A TaqMan® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Isolates
2.2. Plant Sampling
2.3. gDNA Extraction from Fungal Isolates and Tomato Samples
2.4. Design of a Fusarium spp.-Specific qPCR Assay
2.5. Specificity, Sensitivity, and Reliability of the qPCR Assay
2.6. gDNA Calibrator Plasmid
3. Results
3.1. Specificity and Sensitivity of the Fusarium spp.-Specific qPCR TaqMan® Assay
3.2. Calibration Curves for Quantification of Fusarium spp. gDNA
3.3. Applicability of the Fusarium spp.-Specific qPCR TaqMan® Assay in Tomato Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panno, S.; Davino, S.; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandi, A. A Review of the Most Common and Economically Important Diseases That Undermine the Cultivation of Tomato Crop in the Mediterranean Basin. Agronomy 2021, 11, 2188. [Google Scholar] [CrossRef]
- Jones, J.B.; Zitter, T.A.; Momol, T.M.; Miller, S.A. Compendium of Tomato Diseases and Pests, Second Edition; The American Phytopathological Society: St. Paul, MN, USA, 2016; ISBN 978-0-89054-434-1. [Google Scholar]
- Srinivas, C.; Nirmala Devi, D.; Narasimha Murthy, K.; Mohan, C.D.; Lakshmeesha, T.R.; Singh, B.P.; Kalagatur, N.K.; Niranjana, S.R.; Hashem, A.; Alqarawi, A.A.; et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity—A review. Saudi J. Biol. Sci. 2019, 26, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.D.; Félix, M.R.; Patanita, M.; Materatski, P.; Varanda, C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. Hortic. Res. 2021, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Bodah, E.T. Root Rot Diseases in Plants: A Review of Common Causal Agents and Management Strategies. Agric. Res. Technol. Open Access J. 2017, 5, 555661. [Google Scholar] [CrossRef]
- Yadeta, K.A.; Thomma, B.P.H.J. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef] [PubMed]
- De la Lastra, E.; Basallote-Ureba, M.J.; De los Santos, B.; Miranda, L.; Vela-Delgado, M.D.; Capote, N. A TaqMan real-time polymerase chain reaction assay for accurate detection and quantification of Fusarium solani in strawberry plants and soil. Sci. Hortic. 2018, 237, 128–134. [Google Scholar] [CrossRef]
- Ji, X.; Deng, T.; Xiao, Y.; Jin, C.; Lyu, W.; Wu, Z.; Wang, W.; Wang, X.; He, Q.; Yang, H. Emerging Alternaria and Fusarium mycotoxins in tomatoes and derived tomato products from the China market: Occurrence, methods of determination, and risk evaluation. Food Control 2023, 145, 109464. [Google Scholar] [CrossRef]
- Maschietto, V.; Colombi, C.; Pirona, R.; Pea, G.; Strozzi, F.; Marocco, A.; Rossini, L.; Lanubile, A. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol. 2017, 17, 20. [Google Scholar] [CrossRef]
- Debbi, A.; Boureghda, H.; Monte, E.; Hermosa, R. Distribution and genetic variability of Fusarium oxysporum associated with tomato diseases in Algeria and a biocontrol strategy with indigenous Trichoderma spp. Front. Microbiol. 2018, 9, 282. [Google Scholar] [CrossRef]
- McGovern, R.J. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. 2015, 73, 78–92. [Google Scholar] [CrossRef]
- Rozlianal, F.S.; Sariah, M. Characterization of Malaysian Isolates of Fusarium from Tomato and Pathogenicity Testing. Res. J. Microbiol. 2006, 1, 266–272. [Google Scholar]
- Murad, N.B.A.; Kusai, N.A.; Zainudin, N.A.I.M. Identification and diversity of Fusarium species isolated from tomato fruits. J. Plant Prot. Res. 2016, 56, 231–236. [Google Scholar] [CrossRef]
- Akbar, A.; Hussain, S.; Ali, G.S. Germplasm Evaluation of Tomato for Resistance to the Emerging Wilt Pathogen Fusarium equiseti. J. Agric. Stud. 2018, 5, 174. [Google Scholar] [CrossRef]
- Akbar, A.; Hussain, S.; Ullah, K.; Fahim, M.; Ali, G.S. Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan. PLoS ONE 2018, 13, e0203613. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Albuquerque, A.; Materatski, P.; Patanita, M.; Varanda, C.M.R.; Félix, M.R.; Campos, M.D. Tomato Response to Fusarium spp. Infection under Field Conditions: Study of Potential Genes Involved. Horticulturae 2022, 8, 433. [Google Scholar] [CrossRef]
- Patanita, M.; Campos, M.D.; Félix, M.D.R.; Carvalho, M.; Brito, I. Effect of tillage system and cover crop on maize mycorrhization and presence of Magnaporthiopsis maydis. Biology 2020, 9, 46. [Google Scholar] [CrossRef]
- Le, K.D.; Kim, J.; Yu, N.H.; Kim, B.; Lee, C.W.; Kim, J.C. Biological Control of Tomato Bacterial Wilt, Kimchi Cabbage Soft Rot, and Red Pepper Bacterial Leaf Spot Using Paenibacillus elgii JCK-5075. Front. Plant Sci. 2020, 11, 775. [Google Scholar] [CrossRef]
- Malik, M.S.; Haider, S.; Rehman, A.; Rehman, S.U.; Jamil, M.; Naz, I.; Anees, M. Biological control of fungal pathogens of tomato (Lycopersicon esculentum) by chitinolytic bacterial strains. J. Basic Microbiol. 2022, 62, 48–62. [Google Scholar] [CrossRef]
- de Almeida, A.B.; Concas, J.; Campos, M.D.; Materatski, P.; Varanda, C.; Patanita, M.; Murolo, S.; Romanazzi, G.; Félix, M.R. Endophytic fungi as potential biological control agents against grapevine trunk diseases in alentejo region. Biology 2020, 9, 420. [Google Scholar] [CrossRef]
- Heo, A.Y.; Koo, Y.M.; Choi, H.W. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. Biology 2022, 11, 619. [Google Scholar] [CrossRef]
- Campos, M.D.; Zellama, M.S.; Varanda, C.; Materatski, P.; Peixe, A.; Chaouachi, M.; Félix, M.R. Establishment of a sensitive qPCR methodology for detection of the olive-infecting viruses in portuguese and tunisian orchards. Front. Plant Sci. 2019, 10, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo-Nogueira, F.; Gomes, S.; Lino, A.; Carvalho, T.; Martins-Lopes, P. Real-time PCR assay for Colletotrichum acutatum sensu stricto quantification in olive fruit samples. Food Chem. 2021, 339, 127858. [Google Scholar] [CrossRef] [PubMed]
- Lukianova, A.A.; Evseev, P.V.; Stakheev, A.A.; Kotova, I.B.; Zavriev, S.K.; Ignatov, A.N.; Miroshnikov, K.A. Development of qpcr detection assay for potato pathogen Pectobacterium atrosepticum based on a unique target sequence. Plants 2021, 10, 355. [Google Scholar] [CrossRef] [PubMed]
- Thomas, W.J.; Borland, T.G.; Bergl, D.D.; Claassen, B.J.; Flodquist, T.A.; Montgomery, A.S.; Rivedal, H.M.; Woodhall, J.; Ocamb, C.M.; Gent, D.H. A Quantitative PCR Assay for Detection and Quantification of Fusarium sambucinum. Plant Dis. 2022, 106, 2601–2606. [Google Scholar] [CrossRef]
- Campos, M.D.; Patanita, M.; Campos, C.; Materatski, P.; Varanda, C.M.R.; Brito, I.; Félix, M.R. Detection and quantification of Fusarium spp. (F. oxysporum, F. verticillioides, F. graminearum) and Magnaporthiopsis maydis in maize using real-time PCR targeting the ITS region. Agronomy 2019, 9, 45. [Google Scholar] [CrossRef]
- Varanda, C.M.R.; Materatski, P.; Landum, M.; Campos, M.D.; Félix, M.R. Fungal communities associated with peacock and cercospora leaf spots in olive. Plants 2019, 8, 169. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Varanda, C.M.R.; Oliveira, M.; Materatski, P.; Landum, M.; Clara, M.I.E.; Félix, M.R. Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol. 2016, 120, 1525–1536. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, S.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phyologenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Campos, M.D.; Valadas, V.; Campos, C.; Morello, L.; Braglia, L.; Breviario, D.; Cardoso, H.G. A TaqMan real-time PCR method based on alternative oxidase genes for detection of plant species in animal feed samples. PLoS ONE 2018, 13, e0190668. [Google Scholar] [CrossRef]
- Materatski, P.; Varanda, C.; Carvalho, T.; Dias, A.B.; Campos, M.D.; Gomes, L.; Nobre, T.; Rei, F.; Félix, M.R. Effect of long-term fungicide applications on virulence and diversity of Colletotrichum spp. Associated to olive anthracnose. Plants 2019, 8, 311. [Google Scholar] [CrossRef] [Green Version]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.H.; Karlen, Y.; Bakker, O.; van den hoff, M.J.B.; Moorman, A.F.M. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef]
- Hariharan, G.; Prasannath, K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front. Cell. Infect. Microbiol. 2021, 10, 600234. [Google Scholar] [CrossRef]
- Validov, S.Z.; Kamilova, F.D.; Lugtenberg, B.J.J. Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection. Microb. Biotechnol. 2011, 4, 82–88. [Google Scholar] [CrossRef]
- Johnson, G.; Nolan, T.; Bustin, S.A. Real-time quantitative PCR, pathogen detection and MIQE. Methods Mol. Biol. 2013, 943, 1–16. [Google Scholar] [CrossRef]
- Coats, K.; Debauw, A.; Lakshman, D.K.; Roberts, D.P.; Ismaiel, A.; Chastagner, G. Detection and Molecular Phylogenetic-Morphometric Characterization of Rhizoctonia tuliparum, Causal Agent of Gray Bulb Rot of Tulips and Bulbous Iris. J. Fungi 2022, 8, 163. [Google Scholar] [CrossRef]
- Pavón, M.A.; González, I.; Martín, R.; García Lacarra, T. ITS-based detection and quantification of Alternaria spp. in raw and processed vegetables by real-time quantitative PCR. Food Microbiol. 2012, 32, 165–171. [Google Scholar] [CrossRef]
- Lofgren, L.A.; Uehling, J.K.; Branco, S.; Bruns, T.D.; Martin, F.; Kennedy, P.G. Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol. Ecol. 2019, 28, 721–730. [Google Scholar] [CrossRef]
- Lavrinienko, A.; Jernfors, T.; Koskimäki, J.J.; Pirttilä, A.M.; Watts, P.C. Does Intraspecific Variation in rDNA Copy Number Affect Analysis of Microbial Communities? Trends Microbiol. 2021, 29, 19–27. [Google Scholar] [CrossRef]
- Kulik, T.; Jestoi, M.; Okorski, A. Development of TaqMan assays for the quantitative detection of Fusarium avenaceum/Fusarium tricinctum and Fusarium poae esyn1 genotypes from cereal grain. FEMS Microbiol. Lett. 2011, 314, 49–56. [Google Scholar] [CrossRef]
- Bhagat, N.; Magotra, S.; Gupta, R.; Sharma, S.; Verma, S. Invasion and Colonization of Pathogenic Fusarium oxysporum R1 in Crocus sativus L. during Corm Rot Disease Progression. J. Fungy 2022, 8, 1246. [Google Scholar] [CrossRef]
- Broeders, S.; Huber, I.; Grohmann, L.; Berben, G.; Taverniers, I.; Mazzara, M.; Roosens, N.; Morisset, D. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci. Technol. 2014, 37, 115–126. [Google Scholar] [CrossRef]
- Perea-Domínguez, X.P.; Hernández-Gastelum, L.Z.; Olivas-Olguin, H.R.; Espinosa-Alonso, L.G.; Valdez-Morales, M.; Medina-Godoy, S. Phenolic composition of tomato varieties and an industrial tomato by-product: Free, conjugated and bound phenolics and antioxidant activity. J. Food Sci. Technol. 2018, 55, 3453–3461. [Google Scholar] [CrossRef]
- Schrader, C.; Schielke, A.; Ellerbroek, L.; Johne, R. PCR inhibitors—occurrence, properties and removal. J. Appl. Microbiol. 2012, 113, 1014–1026. [Google Scholar] [CrossRef]
- Azevedo-Nogueira, F.; Rego, C.; Gonçalves, H.M.R.; Fortes, A.M.; Gramaje, D.; Martins-Lopes, P. The road to molecular identification and detection of fungal grapevine trunk diseases. Front. Plant Sci. 2022, 13, 960289. [Google Scholar] [CrossRef]
Species | Isolate Ref. | Cq Value |
---|---|---|
F. incarnatum | M_4F | 22.90 |
F. oxysporum | M_45-2 | 22.86 |
F. oxysporum | M_67 | 20.48 |
F. oxysporum | M_84 | 21.53 |
F. oxysporum | M_90 | 25.05 |
F. oxysporum | M_91 | 20.31 |
F. oxysporum | M_92 | 20.26 |
F. oxysporum | M_100 | 19.29 |
F. oxysporum | A_56 | 25.08 |
F. oxysporum | A_57 | 22.76 |
F. oxysporum | A_122 | 23.57 |
F. oxysporum | A_127a | 26.42 |
F. oxysporum | A_127b | 30.32 |
F. oxysporum | A_137 | 25.65 |
F. oxysporum | C_4 | 18.42 |
F. oxysporum f.sp. radicis-lycopersici | C_3 | 19.20 |
F. solani | M_215c | 21.51 |
F. verticillioides | A_118 | 29.29 |
Fusarium nelsonii | A_82c | 20.17 |
Fusarium nelsonii | A_82e | 20.17 |
Fusarium sp. | M_62 | 20.01 |
Fusarium sp. | M_207 | 20.16 |
Fusarium sp. | M_208 | 22.19 |
Fusarium sp. | M_209 | 20.28 |
Fusarium sp. | P_Q7 | 19.95 |
Fusarium sp. | A_123 | 24.63 |
Fusarium sp. | A_126 | 25.91 |
Fusarium sp. | C_1 | 21.48 |
Fusarium sp. | C_2 | 21.06 |
Alternaria alternata | A_59 | N.D. |
Alternaria alternata | A_72 | N.D. |
Alternaria alternata | C_6 | N.D. |
Alternaria tenuissima | P_75B | N.D. |
Botrytis cinerea | A_43 | N.D. |
Botrytis cinerea | A_64 | N.D. |
Botrytis cinerea | A_115 | N.D. |
Botrytis cinerea | A_119 | N.D. |
Botrytis cinerea | A_132 | N.D. |
Botrytis cinerea | C_9 | N.D. |
Cladosporium cladosporioides | P_70D | N.D. |
Colletotrichum sp. | A_71 | N.D. |
Epicoccum nigrum | P_R46 | N.D. |
Phytium sp. | C_10 | N.D. |
Phytophthora sp. | C_5 | N.D. |
Verticillium dahliae | C_8 | N.D. |
Dilution | gDNA in PCR (ng) | Cq Value (±SD) | TCN |
---|---|---|---|
P.C. | 100.00 | 14.67 (±0.22) | 39,606,399.4 |
2−1 | 50.00 | 15.53 (±0.27) | 22,779,380.0 |
2−2 | 25.00 | 16.72 (±0.27) | 10,595,944.3 |
2−3 | 12.50 | 17.52 (±0.29) | 6,333,969.6 |
2−4 | 6.25 | 18.57 (±0.27) | 3,223,887.6 |
2−5 | 3.13 | 19.61 (±0.17) | 1,651,494.4 |
2−6 | 1.56 | 20.50 (±0.08) | 931,695.0 |
2−7 | 7.81 × 10−1 | 21.73 (±0.26) | 422,375.1 |
2−8 | 3.91 × 10−1 | 23.09 (±0.13) | 176,120.6 |
2−9 | 1.95 × 10−1 | 24.52 (±0.25) | 70,205.1 |
2−10 | 9.77 × 10−2 | 25.82 (±0.19) | 30,425.7 |
2−11 | 4.88 × 10−2 | 26.74 (±0.07) | 16,836.7 |
2−12 | 2.44 × 10−2 | 28.38 (±0.16) | 5863.5 |
2−13 | 1.22 × 10−2 | 30.27 (±0.34) | 1738.7 |
2−14 | 6.10 × 10−3 | 32.52 (±0.59) | 409.0 |
2−15 | 3.05 × 10−3 | 33.42 (±0.29) | 229.3 |
2−16 | 1.53 × 10−3 | N.D. | N.D. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, M.D.; Varanda, C.; Patanita, M.; Amaro Ribeiro, J.; Campos, C.; Materatski, P.; Albuquerque, A.; Félix, M.d.R. A TaqMan® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases. Biology 2023, 12, 268. https://doi.org/10.3390/biology12020268
Campos MD, Varanda C, Patanita M, Amaro Ribeiro J, Campos C, Materatski P, Albuquerque A, Félix MdR. A TaqMan® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases. Biology. 2023; 12(2):268. https://doi.org/10.3390/biology12020268
Chicago/Turabian StyleCampos, Maria Doroteia, Carla Varanda, Mariana Patanita, Joana Amaro Ribeiro, Catarina Campos, Patrick Materatski, André Albuquerque, and Maria do Rosário Félix. 2023. "A TaqMan® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases" Biology 12, no. 2: 268. https://doi.org/10.3390/biology12020268
APA StyleCampos, M. D., Varanda, C., Patanita, M., Amaro Ribeiro, J., Campos, C., Materatski, P., Albuquerque, A., & Félix, M. d. R. (2023). A TaqMan® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases. Biology, 12(2), 268. https://doi.org/10.3390/biology12020268