Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Salinity
2.1. miRNA Expression in Response to Environmental Salinity Changes
2.2. miRNA Functions and Its Target mRNAs under Specific Salinity Environments
3. Temperature
3.1. miRNA Expression in Response to Temperature Changes
3.2. miRNA Functions and Its Target mRNAs under Different Temperature Environment
4. Oxygen Concentration
4.1. miRNA Expression in Response to Hypoxia
4.2. miRNA Functions and Its Target mRNAs under Different Oxygen Environment
5. Feed
5.1. miRNA Expression in Response to Feeding
5.2. miRNA Functions and Its Target mRNAs under Feeding
6. pH
7. Environmental Chemicals and Sea Water Metal Elements
8. Conclusions
9. Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Herkenhoff, M.E.; Oliveira, A.C.; Nachtigall, P.G.; Costa, J.M.; Campos, V.F.; Hilsdorf, A.; Pinhal, D. Fishing Into the MicroRNA Transcriptome. Front. Genet. 2018, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, Q.; Pan, X. MicroRNAs and their regulatory roles in animals and plants. J. Cell. Physiol. 2007, 210, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, C.D.; Yan, B.; Zhao, J.L.; Wang, Z.H. miRNA-directed regulation of VEGF in tilapia under hypoxia condition. Biochem. Biophys. Res. Commun. 2014, 454, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Kim, V.N.; Han, J.; Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2009, 10, 126–139. [Google Scholar] [CrossRef]
- Lim, L.P.; Glasner, M.E.; Yekta, S.; Burge, C.B.; Bartel, D.P. Vertebrate microRNA genes. Science 2003, 299, 1540. [Google Scholar] [CrossRef] [Green Version]
- Bizuayehu, T.T.; Babiak, I. MicroRNA in Teleost Fish. Genome Biol. Evol. 2014, 6, 1911–1937. [Google Scholar] [CrossRef] [Green Version]
- Ng, H.M.; Ho, J.; Nong, W.; Hui, J.; Lai, K.P.; Wong, C. Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica. BMC Genom. 2020, 21, 208. [Google Scholar] [CrossRef] [Green Version]
- Flynt, A.S.; Thatcher, E.J.; Burkewitz, K.; Li, N.; Liu, Y.; Patton, J.G. miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. J. Cell Biol. 2009, 185, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Zhao, L.H.; Guo, J.T.; Zhao, J.L. miR-429 regulation of osmotic stress transcription factor 1 (OSTF1) in tilapia during osmotic stress. Biochem. Biophys. Res. Commun. 2012, 426, 294–298. [Google Scholar] [CrossRef]
- Goodale, B.C.; Hampton, T.H.; Ford, E.N.; Jackson, C.E.; Shaw, J.R.; Stanton, B.A.; King, B.L. Profiling microRNA expression in Atlantic killifish (Fundulus heteroclitus) gill and responses to arsenic and hyperosmotic stress. Aquat. Toxicol. 2019, 206, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Guo, J.T.; Zhao, L.H.; Zhao, J.L. MiR-30c: A novel regulator of salt tolerance in tilapia. Biochem. Biophys. Res. Commun. 2012, 425, 315–320. [Google Scholar] [CrossRef]
- Yan, B.; Zhu, C.D.; Guo, J.T.; Zhao, L.H.; Zhao, J.L. miR-206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF-1 gene expression. J. Exp. Biol. 2013, 216, 1265–1269. [Google Scholar] [CrossRef] [Green Version]
- Qiang, J.; Tao, Y.F.; He, J.; Xu, P.; Bao, J.W.; Sun, Y.L. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene. Aquat. Toxicol. 2017, 182, 39–48. [Google Scholar] [CrossRef]
- Hung, I.C.; Hsiao, Y.C.; Sun, H.S.; Chen, T.M.; Lee, S.J. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genom. 2016, 17, 922. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Sundaram, A.Y.; Valente, L.M.; Conceicao, L.E.; Engrola, S.; Fernandes, J.M. Thermal plasticity of the miRNA transcriptome during Senegalese sole development. BMC Genom. 2014, 15, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasadia, D.J.; Zippay, M.L.; Place, S.P. Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii. Mar. Genom. 2019, 48, 100698. [Google Scholar] [CrossRef] [PubMed]
- Bizuayehu, T.T.; Johansen, S.D.; Puvanendran, V.; Toften, H.; Babiak, I. Temperature during early development has long-term effects on microRNA expression in Atlantic cod. BMC Genom. 2015, 16, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.L.; Wu, H.; Sun, J.L.; Liao, L.; Cui, C.; Liu, Q.; Luo, J.; Tang, X.H.; Luo, W.; Ma, J.D.; et al. MicroRNA-124 regulates lactate transportation in the muscle of largemouth bass (micropterus salmoides) under hypoxia by targeting MCT1. Aquat. Toxicol. 2020, 218, 105359. [Google Scholar] [CrossRef]
- Tse, A.C.; Li, J.W.; Wang, S.Y.; Chan, T.F.; Lai, K.P.; Wu, R.S. Hypoxia alters testicular functions of marine medaka through microRNAs regulation. Aquat. Toxicol. 2016, 180, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Lobo, G.P.; Isken, A.; Hoff, S.; Babino, D.; von Lintig, J. BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway. Development 2012, 139, 2966–2977. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.X.; Chen, N.; Wu, X.J.; Huang, C.H.; He, Y.; Tang, R.; Wang, W.M.; Wang, H.L. The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1alpha and functions in cellular adaptations. FASEB J. 2015, 29, 4901–4913. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, J.W.; Wang, Y.; Zhao, J.L. Role of miR-21 in alkalinity stress tolerance in tilapia. Biochem. Biophys. Res. Commun. 2016, 471, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.; Bao, W.J.; Tao, F.Y.; He, J.; Li, X.H.; Xu, P.; Sun, L.Y. The expression profiles of miRNA-mRNA of early response in genetically improved farmed tilapia (Oreochromis niloticus) liver by acute heat stress. Sci Rep 2017, 7, 8705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Zhang, K.; Zhou, Y.; Ding, X.; Yu, L.; Zhu, G.; Guo, J. MicroRNA-155 targets cyb561d2 in zebrafish in response to fipronil exposure. Environ. Toxicol. 2016, 31, 877–886. [Google Scholar] [CrossRef]
- Ripa, R.; Dolfi, L.; Terrigno, M.; Pandolfini, L.; Savino, A.; Arcucci, V.; Groth, M.; Terzibasi, T.E.; Baumgart, M.; Cellerino, A. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol. 2017, 15, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, W.; Lin, J.; Fang, F.; Wang, X.; Wang, H. Triclosan-induced liver and brain injury in zebrafish (Danio rerio) via abnormal expression of miR-125 regulated by PKCalpha/Nrf2/p53 signaling pathways. Chemosphere 2020, 241, 125086. [Google Scholar] [CrossRef] [PubMed]
- Bizuayehu, T.T.; Furmanek, T.; Karlsen, O.; van der Meeren, T.; Edvardsen, R.B.; Ronnestad, I.; Hamre, K.; Johansen, S.D.; Babiak, I. First feed affects the expressions of microRNA and their targets in Atlantic cod. Br. J. Nutr. 2016, 115, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Paula, T.G.; Zanella, B.; Fantinatti, B.; Moraes, L.N.; Duran, B.; Oliveira, C.B.; Salomao, R.; Silva, R.; Padovani, C.R.; Santos, V.; et al. Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus). PLoS ONE 2017, 12, e177679. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chu, W.Y.; Wu, P.; Yi, T.; Chen, T.; Zhang, J.S. MicroRNA signature in response to nutrient restriction and re-feeding in fast skeletal muscle of grass carp (Ctenopharyngodon idella). Dongwuxue Yanjiu 2014, 35, 404–410. [Google Scholar] [CrossRef]
- Elvira-Matelot, E.; Jeunemaitre, X.; Hadchouel, J. Regulation of ion transport by microRNAs. Curr. Opin. Nephrol. Hypertens. 2011, 20, 541–546. [Google Scholar] [CrossRef]
- Wang, X.; Yin, D.; Li, P.; Yin, S.; Wang, L.; Jia, Y.; Shu, X. MicroRNA-sequence profiling reveals novel osmoregulatory microRNA expression patterns in catadromous eel Anguilla marmorata. PLoS ONE 2015, 10, e136383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Dai, Z.; Chen, S.; Chen, L. MicroRNA-mediated gene regulation plays a minor role in the transcriptomic plasticity of cold-acclimated zebrafish brain tissue. BMC Genom. 2011, 12, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, M.; Tan, X.; Lu, Y.; Wu, Z.; Li, J.; Xu, D.; Zhang, P.; You, F. Network of microRNA-transcriptional factor-mRNA in cold response of turbot Scophthalmus maximus. Fish Physiol. Biochem. 2019, 45, 583–597. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, L.; Wu, H.; Lian, W.; Cui, C.; Du, Z.; Luo, W.; Li, M.; Yang, S. Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures. Funct. Integr. Genom. 2019, 19, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Magnadóttir, B.; Uysal-Onganer, P.; Kraev, I.; Dodds, A.W.; Guðmundsdóttir, S.; Lange, S. Extracellular vesicles, deiminated protein cargo and microRNAs are novel serum biomarkers for environmental rearing temperature in Atlantic cod (Gadus morhua L.). Aquacult. Rep. 2020, 16, 100245. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, X.; Hu, Y.; Xu, J.; Wang, T.; Yin, S. iTRAQ-based quantitative proteomic analysis of Takifugu fasciatus liver in response to low-temperature stress. J. Proteom. 2019, 201, 27–36. [Google Scholar] [CrossRef]
- Xiao, W. The hypoxia signaling pathway and hypoxic adaptation in fishes. Sci. China Life Sci. 2015, 58, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Hochachka, P.W. Defense strategies against hypoxia and hypothermia. Science. Science 1986, 231, 234–241. [Google Scholar] [CrossRef]
- Zhang, G.; Yin, S.; Mao, J.; Liang, F.; Zhao, C.; Li, P.; Zhou, G.; Chen, S.; Tang, Z. Integrated analysis of mRNA-seq and miRNA-seq in the liver of Pelteobagrus vachelli in response to hypoxia. Sci. Rep. 2016, 6, 22907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, K.; Lai, K.P.; Bao, J.Y.; Zhang, N.; Tse, A.; Tong, A.; Li, J.W.; Lok, S.; Kong, R.Y.; Lui, W.Y.; et al. Identification and expression profiling of microRNAs in the brain, liver and gonads of marine medaka (Oryzias melastigma) and in response to hypoxia. PLoS ONE 2014, 9, e110698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, A.C.; Li, J.W.; Chan, T.F.; Wu, R.S.; Lai, K.P. Hypoxia induces miR-210, leading to anti-apoptosis in ovarian follicular cells of marine medaka Oryzias melastigma. Aquat. Toxicol. 2015, 165, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xuan, F.; Ge, X.; Zhu, J.; Zhang, W. Dynamic mRNA and miRNA expression analysis in response to hypoxia and reoxygenation in the blunt snout bream (Megalobrama amblycephala). Sci. Rep. 2017, 7, 12846. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.R.; Short, C.E.; Petersen, L.H.; Stacey, J.; Gamperl, A.K.; Driedzic, W.R. Expression levels of genes associated with oxygen utilization, glucose transport and glucose phosphorylation in hypoxia exposed Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. D-Genom. Proteom. 2009, 4, 128–138. [Google Scholar] [CrossRef]
- Huang, C.H.; Chen, N.; Huang, C.X.; Zhang, B.; Wu, M.; He, L.; Liu, H.; Tang, R.; Wang, W.M.; Wang, H.L. Involvement of the miR-462/731 cluster in hypoxia response in Megalobrama amblycephala. Fish Physiol. Biochem. 2017, 43, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tong, C.; Tian, F.; Zhao, K. Integrated mRNA and microRNA transcriptome analyses reveal regulation of thermal acclimation in Gymnocypris przewalskii: A case study in Tibetan Schizothoracine fish. PLoS ONE 2017, 12, e186433. [Google Scholar] [CrossRef]
- Latimer, M.N.; Cleveland, B.M.; Biga, P.R. Dietary methionine restriction: Effects on glucose tolerance, lipid content and micro-RNA composition in the muscle of rainbow trout. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2018, 208, 47–52. [Google Scholar] [CrossRef]
- Mennigen, J.A.; Plagnes-Juan, E.; Figueredo-Silva, C.A.; Seiliez, I.; Panserat, S.; Skiba-Cassy, S. Acute endocrine and nutritional co-regulation of the hepatic omy-miRNA-122b and the lipogenic gene fas in rainbow trout, Oncorhynchus mykiss. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 2014, 169, 16–24. [Google Scholar] [CrossRef]
- Zhu, T.; Corraze, G.; Plagnes-Juan, E.; Montfort, J.; Bobe, J.; Quillet, E.; Dupont-Nivet, M.; Skiba-Cassy, S. MicroRNAs related to cholesterol metabolism affected by vegetable diet in rainbow trout (Oncorhynchus mykiss) from control and selected lines. Aquaculture 2019, 498, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Luo, J.; Long, Y.; Du, J.; Xu, G.; Zhao, L.; Du, Z.; Luo, W.; Wang, Y.; He, Z. Mixed diets reduce the oxidative stress of common carp (Cyprinus carpio): Based on MicroRNA sequencing. Front. Physiol. 2019, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, D.; Hu, Y.; Wu, P.; Wang, K.; Zhang, J.; Chu, W.; Zhang, J. The microRNA signature in response to nutrient restriction and refeeding in skeletal muscle of Chinese perch (Siniperca chuatsi). Mar. Biotechnol. 2015, 17, 180–189. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, K.; Dong, Z.; Jiang, G.; Xu, W.; Liu, W. The effect of exposure to a high-fat diet on microRNA expression in the liver of blunt snout bream (Megalobrama amblycephala). PLoS ONE 2014, 9, e96132. [Google Scholar] [CrossRef]
- Cassidy, A.A.; Blier, P.U.; Le François, N.R.; Dionne, P.; Lamarre, S.G. Effects of fasting and refeeding on protein and glucose metabolism in Arctic charr. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2018, 226, 66–74. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, T.; Wei, X.; Zhang, D.; Zhuo, M.; Luo, Z. miR-101b Regulates lipid deposition and metabolism of primary hepatocytes in teleost yellow catfish Pelteobagrus fulvidraco. Genes 2020, 11, 861. [Google Scholar] [CrossRef]
- Pan, Y.; Tao, J.; Zhou, J.; Cheng, J.; Chen, Y.; Xiang, J.; Bao, L.; Zhu, X.; Zhang, J.; Chu, W. Effect of starvation on the antioxidative pathway, autophagy, and mitochondrial function in the intestine of Chinese perch Siniperca chuatsi. Aquaculture 2022, 548, 737683. [Google Scholar] [CrossRef]
- Wang, F.; Huang, L.; Liao, M.; Dong, W.; Liu, C.; Zhuang, X.; Liu, Y.; Yin, X.; Liang, Q.; Wang, W. Pva-miR-252 participates in ammonia nitrogen-induced oxidative stress by modulating autophagy in Penaeus vannamei. Ecotox. Environ. Safe 2021, 225, 112774. [Google Scholar] [CrossRef]
- Kure, E.H.; Saebo, M.; Stangeland, A.M.; Hamfjord, J.; Hytterod, S.; Heggenes, J.; Lydersen, E. Molecular responses to toxicological stressors: Profiling microRNAs in wild Atlantic salmon (Salmo salar) exposed to acidic aluminum-rich water. Aquat. Toxicol. 2013, 138–139, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Luan, P.; Chen, X.; Zhang, X.; Hu, G.; Zhang, Z. Role of miR-451 in mediating cadmium induced head kidney injury in common carp via targeting cacna1ab through autophagy pathways. Aquat. Toxicol. 2022, 248, 106201. [Google Scholar] [CrossRef]
- Meador, J.P.; Yeh, A.; Gallagher, E.P. Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. Environ. Pollut. 2018, 236, 850–861. [Google Scholar] [CrossRef]
- Ma, J.; Chen, X.; Xin, G.; Li, X. Chronic exposure to the ionic liquid [C8mim]Br induces inflammation in silver carp spleen: Involvement of oxidative stress-mediated p38MAPK/NF-κB signalling and microRNAs. Fish Shellfish Immunol. 2019, 84, 627–638. [Google Scholar] [CrossRef]
- Sinclair, E.; Mayack, D.T.; Roblee, K.; Yamashita, N.; Kannan, K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Arch. Environ. Contam. Toxicol. 2006, 50, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Zeng, H.; Wei, J.; Wan, Y.; Chen, J.; Xu, S. MicroRNA expression changes during zebrafish development induced by perfluorooctane sulfonate. J. Appl. Toxicol. 2011, 31, 210–222. [Google Scholar] [CrossRef]
- Wang, L.; Bammler, T.K.; Beyer, R.P.; Gallagher, E.P. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system. Environ. Sci. Technol. 2013, 47, 7466–7474. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Wen, X.; Hu, Y.; Zhang, X.; Wang, D.; Yin, S. Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish Shellfish Immunol. 2019, 84, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Teotia, S.; Tang, G. To bloom or not to bloom: Role of microRNAs in plant flowering. Mol. Plant. 2015, 8, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lai, Y.; Zhang, W.; Ahmad, J.; Qiu, Y.; Zhang, X.; Duan, M.; Liu, T.; Song, J.; Wang, H.; et al. MicroRNAs and their targets in cucumber shoot apices in response to temperature and photoperiod. BMC Genom. 2018, 19, 819. [Google Scholar] [CrossRef]
- Andreassen, R.; Høyheim, B. miRNAs associated with immune response in teleost fish. Dev. Comp. Immunol. 2017, 75, 77–85. [Google Scholar] [CrossRef]
- Ason, B.; Darnell, D.K.; Wittbrodt, B.; Berezikov, E.; Kloosterman, W.P.; Wittbrodt, J.; Antin, P.B.; Plasterk, R.H. Differences in vertebrate microRNA expression. Proc. Natl. Acad. Sci. USA 2006, 103, 14385–14389. [Google Scholar] [CrossRef] [Green Version]
- Bovolenta, L.A.; Pinhal, D.; Acencio, M.L.; Oliveira, A.C.; Moxon, S.; Martins, C.; Lemke, N. miRTil: An extensive repository for Nile Tilapia microRNA next generation sequencing data. Cells 2020, 9, 1752. [Google Scholar] [CrossRef]
- Rasal, K.D.; Nandanpawar, P.C.; Swain, P.; Badhe, M.R.; Sundaray, J.K.; Jayasankar, P. MicroRNA in aquaculture fishes: A way forward with high-throughput sequencing and a computational approach. Rev. Fish. Biol. Fish. 2016, 26, 199–212. [Google Scholar] [CrossRef]
- Kobayashi, H.; Singer, R.H. Single-molecule imaging of microRNA-mediated gene silencing in cells. Nat. Commun. 2022, 13, 1435. [Google Scholar] [CrossRef]
- Bottini, S.; Hamouda-Tekaya, N.; Mategot, R.; Zaragosi, L.; Audebert, S.; Pisano, S.; Grandjean, V.; Mauduit, C.; Benahmed, M.; Barbry, P.; et al. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat. Commun. 2017, 8, 1189. [Google Scholar] [CrossRef] [Green Version]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef]
- Chang, M.; Li, B.; Liao, M.; Rong, X.; Wang, Y.; Wang, J.; Yu, Y.; Zhang, Z.; Wang, C. Differential expression of miRNAs in the body wall of the sea cucumber Apostichopus japonicus under heat stress. Front. Physiol. 2022, 13, 929094. [Google Scholar] [CrossRef]
- Farhat, E.; Talarico, G.G.M.; Grégoire, M.; Weber, J.; Mennigen, J.A. Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish. Sci. Rep. 2022, 12, 5576. [Google Scholar] [CrossRef]
- Paturi, S.; Deshmukh, M.V. A glimpse of “Dicer Biology” through the structural and functional perspective. Front. Mol. Biosci. 2021, 8, 643657. [Google Scholar] [CrossRef]
- Zapletal, D.; Taborska, E.; Pasulka, J.; Malik, R.; Kubicek, K.; Zanova, M.; Much, C.; Sebesta, M.; Buccheri, V.; Horvat, F.; et al. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell 2022, 82, 4064–4079. [Google Scholar] [CrossRef]
- Müller, M.; Fäh, T.; Schaefer, M.; Hermes, V.; Luitz, J.; Stalder, P.; Arora, R.; Ngondo, R.P.; Ciaudo, C. AGO1 regulates pericentromeric regions in mouse embryonic stem cells. Life Sci. Alliance 2022, 5, e202101277. [Google Scholar] [CrossRef]
Species | ID Abbreviation | Number of Hairpin Precursor Entries | Number of Mature miRNA Sequences | Number of Mature Entries | Number of Dead Entries | Number of miRNA Entries |
---|---|---|---|---|---|---|
Zebrafish (Danio rerio) | dre-mir dre-let | 398 | 375 | 141 | 102 | 1593 |
Nile tilapia (Oreochromis niloticus) | oni-mir | 812 | 695 | 0 | 0 | 1507 |
Atlantic cod (Gadus morhua) | gmo-mir | 401 | 516 | 0 | 0 | 917 |
Atlantic salmon (Salmo salar) | ssa-mir ssa-let | 371 | 498 | 0 | 0 | 869 |
Burton’s mouth-brooder (Astatotilapia burtoni) | abu-mir abu-let | 298 | 236 | 0 | 0 | 534 |
Channel catfish (Ictalurus punctatus) | ipu-mir ipu-let | 281 | 205 | 0 | 0 | 486 |
Nyassa blue cichlid (Metriaclima zebra) | mze-mir | 256 | 184 | 0 | 0 | 440 |
Fairy cichlid (Neolamprologus brichardi) | nbr-mir nbr-mir | 251 | 182 | 0 | 0 | 433 |
Victoria cichlid (Pundamilia nyererei) | pny-mir | 250 | 182 | 0 | 0 | 432 |
Japanese rice fish (Oryzias latipes) | ola-mir ola-let | 168 | 146 | 0 | 0 | 314 |
Common carp (Cyprinus carpio) | ccr-mir ccr-let | 134 | 146 | 0 | 0 | 280 |
Pufferfish (Fugu rubripes) | fru-mir fru-let | 133 | 108 | 6 | 3 | 255 |
Spotted green pufferfish (Tetraodon nigroviridis) | tni-mir tni-let | 132 | 109 | 2 | 0 | 245 |
Atlantic halibut (Hippoglossus hippoglossus) | hhi-mir hhi-let | 40 | 37 | 0 | 1 | 78 |
Olive flounder (Paralichthys olivaceus) | pol-mir pol-let | 20 | 38 | 0 | 0 | 58 |
Electric eel (Electrophorus electricus) | eel-mir | 20 | 34 | 0 | 0 | 54 |
Species | Tissue | miRNA | Target-Genes | Function | |
---|---|---|---|---|---|
Salinity | |||||
Japanese eel Anguilla japonica | Gills | miRNA-200b-3p | slc17a5 | Serve as organic osmolytes to regulate cellular osmolality and against hyperosmotic stress | [10] |
Japanese eel | Gills | miRNA-29b-3p | Krueppel-like factor 4 (KLF4) | Increase chloride cell densities in fish gills and are responsible for ion transport | [10] |
Zebrafish | Embryos | miRNA-8 miRNA-200 | NHERF1 | A regulator of apical trafficking of transmembrane ion transporters | [11] |
Tilapia | Kidney | miRNA-30c | HSP70 | Responds to osmotic stress | [12] |
Atlantic killifish (Fundulus heteroclitus) | Kidney | miRNA-135b | NR3C2 | Regulation during salinity acclimation | [13] |
Atlantic killifish | Kidney | miRNA-135b | Potassium voltage-gated channel | Important mediators of hyperosmotic response | [13] |
Nile tilapia | Gills | miRNA-429 | OSTF1 | Lead to changes in the ionic concentration and osmotic stress; Influence the regulation of plasma osmolality and ion concentration responding to osmotic stress | [14] |
Tilapia | Skeletal muscle | miRNA-206 | IGF-1 | Upregulate the expression of transporters such as NKA and NKCC | [15] |
Genetically improved farmed tilapia | Liver | miRNA-PC-5p-27517/3p-50929 | AQP10a | Mediate AQP10a that absorb and excrete water | [16] |
Temperature | |||||
Zebrafish | Larvae | miRNA-29 | Period Circadian Regulator 2 (PER2) | Enhance cold tolerance of the fish larvae | [17] |
Senegalese sole | Embryos | miRNA-133 miRNA-206 | Myoblast determination protein (MyoD) | Stimulate myogenesis | [18] |
Emerald notothen (Trematomus bernacchii) | Gill | miRNA-21 | Forkhead box protein (FOX) | Returning to a physiological state of thermal acclimation | [19] |
Atlantic cod | Embryo and larval | miRNA-27c | GATA-binding factor 1 | Epigenetic modulation by temperature | [20] |
Genetically improved farmed tilapia | Liver | miRNA-1338-5p | Growth hormone inducible transmembrane protein (GHITM) | Regulate cell growth and oxidative stress | [16] |
Genetically improved farmed tilapia | Liver | miRNA-99 | Heme oxygenase 1 (HMOX1) | Regulate heat stress | [16] |
Oxygen concentration | |||||
Largemouth bass (micropterus salmoides) | Muscle | miRNA-124 | Monocarboxylate transporters 1 (MCT1) | Regulate lactate transportation under hypoxia | [21] |
Medaka (Oryzias melastigma) | Testicular tissues | miRNA-125-5p | Euchromatic histone-lysine N-methyltransferase 2 (EHMT2) | The epigenetic regulator of transgenerational reproductive impairment | [22] |
Zebrafish | Larvae | miRNA-125 | β-carotene 9,10-dioxygenase (BCO2) | Regulate oxidative stress | [23] |
Medaka | Ovarian follicular cells | miRNA-351 | Homeodomain-interacting protein kinase (HIPK) | Regulate cell apoptosis | [22] |
Zebrafish | Larvae | miRNA-462 miRNA-731 | Hypoxia-inducible factor 1a (HIF-1a), DEAD box protein 5 (DDX5), Protein phosphatase 1D (PPM1DA) | Regulate cellular adaptations | [24] |
Nile tilapia | Kidney | miRNA-21 | Vascular endothelial growth factor (VEGF) | Involve in regulating the alkalinity stress | [25] |
Genetically improved farmed tilapia | Liver | miRNA-122 | Metallothionein | Involved in modulating the cadmium-stress response | [26] |
Environmental chemicals and sea water metal elements | |||||
Zebrafish | Whole body | miRNA-155 | Cytochrome b561 domain-containing protein 2 (CYB561D2) | A potential biomarker for fipronil toxicity | [27] |
Turquoise killifish (Nothobran chius furzeri) | Brain | miRNA-29 | Iron responsive element binding protein 2 (IREB2) | Reducing the toxicity of iron intake | [28] |
Zebrafish | liver and brain | miRNA-125 | G-protein-coupled estrogen receptors (GPER) | Trigger the target pathway NRF2/MAPK/P53 as a potential regulatory factor | [29] |
Feed | |||||
Atlantic cod (Gadus morhua) | Larvae | miRNA-9 | Chymotrypsin-like elastase family, member 2A (CELA2A); insulin-like growth factor binding protein (IGFALS); retinal G protein-coupled receptor (RGR); phosphorylase kinase, gamma 1 (PHKG1) | Improve larviculture | [30] |
Atlantic cod | Larvae | miRNA-19a | Collagen alpha-2 chain (COL1A2) | Improve larviculture | [30] |
Atlantic cod | Larvae | miRNA-130b | Solute carrier family 40 member 1, Fe-regulated transporter (slc40a1) | Improve larviculture | [30] |
Atlantic cod | Larvae | miRNA-146 | MAP kinase interacting serine/threonine kinase 1 (MKNK1) | Improve larviculture | [30] |
Atlantic cod | Larvae | miRNA-181a | Dual-specificity phosphatase 5 (DUSP5); Calmodulin-like protein 4 (CALML4) | Improve larviculture | [30] |
Atlantic cod | Larvae | miRNA-206 | Transcriptional factor myb (MYB) | Improve larviculture | [30] |
Juvenile pacu (Piaractus mesopotamicus) | Muscle | miRNA-1 miRNA-206 miRNA-199 | IGF-1 | Affect fast muscle with changes in muscle fiber diameter | [31] |
Juvenile pacu | Muscle | miRNA-199 | mTOR | Affect fast muscle with changes in muscle fiber diameter | [31] |
Juvenile pacu | Muscle | miRNA-23a | MFbx and PGC1a | Affect fast muscle with changes in muscle fiber diameter | [31] |
Chinese perch (Siniperca chuatsi) | Muscle | miRNA-10c | Diacylglycerol O-acyltransferase 2 (DGAT2) | Regulate fish muscle growth | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Zhang, H.; Li, T.; He, L.; Zong, J.; Shan, H.; Huang, L.; Zhang, Y.; Liu, H.; Jiang, J. Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review. Biology 2023, 12, 388. https://doi.org/10.3390/biology12030388
Cao Q, Zhang H, Li T, He L, Zong J, Shan H, Huang L, Zhang Y, Liu H, Jiang J. Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review. Biology. 2023; 12(3):388. https://doi.org/10.3390/biology12030388
Chicago/Turabian StyleCao, Quanquan, Hailong Zhang, Tong Li, Lingjie He, Jiali Zong, Hongying Shan, Lishi Huang, Yupeng Zhang, Haifeng Liu, and Jun Jiang. 2023. "Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review" Biology 12, no. 3: 388. https://doi.org/10.3390/biology12030388
APA StyleCao, Q., Zhang, H., Li, T., He, L., Zong, J., Shan, H., Huang, L., Zhang, Y., Liu, H., & Jiang, J. (2023). Profiling miRNAs of Teleost Fish in Responses to Environmental Stress: A Review. Biology, 12(3), 388. https://doi.org/10.3390/biology12030388