 70.5 ± 8.1 66.0 ± 7.9 | 6.4 ± 0.5 5.6 ± 0.7 - |
Maria Chondrogiorgi et al., 2019 [63] | PD-CTRL PDD | 40 (31) 21 (16) | 68.4 (6) 70.9 (5.7) | 5.7 (4.8) 7.9 (6.8) |
Yuko Koshimori et al., 2015 [64] | HC PD | 26 (13) 15 (4) | 70.5 ± 5.6 67.13 ± 5.1 | 6.7 (4.2) – |
Ming-fang Jiang et al., 2015 [65] | PD HC | 31 (16) 34 (18) | 69.4 ± 8.0 69.3 ± 8.0 | < 3 years in 15 cases, 3–5 years in 9 cases, and 5–10 years in 7 cases - |
Sara Pietracupa et al., 2017 [66] | PD-FOG PD-NFOG HC | 21 (16) 16 (13) 19 | 66.3 ± 10.72 69,7 ± 11.1 66.74 ± 7.68 | 11 ± 6.3 9.5 ± 6.2 - |
A. Inguanzo et al., 2020 [67] | HC PD1 PD2 PD3 | 33 (18) 15 (13) 21 (14) 26 (19) | 66 (15) 75 (14) 68 (9) 58.5 (11) | NA 7 (7.5) 9 (9) 7 (5.5) |
Laura Pelizzari et al., 2019 [68] | LPD RPD HC | 9 (4) 12 (7) 17 (9) | 68.3 (57.1–73.3) 70.2 (61–73.8) 64.1 (57.3–68.3) | 4 (1.5–6) 2 (1–3.5) – |
Tracy R. Melzer et al., 2015 [69] | HC PD | 23 (16) 23 (17) | 70.6 ± 6.8 69.5 ± 6.4 | _ 5.6 ± 4.3 |
Yulia Surova 2016 [70] | HC PD | 44 (19) 105 (44) | 66 ± 8 66 ± 11 | _ 5 ± 4 |
Takashi Ogawa 2021 [71] | HCs PD-nLID PD-LID | 23 (9) 26 (11) 25 (10) | 67.0 ± 1.2 67.2 ± 4.7 66.8 ± 7.4 | _ 7.3 ± 3.9 13.8 ± 7.1 |
Jinqiu Yu et al., 2022 [72] | HC PD G/G G/A | 28 (12) 26 (14) 27 (14) 12 (12) | 62.3 ± 6 65.5 ± 6.8 63.9 ± 6.6 63.8 ± 6.6 | NA |
Qin Shen et al., 2021 [73] | ndPD mdPD sdPD | 30 (15) 22 (10) 15 (6) | 56.9 ± 10.6 56.4 ± 8.0 57.8 ± 6.7 | 2.2 ± 1.2 2.3 ± 1.3 2.5 ± 1.5 |
Morinobu Seki et al., 2019 [74] | PSP MSA-P PD HC | 18 (14) 16 (8) 16 (9) 21 (8) | 67.1 ± 6.5 63.9 ± 7.1 65.2 ± 5.3 62.3 ± 6.8 | 2.3 ± 1.5 1.9 ± 1.6 3.2 ± 2.0 _ |
Min Wang et al., 2016 [75] | PD-FOG PD-nFOG HC | 14 (9) 16 (10) 16 (8) | 72.36 ± 6.15 68.88 ± 6.00 68.56 ± 2.56 | 3.29 ± 1.65 3.70 ± 2.94 _ |
Ming-Ching Wen et al., 2018 [76] | HC TD PIGD | 61 (41) 52 (32) 13 (10) | 60.19 ± 10.80 60.46 ± 9.57 66.66 ± 10.17 | 7.52 ± 8.00 6.54 ± 6.78 - |
Jingqiang Wang et al., 2020 [77] | PD HC | 30 (19) 28 (17) | 59.3 ± 9.0 59.9 ± 9.7 | NA |
Yang Zhang et al., 2017 [78] | Apathy Non-apathy | 18 (17) 21 (14) | 62.28 ± 13.02 60.24 ± 10.32 | 4.06 ± 2.34 3.74 ± 2.50 |
Meng-Hsiang Chen et al., 2017 [79] | PD HC | 29 (20) 26 (19) | 61.51 ± 8.27 60.11 ± 7.77 | NA |
Fuyong Chen et al., 2019 [80] | HC PD-CN PD-aMCI | 20 (80%) 19 (78.9%) 17 (88.2%) | 59.5 ± 6.2 61.3 ± 6.9 64.9 ± 5.9 | _ 5.9 ± 3.4 7.6 ± 4.9 |
Elisa Canu et al., 2015 [49] | PD-punding PD no-ICB HC | 21 (18) 28 (19) 28 (19) | 63.8 ± 8.8 63.6 ± 6.5 61.9 ± 8.3 | 9.4 ± 5.4 9.7 ± 5.4 _ |
Chin-Song Lu et al., 2016 [81] | PD HC | 126 (68) 91 (43) | 62.0 ±7.6 59.8 ±7.2 | 8.2 ±6.1 _ |
Wen Zhou et al., 2021 [82] | Responsive group Irresponsive group | 15 (7) 11 (6) | 67.13 ± 8.52 68.91 ± 7.08 | 3.93 ± 3.10 2.82 ± 2.75 |
Mina Ansari et al., 2016 [83] | PD-RBD PD-non-RBD | 23 (18) 31 (20) | 59.43 ± 10.97 60.64 ± 8.65 | 7.95 ± 8.76 months 7.32 ± 8.19 months |
Suk Yun Kang et al., 2019 [84] | Without fatigue With fatigue | 23 (10) 9 (8) | 70.0 ± 8.4 63.6 ± 12.5 | 22.7 ± 28.5 months 27.6 ± 2.2 months |
Lauren Uhr et al., 2022 [85] | PD | 31 (24) | 64.5 (5.80) | 8.48 (3.38) |
Jilu Princy Mole et al., 2016 [25] | PD HC | 24 (20) 26 (17) | 63.42 ± 10.82 64.88 ± 8.06 | NA |
Between-Group Findings | Symptomatology Correlations with DTI Metrics | Complementary Information of Participants | ||||||
---|---|---|---|---|---|---|---|---|
Study | FA | MD | RD or AD increases | Additional imaging results | Applied tests | Significant associations | Drug exposure | Group matches |
Zonghong Li et al., 2020 [27] | No significant differences | Non-depressed PD, depressed PD > HC in left uncinate fasciculus | RD: No significant differences AD: non-depressed PD, depressed PD > HC in right hippocampal part of cingulum and bilateral uncinate fasciculus | NA | HDRS, MMSE, UPDRS-III, H&Y | NA | NA | Age, sex, years of education or MMSE |
Martin Gorges et al., 2019 [29] | PD < HC in cingulum | NA | NA | NA | H&Y, UPDRS-III, MMSE, PANDA, CERAD | Significant correlations between cognitive state-dependent regional FA changes and the sociodemographically corrected CERAD total score in cingulum | ON | |
Mattis Jalakas et al., 2019 [31] | NA | NA | NA | NA | UPDRS-III, MMSE | Correlations between declining processing speed and discrepancies in the cingulum tract using the mean diffusivity, MD, parameter | ON | |
Christina Andica et al., 2019 [32] | HC > PD in UF and cingulum hippocampus | HC < PD in UF | AD: HC < PD in UF RD: HC < PD in UF and cingulum hippocampus | NA | MDS-UPDRS, H&Y | NA | ON | |
Christina Andica et al., 2020 [33] | HC > PD-woNCP in UF and right cingulum hippocampus HC > PD-wNCP in cingulum hippocampus and UF | HC < PD-woNCP in UF HC < PD-wNCPs in right cingulum hippocampus and UF | RD: HC < PD-woNCP in UF and cingulum hippocampus HC < PD-wNCP in UF and cingulum hippocampus AD: HC < PD-wNCP in UF | TOI: FA:PD-woNCP < HC PD-wNCP < HC MD: PD-woNCP > HC PD-wNCP > HC RD: PD-woNCP > HC PD-wNCP > HC | H&Y, UPDRS I, UPDRS-III, TOI | NA | ON | Age and sex-matched HCs |
Nan-Kuei Chen et al., 2018 [34] | PD > HC in Cingulum (hippocampus) | NA | NA | NA | MMSE, UPDRS-III, H&Y | The FA values negatively correlated with the UPDRS-III scores across PD patients in Cingulum (hippocampus) and UF | NA | |
Haruka Takeshige-Amano et al., 2022 [35] | NA | PD-ICB > HC in uncinate fasciculus PD-nICB > PD-ICB in cingulum and UF | NA | NA | H&Y, UPDRS I, UPDRS-III | NA | ON | |
Jia-Yong Wu et al., 2017 [36] | PDD < PDnD in UF and cingulum | NA | NA | NA | UPDRS-III, H&Y, MMSE, HDRS | FA values in the left cingulum and left superior longitudinal fasciculus of the PDD group were negatively correlated with HDRS scores, but no correlation was found with other disease characteristics including age, duration, UPDRS-III, H-Y scale, MMSE | NA | Age, age of onset, disease duration, sex |
Jingwen Chen et al., 2022 [37] | LAR, LTD < HC No significant differences between RAR, RTD and HC in cingulum bundle | No significant differences | NA | NA | UPDRS-III, H&Y, MMSE | NA | ON | Age, disease duration, sex, Levodopa equivalent daily dos |
Gordon W. Duncan et al., 2015 [39] | No significant difference | PD > HC in cingulum | NA | NA | MDS-UPDRS-III, H&Y, MMSE, MoCA | NA | ON | Age, gender, and education |
Abhishek Lenka et al., 2020 [40] | PD-P < PD-NP in cingulum | No significant difference | No significant difference | NA | MoCA, HAMD, HAMA, H&Y, FAB, UPDRS-III, Corsi block-tapping test, RAVLT, CFT, TMT-B, Stroop effect | NA | ON | Age, sex, age of onset, disease duration |
Rémi Patriat et al., 2022 [41] | NA | PD−RSWA < HC in cingulum | RD: PD−RSWA < HC in cingulum | NA | MDS-UPDRS-III, H&Y, MoCA | NA | ON | Sex, age, education and MoCA, age at diagnosis, years since diagnosis, H&Y AND total MDS UDRS III score |
Yuanjing Feng et al., 2020 [42] | SWEDD < PD, HC PD > HC in cingulum bundle | NA | AD: SWEDD > PD, HC in cingulum bundle | NA | UPDRS-III, MoCA | NA | NA | |
Markus Nilsson et al., 2015 [43] | PDD > HC in cingulum | NA | NA | NA | NA | NA | NA | |
Rachel P. Guimarães et al., 2018 [45] | All PD < HC in cingulum | NA | RD: ALL PD > HC in cingulum SPD > HC, MPD, MoPD in cingulum | ROI: no FA difference between groups. AD and RD were higher in SPD when compared to HC, MPD and MoPD | UPDRS, UPDRS-PartIII, H&Y, SCOPA, SCOPA, NMSS | Positive association between SCOPA-COG scores and FA values, and a negative association with RD and UPDRS, UPDRS-III and NMSS, were positively associated with AD and RD values in cingulum | ON | Age and sex |
Chaoyang Jin et al., 2021 [46] | PD FOG+ < HC PD FOG+ < PD FOG– in the cingulum | PD FOG– > HC in cingulum | NA | NA | UPDRS-III, H&Y, FOGQ, MMSE, MoCA, TUG, HDRS NA, HARS | NA | NA | |
Yunjun Yang et al., 2022 [47] | dPD < ndPD in right cingulum (cingulate gyrus), left cingulum hippocampus | dPD > ndPD in right cingulum (cingulate gyrus) | NA | NA | H&Y, UPDRS- III, HAM-D, HAMA, MMSE, MoCA | NA | NA | |
Xiaojun Guan et al., 2018 [48] | PD < HC only in the right UF | PD > HC in the left cingulum | RD: PD > HC AD: PD < HC | NA | UPDRS, H&Y, MMSE | In the right cingulate gyrus, significant correlation of increased MMS with disease duration | NA | Age and sex |
Elisa Canu et al., 2015 [49] | PD-FoG < HC in cingulum | PD-FoG > HC in cingulum | NA | NA | FOGQ, UPDRS-III | NA | ON | Age, sex, education |
Gong-Jun Ji et al., 2019 [50] | PD < HC in the left cingulum | NA | NA | NA | UPDRS-III, H&Y, MMSE, MoCA | No significant correlation was found between FA in the left cingulum and clinical measures | 51 of PD patients OFF, 6 ON | Age, sex, and education-matched HCs |
Yiming Xiao et al., 2021 [52] | PD > HC in cingulum Right dominant PD > Left dominant PD in cingulum | NA | NA | NA | H&Y, UPDRS, GDS, RBDSQ | NA | NA | |
Chih-Ying Lee et al., 2019 [53] | PDSa < PDNsa in bilateral cingulum | PDSa > PDNsa in bilateral cingulum | RD: PDSa > PDNsa in bilateral cingulum | NA | UPDRS, H&Y, MMSE, S&E, ASMI | Significantly associations between ASMI and FA of the ROI in the left cingulum | ON | Age, gender, height, MMSE |
Hye Bin Yoo et al., 2015 [55] | PD-ICD > PD-nonICD in right dorsal and posterior cingula | NA | NA | NA | MMSE, UDPRS, H&Y | NA | ON | Age, sex, MMSE score, GDS score, disease duration, total daily LED, UPDRS, HY stage |
Olaia Lucas-Jim´enez et al., 2015 [56] | PD < HC in right ACT PD > HC in left PCT | NA | NA | NA | UDPRS, H&Y | In correlations between verbal memory and FA of the right PCT, FA correlated positively with correct rejections and negatively with false positives in HC group between brain activation in the left IOFC during the verbal learning memory fMRI task and FA of the right UF | ON | |
Xiang-Rong Li et al., 2018 [59] | PD < HC in left unciform fasciculus, right cingulum | NA | NA | NA | H&Y, UPDRS, MMSE | UPDRS and motor score had no relationship with the FA of each white matter fasciculus | OFF | |
Virendra R. Mishra et al., 2019 [61] | No significant differences | No significant differences | No significant differences | NA | MDS-UPDRS-III, MoCA, H&Y | TBSS:Negative correlation with disease duration and bilateral CGC DTI-TK: Positive correlation with disease duration and RD in left CGC | NA | Sex, age, years of education, and handedness and MoCA |
Thais Minett et al., 2018 [62] | PDMCI < HC in cingula | PD-MCI and PD-N > HC in cingula | NA | NA | UPDRS-III, H&Y | NA | ON | Age, proportion of WML, duration of PD, levodopa equivalent dose |
Maria Chondrogiorgi et al., 2019 [63] | PDD < PD-CTRL in cingulum (cingulate gyrus) and uncinate fasciculus | No significant differences | No significant differences | NA | H&Y, MMSE, HAM-D, PD-CRS | Lower total PD-CRS score was associated with FA decreases incingulum (cingulate gyrus), cingulum (hippocampus) and uncinate fasciculus | ON | Sex, years of education |
Yuko Koshimori et al., 2015 [64] | NA | PD > HC in cingulum and uncinate fasciculus | NA | NA | MoCA, UPDRS-III, | NA | ON | Age, sex, education, BDI, and handedness |
Ming-fang Jiang et al., 2015 [65] | PD < HC in cingulum bundle | NA | NA | NA | H&Y, UPDRS-III, MoCA, ADL, HAMD | FA values in the white matter tracts showed no correlation with UPDRSIII scores | ON | Age and sex |
Sara Pietracupa et al., 2017 [66] | NA | HC < PD-FOG, PD-NFOG PD-FOG > PD-NFOG in UF HC, PD-FOG < PD-NFOG HC < PD-FOG in Cingulum angular bundle | RD: HC < PD-FOG, PD-NFOG PD-FOG < PD-NFOG in UF HC, PD-FOG < PD-NFOG HC < PD-FOG in Cingulum angular bundle AD: HC, PD-FOG < PD-NFOG HC > PD-FOG in UF | NA | H&Y, UPDRS-III, MMSE, FAB, HAM-D | DTI values in the uncinate fasciculus and cingulum (both cingulate gyrus and angular bundles) bilaterally significantly correlated with the cognitive scores, as assessed by the MMSE DTI values in the uncinate fasciculus and cingulum (angular bundle and cingulate gyrus) bilaterally significantly correlated with frontal abilities, as indicated by the FAB scores significant correlation between DTI values in the right uncinate fasciculus and the HAM-D scores | ON & OFF | Age and sex |
Laura Pelizzari et al., 2019 [68] | No significant differences | RPD > HC in right cingulum LPD > HC RPD > LPD | No significant differences | NA | MDS-UPDRS-III, H&Y, MoCA | NA | ON | |
Tracy R. Melzer et al., 2015 [69] | No significant differences | No significant differences | No significant differences | Time effects: FA showed widespread reduction in cingulum bundles, MD, and RD exhibited significant, yet more restricted increases | MDS-UPDRS-III | NA | ON | Age, education, sex |
Yulia Surova 2016 [70] | PD > HC in Cingulum hippocampus | NA | NA | NA | UPDRS, H&Y, MMSE, AQT, ADAS-Cog | NA | NA | |
Morinobu Seki et al., 2019 [74] | NA | PD, HC > MSA-P in adjacent cingulum | NA | NA | UPDRS-III, H&Y, MMSE | NA | NA | Sex, age, and disease duration |
Min Wang et al., 2016 [75] | PD-FOG < HC in left cingulum | PD-FOG > HC in left cingulum | NA | NA | FOGQ, MMSE, UPDRS-III | NA | ON | Age, sex, education PD-FOG and PDnFOG: Disease duration, UPDRS-III, LEDD |
Ming-Ching Wen et al., 2018 [76] | TD > HC in right cingulum TD > PIGD in right and left cingulum no significant between HC and PIGD | NA | RD: TD < HC in right cingulum, PIGD > TD in UF AD: PIGD > HC in UF | NA | UDPRS, H&Y, MOCA, GDS, Cardiovascular burden, Head motion | NA | OFF | Age, sex, education, handedness, dominant side, PD duration/H&Y scale, cardiovascular burden, head motion |
Jingqiang Wang et al., 2020 [77] | Significant Difference in UF | NA | AD: Significant Difference in cingulum bundle | MoCA, UPDRS-III, GDS | Cingulum bundle have correlation with GDS | NA | ||
Yang Zhang et al., 2017 [78] | apathy group < Non-apathy in left cingulum | NA | NA | NA | H&Y, UPDRS-III, MMSE, BDI-II | FA and LARS scores were negatively correlated in left cingulum | ON | Age, sex, disease duration, LEDD, UPDRS-III, MMSE |
Meng-Hsiang Chen et al., 2017 [79] | PD < HC in left cingulum | NA | NA | NA | H&Y, UPDRS-III, S&E | MD values in the left cingulum were positively correlated with baroreflex sensitivity and negatively correlated with serumnuclearDNA simultaneously AD values in the left cingulum were positively correlated with the serum nuclear DNA level RD values in the left cingulum were simultaneously positively correlated with baroreflex sensitivity and negatively correlated with serum nuclear DNA | NA | Age and sex |
Fuyong Chen et al., 2019 [80] | PD-CN > PD-aMCI in cingulum (cingulate gyrus) in the bilateral hemispheres | NA | NA | NA | H&Y, UPDRS-III, MMSE, RBANS | NA | ON | |
Chin-Song Lu et al., 2016 [81] | NA | NA | NA | NA | H&Y, UPDRS-III, MMSE, ADL | A statistically significant association between ADL and maximum MD/RD in the ipsilateral posterior cingulum | OFF | |
Wen Zhou et al., 2021 [82] | Irresponsive group < Responsive group in bilateral cingulum | NA | NA | NA | H&Y, UPDRS-III, MMSE | NA | ON | Parkinson’s disease duration, age, sex |
Mina Ansari et al., 2016 [83] | PD-RBD < PD-non-RBD in cingulum | NA | NA | NA | RBD, MOCA, GDS, UPDRS-III, H&Y, ESS, LNS | NA | NA | Age, sex |
Suk Yun Kang et al., 2019 [84] | PD < PD with fatigue in right cingulum, UF | PD > PD with fatigue in right cingulum | RD: PD > PD with fatigue in UF, cingulum | NA | K-MMSE, MoCA, BDI, UPDRS, H&Y, FSS | NA | NA | |
Lauren Uhr et al., 2022 [85] | NA | NA | NA | NA | UPDRS | Positive ROI-based correlations of FA and depressive symptoms in left cingulum (hippocampus) | ON |
Between-Group Findings | Symptomatology Correlations with DTI Metrics | Complementary Information of Participants | ||||||
---|---|---|---|---|---|---|---|---|
Study | FA | MD | RD or AD increases | Additional imaging results | Applied tests | Significant associations | Drug exposure | Group matches |
Boyu Chen et al., 2015 [26] | PD-Cu > PDD inbilateral uncinate fasciculus | PDD > PD-Cu in bilateral uncinate fasciculusHC > PDD | NA | NA | UPDRS-III, H&Y, MoCA, MMSE | MD value is negatively correlated with MoCa scores in UF | NA | |
Zonghong Li et al., 2020 [27] | No significant differences | Non-depressedPD, depressed PD > HC in left uncinate fasciculus | RD: No significant differencesAD: non-depressed PD, depressed PD > HC in right hippocampal part of cingulum and bilateral uncinate fasciculus | NA | HDRS, MMSE, UPDRS-III, H&Y | NA | NA | Age, sex, years of education orMMSE |
Florian Holtbernd et al., 2019 [28] | PD, RBD > HC in left uncinate fasciculus | No significant differencebetween RBD, PD, and HC | No significant differencebetween RBD, PD, and HC | NA | MDS UPDRS-III, MoCA, H&Y | NA | ON | Age-matched HCs |
Junyan Sun et al., 2021 [30] | NA | PD > HC inbilateral uncinate fasciculus | NA | NA | H&Y, UPDRS-III | NA | NA | Age, sex, education-matched HCs |
Christina Andica et al., 2019 [32] | HC > PD in UF and cingulum hippocampus | HC < PD in UF | AD: HC < PD in UFRD: HC < PD in UF and cingulum hippocampus | NA | MDS-UPDRS, H&Y | NA | ON | |
Christina Andica et al., 2020 [33] | HC > PD-woNCP in UF and right cingulum hippocampusHC > PD-wNCPin cingulum hippocampus and UF | HC < PD-woNCP in UFHC < PD-wNCPs inright cingulum hippocampus and UF | RD: HC < PD-woNCP in UF and cingulum hippocampusHC < PD-wNCP in UF and cingulum hippocampusAD: HC < PD-wNCP in UF | TOI:FA:PD-woNCP < HCPD-wNCP < HCMD: PD-woNCP > HCPD-wNCP > HCRD: PD-woNCP > HCPD-wNCP > HC | H&Y, UPDRS I, UPDRS-III, TOI | NA | ON | Ageand sex-matched HCs |
Nan-Kuei Chen et al., 2018 [34] | PD > HCin Cingulum (hippocampus) | NA | NA | NA | MMSE, UPDRS-III, H&Y | The FA values negativelycorrelated with the UPDRS-III scores across PD patients in Cingulum (hippocampus) and UF | NA | |
Haruka Takeshige-Amano et al., 2022 [35] | NA | PD-ICB > HC in uncinate fasciculusPD-nICB > PD-ICB in cingulum and UF | NA | NA | H&Y, UPDRS I, UPDRS-III | NA | ON | |
Jia-Yong Wu et al., 2017 [36] | PDD < PDnD in UF and cingulum | NA | NA | NA | UPDRS-III, H&Y, MMSE, HDRS | FA values in the left cingulumand left superior longitudinal fasciculusof the PDD group were negatively correlatedwith HDRS scores, but no correlation was found with otherdisease characteristics including age, duration, UPDRS-III, H-Y scale, MMSE | NA | Age, age of onset, disease duration, sex |
Sonia Di Tella et al.,2020 [38] | No significant differences | PD > HC in left UF | NA | NA | H&Y, UPDRS-III | FA of the left UF was positively correlated with the accuracy in theglobal word production (N + V), N production, Vproduction and semantic fluencyFA of the right UF was positively correlated with the global word production and N productionno significant correlations were observedbetween FA and MD and the three measures of production task (N, V and N + V production) | ON | Age, sex, disease duration and years of education |
Lubin Gou et al., 2018 [44] | All PD < HC in left uncinate fasciculus | NA | NA | NA | MoCA, MDS-UPDRS-III, H&Y | NA | OFF | Sex, age, MoCA, and educationyears |
Xiaojun Guan et al., 2018 [48] | PD < HC only inthe right UF | PD > HC in theleft cingulum | RD: PD > HCAD: PD < HC | NA | UPDRS, H&Y, MMSE | In the right cingulate gyrus, significant correlation of increasedMMS with disease duration | NA | Age and sex |
Tao Guo et al., 2020 [51] | No significantdifferences in the FA | S-depression > HC inuncinate fasciculusNo difference in the MD among the other pairs of comparisons | NA | NA | GCO, PDQ-39, UPDRS, H&Y, MMSE | NA | ON | Age, sex, education |
F Imperiale et al., 2017 [54] | PD-ICB < PD no-ICB, HCin left uncinate fasciculus | PD-ICB > PD no-ICB, HCin right uncinate fasciculus | NA | NA | QUIP, H&Y, UPDRS-III, HDRS | NA | ON | All matched in:Age, sexEducationPatients matchedin age at PDonset diseasedurationSide of onsetH&Y scoresUPDRS-IIIcognitive status |
Olaia Lucas-Jim´enez et al., 2015 [56] | PD < HC in right ACTPD > HC in left PCT | NA | NA | NA | UDPRS, H&Y | In correlations between verbal memory and FA of the right PCT, FA correlated positivelywith correct rejections andnegatively with false positives in HC groupbetween brain activation in the left IOFC during the verbal learning memory fMRI task and FA of theright UF | ON | |
Takahiro Koinumaa 2021 [57] | HC < PARK2 inuncinate fasciculus | RD: HC < PARK2 inuncinate fasciculus | NA | NA | UDPRS III, H&Y | In PRKN AD values were negatively correlatedwith the serum levels of 9-hydroxystearate, while the MD and RD values were positivelycorrelated with these levels in UF | ON | Sex, age, cerebrovascular risk factors |
Charalampos Georgiopoulos et al., 2017 [58] | NA | NA | AD: PD < HC in left uncinate fasciculus | NA | UPDRS-III, H&Y, MMSE | NA | ON | Age, sex |
Kazufumi Kikuchi et al., 2017 [60] | PD-MIBGL < PD-MIBGH in left uncinate fasciculus | No significantdifferences | NA | NA | MDS, H&Y, MMSE | NA | ON | Age, sex, diseaseduration, MMSE, H&Y stage |
Maria Chondrogiorgi et al., 2019 [63] | PDD < PD-CTRL in cingulum (cingulategyrus) and uncinate fasciculus | No significantdifferences | No significantdifferences | NA | H&Y, MMSE, HAM-D, PD-CRS | Lower total PD-CRS score was associated with FA decreases incingulum (cingulate gyrus), cingulum (hippocampus) and uncinate fasciculus | ON | Sex, years of education |
Yuko Koshimori et al., 2015 [64] | NA | PD > HC in cingulum anduncinate fasciculus | NA | NA | MoCA, UPDRS-III, | NA | ON | Age, sex, education, BDI and handedness |
Sara Pietracupa et al., 2017 [66] | NA | HC < PD-FOG, PD-NFOGPD-FOG > PD-NFOGin UFHC, PD-FOG < PD-NFOGHC < PD-FOG in Cingulum angular bundle | RD: HC < PD-FOG, PD-NFOGPD-FOG < PD-NFOGin UFHC, PD-FOG < PD-NFOGHC < PD-FOG in Cingulum angular bundleAD: HC, PD-FOG < PD-NFOGHC > PD-FOG in UF | NA | H&Y, UPDRS-III, MMSE, FAB, HAM-D | DTI values in the uncinate fasciculus and cingulum(both cingulate gyrus and angular bundles) bilaterallysignificantly correlated with the cognitive scores, as assessedby the MMSEDTI values in the uncinate fasciculus and cingulum(angular bundle and cingulate gyrus)bilaterally significantly correlated with frontal abilities, asindicated by the FAB scoressignificant correlation between DTI values in the right uncinate fasciculus and the HAM-D scores | ON and OFF | Age and sex |
A. Inguanzo et al., 2020 [67] | PD1 < HC inuncinate fasciculus | NA | NA | NA | UPDRS-III, H&Y, MMSE | NA | ON | Sex andyears of education |
Takashi Ogawa 2021 [71] | PD-nLID < HCPD-nLID < PD-LID in uf | NA | NA | NA | MDS-UPDRS, H&Y | NA | ON | Age, sex |
Jinqiu Yu et al., 2022 [72] | G/G > G/A in UF | NA | RD: G/G < G/A in UF | NA | MMSE, MoCA, H&Y, UPDRS-III | NA | ON | |
Qin Shen et al., 2021 [73] | sdPD < ndPD in UFsdPD < mdPD in UFNo significant difference between ndPD and mdPD | NA | RD: sdPD > ndPD in UF | NA | H&Y, MMSE, CDR, UPDRS-III, BDI | Nosignificant correlation was found between BDI scores andFA values in other tracts. | NA | Age, sex, education, CDR, MMSE, PD duration, H&Y scales, and UPDRS-III scores |
Ming-Ching Wen et al., 2018 [76] | TD > HC in right cingulumTD > PIGD in right and left cingulumno significant between HC and PIGD | NA | RD: TD < HC in right cingulum, PIGD > TD in UFAD: PIGD > HC in UF | NA | UDPRS, H&Y, MOCA, GDS, Cardiovascular burden, Head motion | NA | OFF | Age, sex, education, handedness, dominant side, PDduration/H&Y scale, cardiovascular burden, head motion |
Jingqiang Wang et al., 2020 [77] | SignificantDifference in UF | NA | AD: SignificantDifference in cingulum bundle | MoCA, UPDRS-III, GDS | Cingulum bundle have correlation with GDS | NA | ||
Elisa Canu et al., 2015 [49] | NA | PD-punding > HC in right uncinate fasciculus | NA | NA | H&Y, UPDRS-III, MMSE, HAMA, HDRS | NA | ON | Age, sex, and education |
Suk Yun Kang et al., 2019 [84] | PD < PD with fatigue in right cingulum, UF | PD > PD with fatigue in right cingulum | RD: PD > PD with fatigue in UF, cingulum | NA | K-MMSE, MoCA, BDI, UPDRS, H&Y, FSS | NA | NA | |
Jilu Princy Mole et al., 2016 [25] | PD < HC in UF | PD > HC in left UF | RD: PD > HC in right UF | NA | UDPRS, H&Y, MOCA | NA | ON |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashidi, F.; Khanmirzaei, M.H.; Hosseinzadeh, F.; Kolahchi, Z.; Jafarimehrabady, N.; Moghisseh, B.; Aarabi, M.H. Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson’s Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Biology 2023, 12, 475. https://doi.org/10.3390/biology12030475
Rashidi F, Khanmirzaei MH, Hosseinzadeh F, Kolahchi Z, Jafarimehrabady N, Moghisseh B, Aarabi MH. Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson’s Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Biology. 2023; 12(3):475. https://doi.org/10.3390/biology12030475
Chicago/Turabian StyleRashidi, Fatemeh, Mohammad Hossein Khanmirzaei, Farbod Hosseinzadeh, Zahra Kolahchi, Niloofar Jafarimehrabady, Bardia Moghisseh, and Mohammad Hadi Aarabi. 2023. "Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson’s Disease: A Systematic Review of Diffusion Tensor Imaging Studies" Biology 12, no. 3: 475. https://doi.org/10.3390/biology12030475
APA StyleRashidi, F., Khanmirzaei, M. H., Hosseinzadeh, F., Kolahchi, Z., Jafarimehrabady, N., Moghisseh, B., & Aarabi, M. H. (2023). Cingulum and Uncinate Fasciculus Microstructural Abnormalities in Parkinson’s Disease: A Systematic Review of Diffusion Tensor Imaging Studies. Biology, 12(3), 475. https://doi.org/10.3390/biology12030475