Biological Activity of Cyclic Peptide Extracted from Sphaeranthus amaranthoides Using De Novo Sequencing Strategy by Mass Spectrometry for Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Materials and Extraction
2.2. LC-ESI Mass Spectrometry for the Herbal Extract
2.3. In Silico Characterization of the Peptides
2.4. In Vitro Cytotoxicity Assay
2.5. Zebrafish Embryo Toxicity Test
3. Results and Discussion
3.1. LC-ESI Mass Spectrometry for the Herbal Extract
3.2. In Silico Characterization of the Peptides
3.3. Peptide Family Prediction
3.4. Homology Modelling of the Peptide
3.5. In Vitro Cytotoxicity Assay
3.6. Zebrafish Embryo Toxicity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dashora, N.; Sodde, V.; Bhagat, J.; SPrabhu, K.; Lobo, R. Antitumor activity of Dendrophthoe falcata against ehrlich ascites carcinoma in swiss albino mice. Pharm. Crops 2011, 2, 1–7. [Google Scholar] [CrossRef]
- Ali, S.M.; Siddiqui, R.; Khan, N.A. Antimicrobial Discovery from Natural and Unusual Sources. J. Pharm. Pharmacol. 2018, 70, 1287–1300. [Google Scholar] [CrossRef] [Green Version]
- Barashkova, A.S.; Rogozhin, E.A. Isolation of Antimicrobial Peptides from Different Plant Sources: Does a General Extraction Method Exist? Plant Methods 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Campos, M.L.; De Souza, C.M.; De Oliveira, K.B.S.; Dias, S.C.; Franco, O.L. The Role of Antimicrobial Peptides in Plant Immunity. J. Exp. Bot. 2018, 69, 4997–5011. [Google Scholar] [CrossRef] [Green Version]
- Isah, T. Stress and Defense Responses in Plant Secondary Metabolites Production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.-S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.-F.; Sekaran, S.D. Antimicrobial Peptides from Different Plant Sources: Isolation, Characterisation, and Purification. Phytochemistry 2018, 154, 94–105. [Google Scholar] [CrossRef]
- Lau, J.L.; Dunn, M.K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef]
- Fosgerau, K.; Hoffmann, T. Peptide Therapeutics: Current Status and Future Directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Holaskova, E.; Galuszka, P.; Frebort, I.; Oz, M.T. Antimicrobial Peptide Production and Plant-Based Expression Systems for Medical and Agricultural Biotechnology. Biotechnol. Adv. 2015, 33, 1005–1023. [Google Scholar] [CrossRef]
- Galani, V.; Patel, B.; Rana, D. Sphaeranthus indicus Linn.: A Phytopharmacological Review. Int. J. Ayurveda Res. 2010, 1, 247. [Google Scholar] [CrossRef] [Green Version]
- Gayatri, S.; Maheswara Reddy, C.U.; Chitra, K.; Parthasarathy, V. Assessment of in Vitro Cytotoxicity and in Vivo Antitumor Activity of Sphaeranthus amaranthoides burm.f. Pharmacogn. Res. 2015, 7, 198–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, S.; Dey, A.; Sudhakar Babu, A.M.S.; Aneela, S. Phytochemical and GC–MS Analysis of Bioactive Compounds of Sphaeranthus amaranthoides Burm. Pharmacogn. J. 2013, 5, 265–268. [Google Scholar] [CrossRef]
- Reegan, A.D.; Gandhi, M.R.; Paulraj, M.G.; Ignacimuthu, S. Ovicidal and Oviposition Deterrent Activities of Medicinal Plant Extracts against Aedes aegypti L. and Culex quinquefasciatus Say Mosquitoes (Diptera: Culicidae). Osong Public Health Res. Perspect. 2015, 6, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Gayatri, S.; Suresh, R.; Reddy, C.; Chitra, K. Isolation and Characterization of Chemopreventive Agent from Sphaeranthus amaranthoides Burm F. Pharmacogn. Res. 2016, 8, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.P.; Jayaseelan, B.F.; Wilson Alphonse, C.R.; Mahmoud, A.H.; Mohammed, O.B.; Ahmed Almunqedhi, B.M.; Rajaian Pushpabai, R. Mass Spectrometric Identification and Denovo Sequencing of Novel Conotoxins from Vermivorous Cone Snail (Conus inscriptus), and Preliminary Screening of Its Venom for Biological Activities in Vitro and in Vivo. Saudi J. Biol. Sci. 2021, 28, 1582–1595. [Google Scholar] [CrossRef]
- Galzitskaya, O.V.; Kurpe, S.R.; Panfilov, A.V.; Glyakina, A.V.; Grishin, S.Y.; Kochetov, A.P.; Deryusheva, E.I.; Machulin, A.V.; Kravchenko, S.V.; Domnin, P.A.; et al. Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. Int. J. Mol. Sci. 2022, 23, 5463. [Google Scholar] [CrossRef] [PubMed]
- Barman, A.; Deb, B.; Chakraborty, S. Prediction of Potential Epitopes for Peptide Vaccine Formulation against Teschovirus A Using Immunoinformatics. Int. J. Pept. Res. Ther. 2020, 26, 1137–1146. [Google Scholar] [CrossRef]
- Tyagi, A.; Kapoor, P.; Kumar, R.; Chaudhary, K.; Gautam, A.; Raghava, G.P.S. In Silico Models for Designing and Discovering Novel Anticancer Peptides. Sci. Rep. 2013, 3, 2984. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, H.; Tuknait, A.; Chaudhary, K.; Singh, B.; Kumaran, S.; Raghava, G.P.S. PEPstrMOD: Structure Prediction of Peptides Containing Natural, Non-Natural and Modified Residues. Biol. Direct 2015, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Beema Shafreen, R.; Seema, S.; Martinez-Ayala, A.L.; Lozano-Grande, M.A.; Robles-Sánchez, M.; Szterk, A.; Grishko, M.; Hanuka, E.; Katrich, E.; Gorinstein, S. Binding and Potential Antibiofilm Activities of Amaranthus Proteins against Candida albicans. Colloids Surfaces B Biointerfaces 2019, 183, 110479. [Google Scholar] [CrossRef]
- Geethalakshmi, R.; Sakravarthi, C.; Kritika, T.; Arul Kirubakaran, M.; Sarada, D.V.L. Evaluation of Antioxidant and Wound Healing Potentials of Sphaeranthus amaranthoides Burm.F. Biomed Res. Int. 2013, 2013, 607109. [Google Scholar] [CrossRef] [Green Version]
- Rajamohamed, B.S.; Siddharthan, S. Modulatory Effects of Amukkara Choornam on Candida albicans Biofilm: In Vitro and in Vivo Study. Mol. Biol. Rep. 2019, 46, 2961–2969. [Google Scholar] [CrossRef]
- Thanigaivel, A.; Chanthini, K.M.-P.; Karthi, S.; Vasantha-Srinivasan, P.; Ponsankar, A.; Sivanesh, H.; Stanley-Raja, V.; Shyam-Sundar, N.; Narayanan, K.R.; Senthil-Nathan, S. Toxic Effect of Essential Oil and Its Compounds Isolated from Sphaeranthus amaranthoides Burm.f. against Dengue Mosquito Vector Aedes aegypti Linn. Pestic. Biochem. Physiol. 2019, 160, 163–170. [Google Scholar] [CrossRef]
- Gabernet, G.; Gautschi, D.; Müller, A.T.; Neuhaus, C.S.; Armbrecht, L.; Dittrich, P.S.; Hiss, J.A.; Schneider, G. In Silico Design and Optimization of Selective Membranolytic Anticancer Peptides. Sci. Rep. 2019, 9, 11282. [Google Scholar] [CrossRef] [Green Version]
- Seema, S. Investigation of Potential Antibiofilm Properties of Antimicrobial Peptide (AMP) from Linckia Laevigata against Candida albicans: An in Vitro and in Vivo Study. Process Biochem. 2020, 99, 340–347. [Google Scholar] [CrossRef]
- Tareq, F.S.; Lee, M.A.; Lee, H.-S.; Lee, J.-S.; Lee, Y.-J.; Shin, H.J. Gageostatins A-C, Antimicrobial Linear Lipopeptides from a Marine Bacillus Subtilis. Mar. Drugs 2014, 12, 871–885. [Google Scholar] [CrossRef] [Green Version]
- Okella, H.; Georrge, J.J.; Ochwo, S.; Ndekezi, C.; Koffi, K.T.; Aber, J.; Ajayi, C.O.; Fofana, F.G.; Ikiriza, H.; Mtewa, A.G.; et al. New Putative Antimicrobial Candidates: In Silico Design of Fish-Derived Antibacterial Peptide-Motifs. Front. Bioeng. Biotechnol. 2020, 8, 604041. [Google Scholar] [CrossRef]
- Jiang, C.-M.; Li, C.-P.; Chang, J.-C.; Chang, H.-M. Characterization of Pectinesterase Inhibitor in Jelly Fig (Ficus awkeotsang Makino) Achenes. J. Agric. Food Chem. 2002, 50, 4890–4894. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, W.; Li, R.; Guo, D.; Li, H.; Wang, Y.; Mei, W.; Peng, S. Identification and Characterization of Chalcone Isomerase Genes Involved in Flavonoid Production in Dracaena cambodiana. Front. Plant Sci. 2021, 12, 616396. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Zhang, Z. The Role of Vacuolar Processing Enzymes in Plant Immunity. Plant Signal. Behav. 2010, 5, 1565–1567. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.F.; Payne, C.D.; Chetty, T.; Crayn, D.; Berkowitz, O.; Whelan, J.; Johan Rosengren, K.; Mylne, J.S. The Genetic Origin of Evolidine, the First Cyclopeptide Discovered in Plants, and Related Orbitides. J. Biol. Chem. 2020, 295, 14510–14521. [Google Scholar] [CrossRef]
- Gründemann, C.; Koehbach, J.; Huber, R.; Gruber, C.W. Do Plant Cyclotides Have Potential as Immunosuppressant Peptides? J. Nat. Prod. 2012, 75, 167–174. [Google Scholar] [CrossRef]
S. No. | Compound | Mz 1H | Mz 2H |
---|---|---|---|
1 | Compound 1 | 402.54 | |
2 | Compound 2 | 436.53 | |
3 | Compound 3 | 241.97 | |
4 | Compound 4 | 838.26 | |
5 | Compound 5 | 920.30 | |
6 | Compound 6 | 758.28 | |
7 | Compound 7 | 851.33 | |
8 | Compound 8 | 1013.40 | |
9 | Compound 9 | 867.31 | |
10 | Compound 10 | 365.25 | |
11 | Compound 11 | 257.12 | |
12 | Compound 12 | 626.35 | |
13 | Compound 13 | 757.28 | |
14 | Compound 14 | 595.23 | |
15 | Compound 15 | 523.21 | |
16 | Compound 16 | 432.40 | |
17 | Compound 17 | 476.44 | |
18 | Compound 18 | 741.29 | |
19 | Compound 19 | 559.22 | |
20 | Compound 20 | 355.17 | |
21 | Compound 21 | 1087.27 | |
22 | Compound 22 | 1117.26 | |
23 | Compound 23 | 845.13 | |
24 | Compound 24 | 517.16 | |
25 | Compound 25 | 499.22 | |
26 | Compound 26 | 837.31 | |
27 | Compound 27 | 889.51 | |
28 | Compound 28 | 923.48 | |
29 | Compound 29 | 316.33 | |
30 | Compound 30 | 347.24 | |
31 | Compound 31 | 411.25 | |
32 | Compound 32 | 905.47 | |
33 | Compound 33 | 274.28 | |
34 | Compound 34 | 675.71 | |
35 | Compound 35 | 331.23 | |
36 | Compound 36 | 361.16 | |
37 | Compound 37 | 661.13 | |
38 | Compound 38 | 691.20 | |
39 | Compound 39 | 719.24 | |
40 | Compound 40 | 429.31 | |
41 | Compound 41 | 705.23 | |
42 | Compound 42 | 375.22 | |
43 | Compound 43 | 443.28 | |
44 | Compound 44 | 468.61 | |
45 | Compound 45 | 915.36 | |
46 | Compound 46 | 483.34 | |
47 | Compound 47 | 457.32 | |
48 | Compound 48 | 943.43 | |
49 | Compound 49 | 957.37 | |
50 | Compound 50 | 471.33 | |
51 | Compound 51 | 506.34 | |
52 | Compound 52 | 279.28 | |
53 | Compound 53 | 971.42 | |
54 | Compound 54 | 985.39 | |
55 | Compound 55 | 456.55 | |
56 | Compound 56 | 389.25 | |
57 | Compound 57 | 527.26 | |
58 | Compound 58 | 999.31 | |
59 | Compound 59 | 534.32 | |
60 | Compound 60 | 541.27 | |
61 | Compound 61 | 717.26 | |
62 | Compound 62 | 1027.35 | |
63 | Compound 63 | 548.31 | |
64 | Compound 64 | 359.25 | |
65 | Compound 65 | 555.29 | |
66 | Compound 66 | 456.51 | |
67 | Compound 67 | 499.33 | |
68 | Compound 68 | 574.35 | |
69 | Compound 69 | 442.52 | |
70 | Compound 70 | 513.42 | |
71 | Compound 71 | 597.30 | |
72 | Compound 72 | 581.35 | |
73 | Compound 73 | 629.49 | |
74 | Compound 74 | 297.34 | |
75 | Compound 75 | 507.43 | |
76 | Compound 76 | 530.49 | |
77 | Compound 77 | 283.35 | |
78 | Compound 78 | 495.55 | |
79 | Compound 79 | 639.33 | |
80 | Compound 80 | 613.15 | |
81 | Compound 81 | 500.58 | |
82 | Compound 82 | 456.62 | |
83 | Compound 83 | 607.33 | |
84 | Compound 84 | 477.48 | |
85 | Compound 85 | 625.37 | |
86 | Compound 86 | 609.34 |
Peptide | Peptide Sequence | Residues | Mass |
---|---|---|---|
sa626 | AAPSPSP | 7 | 625.35 |
SA923 | ELVFYRD | 7 | 905.47 |
SA905 | ELVFYRP | 7 | 923.48 |
Peptide | Hydrophobic Ratio | Theoretical pI | Stability Index | Aliphatic Index | GRAVY | SVM Score (Anti-cp) | Boman Index (kcal/mol) | z-Score |
---|---|---|---|---|---|---|---|---|
SA626 | 28% | 5.57 | 216.66 | 28.57 | −0.400 | 0.80 | 0.45 | −1.12 |
SA923 | 42% | 4.37 | 30.99 | 97.14 | −0.286 | 0.64 | 2.66 | 3.88 |
SA905 | 42% | 6.10 | 58.50 | 97.14 | −0.014 | 0.61 | 1.41 | −0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanamadala, S.; Shanthirappan, S.; Kannan, S.; Chiterasu, N.; Subramanian, K.; Al-Keridis, L.A.; Upadhyay, T.K.; Alshammari, N.; Saeed, M.; Srinivasan, G.P.; et al. Biological Activity of Cyclic Peptide Extracted from Sphaeranthus amaranthoides Using De Novo Sequencing Strategy by Mass Spectrometry for Cancer. Biology 2023, 12, 412. https://doi.org/10.3390/biology12030412
Yanamadala S, Shanthirappan S, Kannan S, Chiterasu N, Subramanian K, Al-Keridis LA, Upadhyay TK, Alshammari N, Saeed M, Srinivasan GP, et al. Biological Activity of Cyclic Peptide Extracted from Sphaeranthus amaranthoides Using De Novo Sequencing Strategy by Mass Spectrometry for Cancer. Biology. 2023; 12(3):412. https://doi.org/10.3390/biology12030412
Chicago/Turabian StyleYanamadala, Swarnalatha, Sivakumar Shanthirappan, Sidhika Kannan, Narendran Chiterasu, Kumaran Subramanian, Lamya Ahmed Al-Keridis, Tarun Kumar Upadhyay, Nawaf Alshammari, Mohd Saeed, Guru Prasad Srinivasan, and et al. 2023. "Biological Activity of Cyclic Peptide Extracted from Sphaeranthus amaranthoides Using De Novo Sequencing Strategy by Mass Spectrometry for Cancer" Biology 12, no. 3: 412. https://doi.org/10.3390/biology12030412
APA StyleYanamadala, S., Shanthirappan, S., Kannan, S., Chiterasu, N., Subramanian, K., Al-Keridis, L. A., Upadhyay, T. K., Alshammari, N., Saeed, M., Srinivasan, G. P., & Karunakaran, R. (2023). Biological Activity of Cyclic Peptide Extracted from Sphaeranthus amaranthoides Using De Novo Sequencing Strategy by Mass Spectrometry for Cancer. Biology, 12(3), 412. https://doi.org/10.3390/biology12030412