Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Punjabi, N.M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 5, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Peppard, P.E.; Gottlieb, D.J. Epidemiology of obstructive sleep apnea: A population health perspective. Am. J. Respir. Crit. Care Med. 2002, 165, 1217–1239. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.K.; Bhuiyan, A.R.; Jones, E.A. Association and Risk Factors for Obstructive Sleep Apnea and Cardiovascular Diseases: A Systematic Review. Diseases 2021, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Sateia, M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Eckert, D.J.; Malhotra, A. Pathophysiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 2008, 5, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Edwards, B.A.; Eckert, D.J.; Jordan, A.S. Obstructive sleep apnoea pathogenesis from mild to severe: Is it all the same? Respirology 2017, 22, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Gouveris, H.; Bahr, K.; Schmitt, E.; Abriani, A.; Boekstegers, T.; Fassnacht, S.; Huppertz, T.; Groppa, S.; Muthuraman, M. Corticoperipheral neuromuscular disconnection in obstructive sleep apnoea. Brain Commun. 2020, 2, fcaa056. [Google Scholar] [CrossRef]
- Landry, S.A.; Andara, C.; Terrill, P.I.; Joosten, S.A.; Leong, P.; Mann, D.L.; Sands, S.A.; Hamilton, G.S.; Edwards, B.A. Ventilatory control sensitivity in patients with obstructive sleep apnea is sleep stage dependent. Sleep 2018, 41, zsy040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnavadivel, R.; Chau, N.; Stadler, D.; Yeo, A.; McEvoy, R.D.; Catcheside, P.G. Marked reduction in obstructive sleep apnea severity in slow wave sleep. J. Clin. Sleep Med. 2009, 5, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A. Central sleep apnea: Misunderstood and mistreated! F1000Res 2019, 8(F1000 Faculty Rev), 981. [Google Scholar] [CrossRef]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med. 2012, 08, 597–619. [Google Scholar] [CrossRef]
- Edwards, B.A.; Eckert, D.J.; McSharry, D.G.; Sands, S.A.; Desai, A.; Kehlmann, G.; Bakker, J.P.; Genta, P.R.; Owens, R.L.; White, D.P.; et al. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2014, 190, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Pelin, Z.; Karadeniz, D.; Oztürk, L.; Gözükirmizi, E.; Kaynak, H. The role of mean inspiratory effort on daytime sleepiness. Eur. Respir. J. 2003, 21, 688–694. [Google Scholar] [CrossRef]
- Sforza, E.; Boudewijns, A.; Schnedecker, B.; Zamagni, M.; Krieger, J. Role of chemosensitivity in intrathoracic pressure changes during obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 1996, 154 Pt 1, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Wains, S.A.; El-Chami, M.; Lin, H.S.; Mateika, J.H. Impact of arousal threshold and respiratory effort on the duration of breathing events across sleep stage and time of night. Respir. Physiol. Neurobiol. 2017, 237, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Cai, J.; Yao, Y.; Pan, Y.; Pan, L.; Zhang, L.; Sun, Y. Relationship between sleep architecture and severity of obstructive sleep apnea. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020, 49, 455–461. [Google Scholar]
- Liu, Y.; Su, C.; Liu, R.; Lei, G.; Zhang, W.; Yang, T.; Miao, J.; Li, Z. NREM-AHI greater than REM-AHI versus REM-AHI greater than NREM-AHI in patients with obstructive sleep apnea: Clinical and polysomnographic features. Sleep Breath 2011, 15, 463–470. [Google Scholar] [CrossRef]
- Mokhlesi, B.; Punjabi, N.M. “REM-related” obstructive sleep apnea: An epiphenomenon or a clinically important entity? Sleep 2012, 35, 5–7. [Google Scholar] [CrossRef]
- Joosten, S.A.; Hamza, K.; Sands, S.; Turton, A.; Berger, P.; Hamilton, G. Phenotypes of patients with mild to moderate obstructive sleep apnoea as confirmed by cluster analysis. Respirology 2012, 17, 99–107. [Google Scholar] [CrossRef]
- Orr, J.E.; Malhotra, A.; Sands, S.A. Pathogenesis of central and complex sleep apnoea. Respirology 2017, 22, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Yumino, D.; Bradley, T.D. Central sleep apnea and Cheyne-Stokes respiration. Proc. Am. Thorac. Soc. 2008, 5, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Gouveris, H.; Selivanova, O.; Bausmer, U.; Goepel, B.; Mann, W. First-night-effect on polysomnographic respiratory sleep parameters in patients with sleep-disordered breathing and upper airway pathology. Eur. Arch. Otorhinolaryngol. 2010, 267, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Bloch, K.E.; Schoch, O.D.; Zhang, J.N.; Russi, E.W. German version of the Epworth Sleepiness Scale. Respiration 1999, 66, 440–447. [Google Scholar] [CrossRef]
- Ayalon, L.; Ancoli-Israel, S.; Drummond, S.P. Obstructive sleep apnea and age: A double insult to brain function? Am. J. Respir. Crit. Care Med. 2010, 182, 413–419. [Google Scholar] [CrossRef]
- Gabbay, I.E.; Lavie, P. Age- and gender-related characteristics of obstructive sleep apnea. Sleep Breath 2012, 16, 453–460. [Google Scholar] [CrossRef]
- Pan, T.; Liu, S.; Ke, S.; Wang, E.; Jiang, Y.; Wang, S. Association of obstructive sleep apnea with cognitive decline and age among non-demented older adults. Neurosci. Lett. 2021, 756, 135955. [Google Scholar] [CrossRef]
- Pinilla, L.; Santamaria-Martos, F.; Benítez, I.D.; Zapater, A.; Targa, A.; Mediano, O.; Masa, J.F.; Masdeu, M.J.; Minguez, O.; Aguilà, M.; et al. Association of Obstructive Sleep Apnea with the Aging Process. Ann. Am. Thorac. Soc. 2021, 18, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Jouett, N.P.; Smith, M.L.; Watenpaugh, D.E.; Siddiqui, M.; Ahmad, M.; Siddiqui, F. Rapid-eye-movement sleep-predominant central sleep apnea relieved by positive airway pressure: A case report. Physiol. Rep. 2017, 5, e13254. [Google Scholar] [CrossRef]
- Messineo, L.; Taranto-Montemurro, L.; Azarbarzin, A.; Marques, M.; Calianese, N.; White, D.P.; Wellman, A.; Sands, S.A. Loop gain in REM versus non-REM sleep using CPAP manipulation: A pilot study. Respirology 2019, 24, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Douglas, N.J.; White, D.P.; Weil, J.V.; Pickett, C.K.; Martin, R.J.; Hudgel, D.W.; Zwillich, C.W. Hypoxic ventilatory response decreases during sleep in normal men. Am. Rev. Respir. Dis. 1982, 125, 286–289. [Google Scholar] [PubMed]
- Messineo, L.; Eckert, D.J.; Taranto-Montemurro, L.; Vena, D.; Azarbarzin, A.; Hess, L.B.; Calianese, N.; White, D.P.; Wellman, A.; Gell, L.; et al. Ventilatory Drive Withdrawal Rather Than Reduced Genioglossus Compensation as a Mechanism of Obstructive Sleep Apnea in REM Sleep. Am. J. Respir. Crit. Care Med. 2022, 205, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Badr, M.S.; Dingell, J.D.; Javaheri, S. Central Sleep Apnea: A Brief Review. Curr. Pulmonol. Rep. 2019, 8, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.J.; Dashevskiy, T.; Khuu, M.A.; Ramirez, J.M. Chronic Intermittent Hypoxia Differentially Impacts Different States of Inspiratory Activity at the Level of the preBötzinger Complex. Front. Physiol. 2017, 8, 571. [Google Scholar] [CrossRef]
- Garcia, A.J., 3rd; Zanella, S.; Dashevskiy, T.; Khan, S.A.; Khuu, M.A.; Prabhakar, N.R.; Ramirez, J.M. Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex. Front. Neurosci. 2016, 10, 4. [Google Scholar] [CrossRef]
- Ramirez, J.M.; Garcia, A.J., 3rd; Anderson, T.M.; Koschnitzky, J.E.; Peng, Y.J.; Kumar, G.K.; Prabhakar, N.R. Central and peripheral factors contributing to obstructive sleep apneas. Respir. Physiol. Neurobiol. 2013, 189, 344–353. [Google Scholar] [CrossRef]
- McKay, L.C.; Janczewski, W.A.; Feldman, J.L. Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons. Nat. Neurosci. 2005, 8, 1142–1144. [Google Scholar] [CrossRef]
- Chowdhuri, S.; Pranathiageswaran, S.; Loomis-King, H.; Salloum, A.; Badr, M.S. Aging is associated with increased propensity for central apnea during NREM sleep. J. Appl. Physiol. 2018, 124, 83–90. [Google Scholar] [CrossRef]
- Cori, J.M.; Thornton, T.; O’Donoghue, F.J.; Rochford, P.D.; White, D.P.; Trinder, J.; Jordan, A.S. Arousal-Induced Hypocapnia Does Not Reduce Genioglossus Activity in Obstructive Sleep Apnea. Sleep 2017, 40, zsx057. [Google Scholar] [CrossRef]
- Jordan, A.S.; Eckert, D.J.; Wellman, A.; Trinder, J.A.; Malhotra, A.; White, D.P. Termination of respiratory events with and without cortical arousal in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2011, 184, 1183–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Dan, Y. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit. Annu. Rev. Neurosci. 2019, 42, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Yackle, K.; Schwarz, L.A.; Kam, K.; Sorokin, J.M.; Huguenard, J.R.; Feldman, J.L.; Luo, L.; Krasnow, M.A. Breathing control center neurons that promote arousal in mice. Science 2017, 355, 1411–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Severity Group | Number | Mean Value | Standard Deviation | 95% Confidence Interval Lower Limit | 95% Confidence Interval Upper Limit | Global Testing (ANOVA) | Post Hoc (All Pairs Tukey) against “Mild” |
---|---|---|---|---|---|---|---|---|
Age (years) | mild | 40 | 46.25 | 14.58 | 41.57 | 50.92 | n.s. | |
moderate | 47 | 50.54 | 11.25 | 47.25 | 53.86 | n.s. | ||
severe | 55 | 52.75 | 13.04 | 49.22 | 56.26 | n.s. | ||
BMI (kg/m2) | mild | 36 | 26.54 | 4.69 | 24.96 | 28.15 | <0.0001 | |
moderate | 47 | 30.99 | 5.60 | 29.35 | 32.62 | <0.0001 | 0.0005 | |
severe | 55 | 31.69 | 5.11 | 30.32 | 33.09 | <0.0001 | <0.0001 | |
ESS | mild | 14 | 9.13 | 4.35 | 6.62 | 11.64 | n.s. | |
moderate | 45 | 9.8 | 4.76 | 8.37 | 11.22 | n.s. | ||
severe | 54 | 10.15 | 5.17 | 8.72 | 11.55 | n.s. | ||
CVRF (count) | mild | 40 | 0.93 | 0.93 | 0.61 | 1.23 | 0.0005 | |
moderate | 47 | 1.22 | 0.87 | 0.97 | 1.49 | 0.0005 | 0.0274 | |
severe | 53 | 1.76 | 1.22 | 1.44 | 2.11 | 0.0005 | 0.0004 | |
TST (min) | mild | 40 | 362.09 | 55.54 | 344.31 | 379.84 | 0.0483 | |
moderate | 47 | 362.33 | 54.21 | 346.39 | 378.25 | 0.0483 | n.s. | |
severe | 55 | 336.84 | 65.37 | 319.18 | 354.52 | 0.0483 | n.s. | |
REM in TST (%) | mild | 40 | 15.32 | 5.77 | 13.46 | 17.15 | 0.001 | |
moderate | 47 | 13.36 | 6.17 | 11.53 | 15.16 | 0.001 | n.s. | |
severe | 55 | 10.62 | 6.11 | 8.97 | 12.27 | 0.001 | 0.0008 | |
Supine Pos. in TST (%) | mild | 40 | 32.35 | 25.44 | 24.19 | 40.49 | 0.0213 | |
moderate | 47 | 46.47 | 27.48 | 38.39 | 54.55 | 0.0213 | n.s. | |
severe | 55 | 47.56 | 30.32 | 39.36 | 55.74 | 0.0213 | 0.0273 | |
Sleep efficiency (%) | mild | 40 | 77.38 | 11.62 | 73.68 | 81.11 | 0.003 | |
moderate | 47 | 85.76 | 8.57 | 83.24 | 88.28 | 0.003 | ||
severe | 55 | 81.52 | 12.77 | 78.08 | 84.97 | 0.003 | 0.0002 |
Variable | Severity Group | Median | 25th Percentile | 75th Percentile | Global Testing Wilcoxon Rank Sum | Post hoc Wilcoxon against “Mild” |
---|---|---|---|---|---|---|
AHI (n/h) | mild | 6.2 | 4.1 | 10.7 | 0.0001 | |
moderate | 19.5 | 17.6 | 23.9 | 0.0001 | 0.0001 | |
severe | 48.6 | 34.9 | 60.9 | 0.0001 | 0.0001 | |
RDI (n/h) | mild | 7.5 | 4.5 | 11.5 | 0.0001 | |
moderate | 20.8 | 17.6 | 24.4 | 0.0001 | 0.0001 | |
severe | 48.6 | 36.1 | 60.9 | 0.0001 | 0.0001 | |
Duration < 90% SpO2 (%) | mild | 0.08 | 0.00 | 0.74 | 0.0001 | |
moderate | 0.78 | 0.15 | 2.44 | 0.0001 | 0.0004 | |
severe | 3.74 | 0.74 | 13.08 | 0.0001 | 0.0001 | |
Mean SpO2 in % NREM (%) | mild | 95 | 94 | 96 | 0.0001 | |
moderate | 94 | 93 | 95 | 0.0001 | 0.0043 | |
severe | 93 | 92 | 94 | 0.0001 | 0.0001 | |
Mean SpO2 in % NREM (%) | mild | 95 | 93 | 96 | 0.0001 | |
moderate | 94 | 93 | 96 | 0.0001 | 0.0010 | |
severe | 93 | 91 | 95 | 0.0001 | 0.0001 |
Category 1 | Category 2 | Mean Score Difference | Standard Error Difference | Z-Score | p-Value |
---|---|---|---|---|---|
Severe NREM | Severe REM | 18.1418 | 5.306820 | 3.41978 | 0.0006 |
Moderate NREM | Moderate REM | 6.9362 | 4.353624 | 1.59320 | 0.1111 |
Mild NREM | Mild REM | −6.2000 | 3.942024 | −1.57280 | 0.1158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig, K.; Malatantis-Ewert, S.; Huppertz, T.; Bahr-Hamm, K.; Seifen, C.; Pordzik, J.; Matthias, C.; Simon, P.; Gouveris, H. Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study. Biology 2023, 12, 298. https://doi.org/10.3390/biology12020298
Ludwig K, Malatantis-Ewert S, Huppertz T, Bahr-Hamm K, Seifen C, Pordzik J, Matthias C, Simon P, Gouveris H. Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study. Biology. 2023; 12(2):298. https://doi.org/10.3390/biology12020298
Chicago/Turabian StyleLudwig, Katharina, Sebastian Malatantis-Ewert, Tilman Huppertz, Katharina Bahr-Hamm, Christopher Seifen, Johannes Pordzik, Christoph Matthias, Perikles Simon, and Haralampos Gouveris. 2023. "Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study" Biology 12, no. 2: 298. https://doi.org/10.3390/biology12020298
APA StyleLudwig, K., Malatantis-Ewert, S., Huppertz, T., Bahr-Hamm, K., Seifen, C., Pordzik, J., Matthias, C., Simon, P., & Gouveris, H. (2023). Central Apneic Event Prevalence in REM and NREM Sleep in OSA Patients: A Retrospective, Exploratory Study. Biology, 12(2), 298. https://doi.org/10.3390/biology12020298