Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Optical Biosensing Techniques
2.1. Colorimetric Detection
2.2. Optical Coherence Tomography
2.3. Surface-Enhanced Raman Spectroscopy
2.4. Reflectometric Interference Spectroscopy
2.5. Evanescent-Wave-Based Optical Sensors
2.5.1. Fluorescence Optical Sensors
2.5.2. Plasmonic Biosensors
2.5.3. Photonic Crystal Fiber Sensors
2.5.4. Slot Waveguide Sensors
Design | Application | Sensitivity nm/RIU |
---|---|---|
Dual-slot waveguide sensor [97] | Lab-on-chip refractive index sensing n~1.326 | 461.327 |
Glucose biosensor [98] | Glucose concentration measurement c = 0 mg/dL:200 mg/dL | 360 |
On-chip chemical biosensor [99] | Refractive index sensing n = 1.32:1.34 (Glycerin, potassium chloride and potassium bicarbonate) | 476 |
Hybrid plasmonic mode sensor [100] | Refractive index sensing n = 1.333:1.383 | 1000 |
Metal-assisted silicon [101] | Gas refractive index sensing (Acetylene gas) n = 1.000593:1.020593 | 1061 |
Miniature micro-ring resonator sensor [102] | Refractive index sensing n~1.33 +1.2e − 4i | 458 |
Metal-insulator-silicon sensor [103] | DNA hybridization detection n = 1.456 (ssDNA): 1.53 (ssDNA) | 580 |
Sensor based on metal coating of dielectric ridges [104] | Refractive index sensing near 1500 nm | 430 |
Air-filled gap sensor [107] | Refractive index sensing near 1500 nm | 1080 |
Mach–Zehnder-interferometer-based sensor [110] | Aqueous solutions of 2-propanol n = 1.333:1.3776 %C = 0%:100% | 494 |
Vertical slot DNA sensor [96] | DNA hybridization detection n = 1.456 (ssDNA): 1.53 (ssDNA) | 856 |
Horizontal slot DNA sensor [111] | DNA hybridization detection n = 1.456 (ssDNA): 1.53 (ssDNA) | 893.5 |
Subwavelength grating sensor [112] | Toxic gas sensing n = 1.0:1.35 (CO2, CH4 and CO) | 1000 |
Metallic grating slot waveguide [114] | On-chip antibody biosensing n = 1.32:1.34 | 270 |
Engineered slot waveguide [115] | Optical detection of viral infections n = 1.3377:1.3425 | 1463 |
Sidewall-grating dual-slot waveguide [116] | Biomaterial sensing n = 1.328:1.338 | 661 |
Cladding-modulated grating waveguide [117] | Biomaterial sensing n = 1.33:1.38 | 323 |
Grating-loaded cladding slot waveguide [118] | Detection of surface antigen HBsAg n = 1.35:1.39 | 1200 |
2.6. Metamaterial-Based Sensing
3. Future Perspective
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Cancer Institute. Available online: https://www.cancer.gov/about-cancer/understanding/statistics (accessed on 20 April 2022).
- Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature 2009, 458, 7239. [Google Scholar] [CrossRef] [PubMed]
- Sinha, T. Tumors: Benign and Malignant. Cancer Ther. Oncol. Int. J. 2018, 10, 555790. [Google Scholar] [CrossRef]
- Vaidyanathan, R.; Soon, R.H.; Zhang, P.; Jiang, K.; Lim, C.T. Cancer diagnosis: From tumor to liquid biopsy and beyond. Lab Chip 2019, 19, 11–34. [Google Scholar] [CrossRef] [PubMed]
- Horton, K.M.; Abrams, R.A.; Fishman, E.K. Spiral CT of Colon Cancer: Imaging Features and Role in Management. Radio Graph. 2000, 20, 419–430. [Google Scholar] [CrossRef]
- Torkzad, M.R.; Påhlman, L.; Glimelius, B. Magnetic resonance imaging (MRI) in rectal cancer: A comprehensive review. Insights Imaging 2010, 1, 245–267. [Google Scholar] [CrossRef] [PubMed]
- Vlad, R.M.; Brand, S.; Giles, A.; Kolios, M.C.; Czarnota, G.J. Quantitative Ultrasound Characterization of Responses to Radiotherapy in Cancer Mouse Models. Clin. Cancer Res. 2009, 15, 2067–2075. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Hutchinson, A.M. Evanescent wave biosensors. Mol. Biotechnol. 1995, 3, 47–54. [Google Scholar] [CrossRef]
- Otto, A.; Mrozek, I.; Grabhorn, H.; Akemann, W. Surface-enhanced Raman scattering. J. Phys. Condens. Matter. 1992, 4, 1143–1212. [Google Scholar] [CrossRef]
- Ooya, T.; Sakata, Y.; Choi, H.W.; Takeuchi, T. Reflectometric interference spectroscopy-based sensing for evaluating biodegradability of polymeric thin films. Acta Biomater. 2016, 38, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.M.; Johnson, B.E.; Jenkins, D.M. Real-time optical analysis of a colorimetric LAMP assay for SARS-CoV-2 in saliva with a handheld instrument improves accuracy compared with endpoint assessment. J. Biomol. Tech. 2021, 32, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.; Khan, M.I.; Akhtar, K.; Khan, M.A.; Asiri, A.M.; Khan, S.B. Biosynthesis of silver nanoparticles: A colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 103, 367–376. [Google Scholar] [CrossRef]
- Kuo, W.-C.; Lai, C.-M.; Huang, Y.-S.; Chang, C.-Y.; Kuo, Y.-M. Balanced detection for spectral domain optical coherence tomography. Opt. Express 2013, 21, 19280–19291. [Google Scholar] [CrossRef]
- Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J.-P.; Boukherroub, R.; Szunerits, S. Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci. 2011, 15, 208–224. [Google Scholar] [CrossRef]
- Barrios, C.A. Optical Slot-Waveguide Based Biochemical Sensors. Sensors 2009, 9, 4751–4765. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Parmar, J.; Sorathiya, V.; Nguyen, T.K.; Dhasarathan, V. Tunable infrared metamaterial-based biosensor for detection of hemoglobin and urine using phase change material. Sci. Rep. 2021, 11, 7101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, V.X.T.; Wong, T.I.; Zheng, X.T.; Tan, Y.N.; Zhou, X. Colorimetric biosensors for point-of-care virus detections. Mater. Sci. Technol. 2020, 3, 237–349. [Google Scholar]
- Yin, K.; Pandian, V.; Kadimisetty, K.; Zhang, X.; Ruiz, C.; Cooper, K.; Liu, C. Real-time Colorimetric Quantitative Molecular Detection of Infectious Diseases on Smartphone-based Diagnostic Platform. Sci. Rep. 2020, 10, 9009. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Nguyen, V.D.; Nguyen, H.V.; Seo, T.S. Quantification of colorimetric isothermal amplification on the smartphone and its open-source app for point-of-care pathogen detection. Sci. Rep. 2020, 10, 15123. [Google Scholar] [CrossRef]
- Peltzer, D.; Tobler, K.; Fraefel, C.; Maley, M.; Bachofen, C. Rapid and simple colorimetric loop-mediated isothermal amplification (LAMP) assay for the detection of Bovine alpha herpes virus 1. J. Virol. Methods 2021, 289, 114041. [Google Scholar] [CrossRef]
- Sirirat, W.; Thayat, S.; Supatra, A.; Pichapak, S.; Suphitcha, A.; Somchai, S.; Kosum, C. Rapid Colorimetric Assay for Detection of Listeria monocytogenes in Food Samples Using LAMP Formation of DNA Concatemers and Gold Nanoparticle-DNA Probe Complex. Front. Chem. 2018, 6, 90. [Google Scholar]
- González-González, E.; Lara-Mayorga, I.M.; Rodríguez-Sánchez, I.P.; Zhang, Y.S.; Martínez-Chapa, S.O.; Santiago, G.T.; Alvarez, M.M. Colorimetric Loop-mediated Isothermal Amplification (LAMP) for cost-effective and quantitative detection of SARS-CoV-2: The change in color in LAMP-based assays quantitatively correlates with viral copy number. Anal. Methods 2021, 13, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Mohd-Naim, N.F.; Safavieh, M.; Ahmed, M.U. Colorimetric Nucleic Acid Detection on Paper Microchip Using Loop Mediated Isothermal Amplification and Crystal Violet Dye. ACS Sens. 2017, 2, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Zhu, A.; Xu, Q.; Chen, Y.; Orcid, J.X.; Weng, J. Colorimetric Biosensor for Detection of Cancer Biomarker by Au Nanoparticle-Decorated Bi2Se3 Nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 6931–6940. [Google Scholar] [CrossRef]
- Hakimian, F.; Ghourchian, H.; Hashemi, A.S.; Arastoo, M.R.; Rad, M.B. Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci. Rep. 2018, 8, 2943. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.S.; Abugalyon, Y.; Li, C.; Xu, F.; Li, X. A new method to amplify colorimetric signals of paper-based nano biosensors for simple and sensitive pancreatic cancer biomarker detection. Analyst 2020, 142, 5113–5117. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Wang, S.; Zhang, H.; Guo, Q.; Hu, X.; Lin, Z.; Sun, H.; Jiang, M.; Hu, J. Colorimetric detection of melamine in milk by using gold nanoparticles-based LSPR via optical fibers. PLoS ONE 2017, 12, e0177131. [Google Scholar] [CrossRef]
- Huang, J.; Shangguan, J.; Guo, Q.; Ma, W.; Wang, H.; Jia, R.; Ye, Z.; He, X.; Wang, K. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019, 144, 4917–4924. [Google Scholar] [CrossRef] [PubMed]
- Rivero, P.J.; Ibañez, E.; Goicoechea, J.; Urrutia, A.; Matias, I.R.; Arregui, F.J. A self-referenced optical colorimetric sensor based on silver and gold nanoparticles for quantitative determination of hydrogen peroxide. Sens. Actuators B Chem. 2017, 251, 624–631. [Google Scholar] [CrossRef]
- Subhash, H.M.; Wang, R.K. Optical Coherence Tomography: Technical Aspects. In Biomedical Optical Imaging Technologies; Springer: Berlin/Heidelberg, Germany, 2013; pp. 163–212. [Google Scholar]
- Chopra, R.; Wagner, S.K.; Keane, P.A. Optical coherence tomography in the 2020s—Outside the eye clinic. Eye 2021, 35, 236–243. [Google Scholar] [CrossRef]
- Kennedy, K.M.; Es’haghian, S.; Chin, L.; McLaughlin, R.A.; Sampson, D.D.; Kennedy, B.F. Optical palpation: Optical coherence tomography-based tactile imaging using a compliant sensor. Opt. Lett. 2014, 39, 3014–3017. [Google Scholar] [CrossRef]
- Hosseinaee, Z.; Abbasi, N.; Pellegrino, N.; Khalili, L.; Mukhangaliyeva, L.; Reza, P.H. Functional and structural ophthalmic imaging using noncontact multimodal photoacoustic remote sensing microscopy and optical coherence tomography. Sci. Rep. 2021, 11, 11466. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Zheng, M.; Eggleston, M. Remote Monitoring of Microparticle Biosensors Using Optical Coherence Tomography. In Proceedings of the IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020. [Google Scholar]
- Kim, H.; Yu, C.-N.; Kennedy, W.; Eggleston, M.; Shah, S. Automated Monitoring for Optical Coherence Tomography-based Biosensing Using Deep Learning. In Proceedings of the IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020. [Google Scholar]
- Yi, L.; Sun, L.; Zou, M.; Hou, B. Dual-Channel Spectral Domain Optical Coherence Tomography Based on a Single Spectrometer Using Compressive Sensing. Sensors 2019, 9, 4006. [Google Scholar] [CrossRef]
- Shah, S.; Yu, C.-N.; Zheng, M.; Kim, H.; Eggleston, M.S. Microparticle-Based Biochemical Sensing Using Optical Coherence Tomography and Deep Learning. ACS Nano 2021, 5, 9764–9774. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Haindl, R.; Zhang, E.; Beard, P.; Scheuringer, E.; Sturtzel, C.; Li, Q.; Deloria, A.J.; Sattmann, H.; Leitgeb, R.A.; et al. An optical coherence photoacoustic microscopy system using a fiber optic sensor. APL Photonics 2021, 6, 096103. [Google Scholar] [CrossRef]
- Park, J.; Carbajal, E.F.; Chen, X.; Oghalai, J.S.; Applegate, B.E. Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear. Opt. Lett. 2014, 39, 6233–6236. [Google Scholar] [CrossRef]
- Auksorius, E.; Raja, K.B.; Topcu, B.; Ramachandra, R.; Busch, C.; Boccara, C.A. Compact and Mobile Full-Field Optical Coherence Tomography Sensor for Subsurface Fingerprint Imaging. IEEE Access 2020, 8, 15194–15204. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, P.; Das, A.; Pathak, C.S. Surface-Enhanced Raman Scattering: Introduction and Applications. In Recent Advances in Nanophotonics—Fundamentals and Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Kim, S.; Kim, T.G.; Lee, S.H.; Kim, W.; Bang, A.; Moon, S.W.; Song, J.; Shin, J.-H.; Yu, J.S.; Choi, S. Label-Free Surface-Enhanced Raman Spectroscopy Biosensor for On-Site Breast Cancer Detection Using Human Tears. ACS Appl. Mater. Interfaces 2020, 12, 7897–7904. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, M.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020, 5, 294–307. [Google Scholar] [CrossRef]
- Snitka, V.; Batiuskaite, D.; Bruzaite, I.; Lafont, U.; Butenko, Y.; Semprimoschnig, C. Surface-enhanced Raman scattering sensors for biomedical and molecular detection applications in space. CEAS Space J. 2021, 13, 509–520. [Google Scholar] [CrossRef]
- Zou, M.; Zhang, X.; Qi, X.; Liu, F. Surface-Enhanced Raman Scattering Liquid Sensor for Quantitative Detection of Trace Melamine in Dairy Products. In State of the Art in Biosensors—Environmental and Medical Applications; IntechOpen: London, UK, 2013. [Google Scholar]
- Gillibert, R.; Triba, M.N.; de la Chapelle, M.L. Surface enhanced Raman scattering sensor for highly sensitive and selective detection of ochratoxin A. Analyst 2018, 143, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Dai, X.; Stogin, B.B.; Wong, T.S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273. [Google Scholar] [CrossRef]
- Xu, G.; Guo, N.; Zhang, Q.; Wang, T.; Song, P.; Xia, L. An ultrasensitive surface-enhanced Raman scattering sensor for the detection of hydrazine via the Schiff base reaction. J. Hazard. Mater. 2022, 424, 127303. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Waterhouse GI, N.; Qiao, X.; Xu, Z. A surface-imprinted surface-enhanced Raman scattering sensor for histamine detection based on dual semiconductors and Ag nanoparticles. Food Chem. 2022, 369, 130971. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Thomas, M.R.; Bergholt, M.S.; Pence, I.J.; Seong, H.; Charchar, P.; Todorova, N.; Nagelkerke, A.; Belessiotis-Richards, A.; Payne, D.J.; et al. Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. Nat. Commun. 2020, 11, 207. [Google Scholar] [CrossRef] [PubMed]
- Proll, G.; Markovic, G.; Fechner, P.; Proell, F.; Gauglitz, G. Reflectometric Interference Spectroscopy. In Biosensors and Biodetection. Methods in Molecular Biology; Rasooly, A., Prickril, B., Eds.; Humana Press: New York, NY, USA, 2017; p. 1571. [Google Scholar]
- Diltemiz, S.E.; Yağmuroğlu, O. Development of reflectometric interference spectroscopy based sensor for paraokson determination. Eskişehir Tech. Univ. J. Sci. Technol. C- Life Sci. Biotechnol. 2018, 8, 18–22. [Google Scholar]
- de Boer, L.L.; Bydlon, T.M.; van Duijnhoven, F.; Vranken Peeters, M.-J.T.F.D.; Loo, C.E.; Winter-Warnars, G.A.O.; Sanders, J.; Sterenborg, H.J.C.M.; Hendriks, B.H.W.; Ruers, T.J.M. Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery. J. Transl. Med. 2018, 16, 367. [Google Scholar] [CrossRef]
- Diltemiz, S.E.; Uslu, O. A reflectometric interferometric nanosensor for sarcosine. Biotechnol. Prog. 2015, 31, 55–61. [Google Scholar] [CrossRef]
- Kumeria, T.; Kurkuri, M.D.; Diener, K.R.; Parkinson, L.; Losic, D. Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron. 2012, 35, 167–173. [Google Scholar] [CrossRef]
- Choi, H.W.; Sakata, Y.; Kurihara, Y.; Ooya, T.; Takeuchi, T. Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system. Anal. Chim. Acta 2012, 728, 64–68. [Google Scholar] [CrossRef]
- Kumeria, T.; Parkinson, L.; Losic, D. A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds. Nanoscale Res. Lett. 2011, 6, 634. [Google Scholar] [CrossRef] [PubMed]
- Nemati, M.; Santos, A.; Losic, D. Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform. Sensors 2018, 18, 470. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, G.; Zhang, A.; Zhou, G.; Huang, X. Ultra-sensitive optical fiber sensor based on intermodal interference and temperature calibration for trace detection of copper (II) ions. Opt. Express 2021, 29, 22992–23005. [Google Scholar] [CrossRef] [PubMed]
- Sebők, D.; Janovák, L.; Kovács, D.; Sápi, A.; Dobó, D.G.; Kukovecz, Á.; Kónya, Z.; Dékány, I. Room temperature ethanol sensor with sub-ppm detection limit: Improving the optical response by using mesoporous silica foam. Sens. Actuators B Chem. 2017, 243, 1205–1213. [Google Scholar] [CrossRef]
- Pirzada, M.; Altintas, Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. Micromachines 2020, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liu, G.; Wu, Y.; Hao, P.; Zhou, W.; Zhang, Z. Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta 2014, 120, 419–424. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Wilkinson, J.S.; Hua, P.; Song, B.; Shi, H. Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: Optimization and Analysis. Sci. Rep. 2017, 7, 3655. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.E.; Nam, J.M. Bio-barcode gel assay for microRNA. Nat. Commun. 2014, 5, 3367. [Google Scholar] [CrossRef]
- Blair, S.; Chen, Y. Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities. Appl. Opt. 2001, 40, 570–582. [Google Scholar] [CrossRef]
- Zhou, X.-H.; Liu, L.-H.; Xu, W.-Q.; Song, B.-D.; Sheng, J.-W.; He, M.; Shi, H.-C. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol A in water samples. Sci. Rep. 2014, 4, 4572. [Google Scholar]
- Chahal, R.; Starecki, F.; Boussard-Plédel, C.; Doualan, J.-L.; Michel, K.; Brilland, L.; Braud, A.; Camy, P.; Bureau, B.; Nazabal, V. Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers. Sens. Actuators B Chem. 2016, 229, 209–216. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, D.; Shao, J.; Sun, X.; Wang, J. High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci. Rep. 2016, 6, 36987. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2004. [Google Scholar]
- Kabir, E.; Uddin, S.M.A.; Chowdhury, S.S. Optimization of Surface Plasmon Resonance Biosensor for Analysis of Lipid Molecules, In Proceedings of the 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT), Dhaka, Bangladesh, 28–29 November 2020.
- Hossain, M.B.; Tasnim, T.; Abdulrazak, L.F.; Rana, M.M.; Islam, M.R. A Numerical Approach to Design the Kretschmann Configuration Based Refractive Index Graphene-MoS2 Hybrid Layers With TiO2-SiO2 Nano for Formalin Detection. Photonic Sens. 2020, 10, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Menon, P.S.; Gan, S.M.; Mohamad, N.R.; Jamil, N.A.; Tarumaraja, K.A.; Razak, N.R.; Bakar, A.A.A.; Mukhtar, W.M.; Murat, N.F.; Mohamed, R.; et al. Kretschmann based Surface Plasmon Resonance for Sensing in Visible Region. In Proceedings of the 2019 IEEE 9th International Nanoelectronics Conferences (INEC), Kuching, Malaysia, 3–5 July 2019. [Google Scholar]
- Hassani, A.; Skorobogatiy, M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef]
- Qin, W.; Li, S.; Yao, Y.; Xin, X.; Xue, J. Analyte-filled core self-calibration microstructured optical fiber based plasmonic sensor for detecting high refractive index aqueous analyte. Opt. Laser Eng. 2014, 58, 1–8. [Google Scholar] [CrossRef]
- Otupiri, R.; Akowuah, E.K.; Haxha, S.; Ademgil, H.; AbdelMalek, F.; Aggoun, A. A novel birefringent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J. 2014, 6, 1–11. [Google Scholar] [CrossRef]
- Akowuah, E.K.; Gorman, T.; Ademgil, H.; Haxha, S. A highly sensitive photonic crystal fibre (PCF) surface plasmon resonance (SPR) sensor based on a bimetallic structure of gold and silver. In Proceedings of the IEEE 4th International Conference on Adaptive Science & Technology (ICAST), Kumasi, Ghana, 25–27 October 2012. [Google Scholar]
- Akowuah, E.K.; Gorman, T.; Ademgil, H.; Haxha, S.; Robinson, G.K.; Oliver, J.V. Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications. IEEE J. Quantum Electron. 2012, 48, 1403–1410. [Google Scholar] [CrossRef]
- Hameed, M.F.O.; Alrayk, Y.K.A.; Obayyam, S.S.A. Self-Calibration Highly Sensitive Photonic Crystal Fiber Biosensor. IEEE Photonics J. 2016, 8, 1–12. [Google Scholar] [CrossRef]
- Chakma, S.; AbdulKhalek, M.; Paul, B.K.; Ahmed, K.; Hasan, M.R.; Bahar, A.N. Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis. Sens. Bio-Sens. Res. 2018, 18, 7–12. [Google Scholar] [CrossRef]
- Hossen, M.N.; Ferdous, M.; AbdulKhalek, M.; Chakma, S.; Paul, B.K.; Ahmed, K. Design and analysis of biosensor based on surface plasmon resonance. Sens. Bio-Sens. Res. 2018, 21, 1–6. [Google Scholar] [CrossRef]
- Asaduzzaman, S.; Ahmed, K. Investigation of ultra-low loss surface plasmon resonance-based PCF for biosensing application. Results Phys. 2018, 11, 358–361. [Google Scholar] [CrossRef]
- Wu, T.; Shao, Y.; Wang, Y.; Cao, S.; Cao, W.; Zhang, F.; Liao, C.; He, J.; Huang, Y.; Hou, M.; et al. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt. Express 2017, 25, 20313–20322. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Khan, M.M.I.; Mehjabin, F.; Chowdhury, J.A.; Islam, M. Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor. Results Phys. 2020, 19, 103501. [Google Scholar]
- Liu, Q.; Sun, J.; Sun, Y.; Ren, Z.; Liu, C.; Lv, J.; Wang, F.; Wang, L.; Liu, W.; Sun, T.; et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt. Mater. 2020, 102, 109800. [Google Scholar] [CrossRef]
- Yasli, A. Cancer Detection with Surface Plasmon Resonance-Based Photonic Crystal Fiber Biosensor. Plasmonics 2021, 16, 1605–1612. [Google Scholar] [CrossRef]
- Shekar, N.C.; Rakshitha, B.S.; Mamatha, N.; Chetan, H.; Jyoti, M.R.; Suganya, S. Detection of melanoma cancer cell by designing a SPR based biosensor. In Proceedings of the International Conference on Physics and Photonics Processes in Nano Sciences, Eluru, India, 20–22 June 2019; pp. 20–22. [Google Scholar]
- Saha, B.; Goswami, N.; Saha, A. Highly sensitive surface-plasmon-resonance- based fiber optic breast cancer detection by shining a Bessel–Gauss beam: A wave-theory-based approach. Appl. Opt. 2021, 60, 7027–7035. [Google Scholar] [CrossRef] [PubMed]
- Mollah, M.A.; Yousufali, M.; Ankan, I.M.; Rahman, M.M.; Sarker, H.; Chakrabarti, K. Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens. Res. 2020, 29, 100344. [Google Scholar] [CrossRef]
- Walter, J.-G.; Eilers, A.; Alwis, L.S.M.; Roth, B.W.; Bremer, K. SPR Biosensor Based on Polymer Multi-Mode Optical Waveguide and Nanoparticle Signal Enhancement. Sensors 2020, 20, 2889. [Google Scholar] [CrossRef]
- Azab, M.Y.; Hameed, M.F.O.; Nasr, A.M.; Obayya, S.S.A. Multifunctional Plasmonic Photonic Crystal Fiber Biosensors. In Computational Photonic Sensors; Hameed, M.F.O., Obayya, S.S.A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Azzam, S.I.; Hameed, M.F.O.; Shehata, R.E.A.; Heikal, A.M.; Obayya, S.S.A. Multichannel photonic crystal fiber surface plasmon resonance based sensor. Opt. Quant. Electron. 2016, 48, 142. [Google Scholar] [CrossRef]
- Mishra, G.P.; Kumar, D.; Chaudhary, V.S.; Murmu, G. Cancer cell detection by a heart-shaped dual-core photonic crystal fiber sensor. Appl. Opt. 2020, 59, 10321–10329. [Google Scholar] [CrossRef]
- Ayyanar, N.; Raja, G.T.; Sharma, M.; Kumar, D.S. Photonic Crystal Fiber-Based Refractive Index Sensor for Early Detection of Cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Dar, T.; Homola, J.; Rahman, B.M.A.; Rajarajan, M. Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 2012, 51, 8195–8202. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.; Ali, J.; Singh, G. Optimization of a dual-slot waveguide for a refractive index biosensor. Opt. Appl. 2018, 48, 161–167. [Google Scholar]
- Singh, R.R.; Kumari, S.; Gautam, A.; Priye, V. Glucose Sensing Using Slot Waveguide-Based SOI Ring Resonator. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Mere, V.; Muthuganesan, H.; Kar, Y.; Kruijsdijk, C.V.; Selvaraja, S.K. On-Chip Chemical Sensing Using Slot-Waveguide-Based Ring Resonator. IEEE Sens. J. 2020, 20, 5970–5975. [Google Scholar] [CrossRef]
- Yun, J.G.; Kim, J.; Lee, K.; Lee, Y.; Lee, B. Numerical study on refractive index sensor based on hybrid-plasmonic mode. In Proceedings of the SPIE 10323, 25th International Conference on Optical Fiber Sensors, Jeju, Republic of Korea, 24–28 April 2017. [Google Scholar]
- Ishizaka, Y.; Makino, S.; Fujisawa, T.; Saitoh, K. A Metal-Assisted Silicon Slot Waveguide for Highly Sensitive Gas Detection. IEEE Photonics J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, X.; Li, X.; Chen, J. Miniature Microring Resonator Sensor Based on a Hybrid Plasmonic Waveguide. Sensors 2011, 11, 6856–6867. [Google Scholar] [CrossRef]
- Kwon, M.S. Theoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguide. Plasmonics 2010, 5, 347–354. [Google Scholar] [CrossRef]
- Zenin, V.A.; Choudhury, S.; Saha, S.; Shalaev, V.M.; Boltasseva, A.; Bozhevolnyi, S.I. Hybrid plasmonic waveguides formed by metal coating of dielectric ridges. Opt. Express 2017, 25, 12295–12302. [Google Scholar] [CrossRef]
- Bahrami, F.; Alam, M.Z.; Aitchison, J.S.; Mojahedi, M. Dual polarization measurements in the hybrid plasmonic biosensors. Plasmonics 2013, 8, 465–473. [Google Scholar] [CrossRef]
- Hameed, M.F.O.; Saadeldin, A.S.; Elkaramany, E.M.A.; Obayya, S.S.A. Label-Free Highly Sensitive Hybrid Plasmonic Biosensor for the Detection of DNA Hybridization. J. Light. Technol. 2017, 35, 4851–4858. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, B.; Wu, G.; Chen, D. Hybrid plasmonic microcavity with an air-filled gap for sensing applications. Opt. Comm. 2016, 380, 6–9. [Google Scholar] [CrossRef]
- Ghosh, S.; Rahman, B.M.A. An Innovative Straight Resonator Incorporating a Vertical Slot as an Efficient Bio-Chemical Sensor. IEEE J. Sel. Topics Quantum Electron. 2017, 23, 5200108. [Google Scholar] [CrossRef]
- Xiang, L.; Huang, L. High-sensitivity complex refractive index sensor by designing a slot-waveguide side-coupled Fano resonant cavity. Opt. Commun. 2020, 475, 126298. [Google Scholar] [CrossRef]
- Sun, X.; Dai, D.; Thyl’en, L.; Wosinski, L. High-sensitivity liquid refractive-index sensor based on a mach-zehnder interferometer with a double-slot hybrid plasmonic waveguide. Opt. Express 2015, 23, 25688–25699. [Google Scholar] [CrossRef]
- Viphavakit, C.; Komodromos, M.; Themistos, C.; Mohammed, W.S.; Kalli, K.; Rahman, B.M.A. Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization. Appl. Opt. 2015, 54, 4881–4888. [Google Scholar] [CrossRef] [PubMed]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Subwavelength Grating Double Slot Waveguide Racetrack Ring Resonator for Refractive Index Sensing Application. Sensors 2020, 20, 3416. [Google Scholar] [CrossRef]
- ELDamarawy, E.; Heikal, A.M.; Obayya, S.S.A.; Hameed, M.F.O. Modified V-Groove Slot Waveguide for DNA Hybridization Detection. ACES 2020, 35, 803–812. [Google Scholar]
- Hadi Badri, S.; SaeidNahaei, S.; Su Kim, J. Hybrid plasmonic slot waveguide with a metallic grating for on-chip biosensing applications. Appl. Opt. 2021, 60, 7828–7833. [Google Scholar] [CrossRef]
- Sulabh; Singh, L.; Jain, S.; Kumar, M. Nanophotonic Device Based on Fano Resonance in Engineered Slot Waveguide for Optical Detection of Viral Infections. IEEE Sens. J. 2021, 21, 2805–2812. [Google Scholar] [CrossRef]
- Sahu, S.; Ali, J.; Singh, G. Refractive index biosensor using sidewall gratings in dual-slot waveguide. Opt. Commun. 2017, 402, 408–412. [Google Scholar] [CrossRef]
- Sahu, S.; Ali, J.; Yupapin, P.P.; Singh, G. Optical biosensor based on a cladding modulated grating waveguide. Optik 2018, 166, 103–109. [Google Scholar] [CrossRef]
- Sulabh; Singh, L.; Jain, S.; Kumar, M. Optical Slot Waveguide With Grating-Loaded Cladding of Silicon and Titanium Dioxide for Label-Free Bio-Sensing. IEEE Sens. J. 2019, 19, 6126–6133. [Google Scholar] [CrossRef]
- Passaro, V.M.N.; La Notte, M. Optimizing SOI Slot Waveguide Fabrication Tolerances and Strip-Slot Coupling for Very Efficient Optical Sensing. Sensors 2012, 12, 2436–2455. [Google Scholar] [CrossRef] [PubMed]
- Azab, M.Y.; Hameed, M.F.O.; Nasr, A.M.; Obayya, S.S.A. Highly Sensitive Metamaterial Biosensor for Cancer Early Detection. IEEE Sens. J. 2021, 21, 7748–7755. [Google Scholar] [CrossRef]
- Chen, L.; Lei, Z.; Yang, R.; Shi, X.; Zhang, J. Determining the Effective Electromagnetic Parameters of Bianisotropic Metamaterials With Periodic Structures. Prog. Electromagn. Res. 2013, 29, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W. Electromagnetic Metamaterial Absorbers: From Narrowband to Broadband. In Metamaterials and Metasurfaces; Canet-Ferrer, J., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Tao, H.; Chieffo, L.R.; Brenckle, M.A.; Siebert, S.M.; Liu, M.; Strikwerda, A.C.; Fan, K.; Kaplan, D.L.; Zhang, X.; Averitt, R.D.; et al. Metamaterials on paper as a sensing platform. Adv. Mater. 2011, 23, 3197–3201. [Google Scholar] [CrossRef]
- Cong, L.; Singh, R. Sensing with THz metamaterial absorbers. arXiv 2014, arXiv:1408.3711. [Google Scholar]
- Lan, F.; Luo, F.; Mazumder, P.; Yang, Z.; Meng, L.; Bao, Z.; Zhou, J.; Zhang, Y.; Liang, S.; Shi, Z.; et al. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomed. Opt. Express 2019, 10, 3789–3799. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Chen, H. A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci. Rep. 2017, 7, 16378. [Google Scholar] [CrossRef]
- Yi, Z.; Liang, C.; Chen, X.; Zhou, Z.; Tang, Y.; Ye, X.; Yi, Y.; Wang, J.; Wu, P. Dual-Band Plasmonic Perfect Absorber Based on Graphene Metamaterials for Refractive Index Sensing Application. Micromachines 2019, 10, 443. [Google Scholar] [CrossRef]
- Niknam, S.; Yazdi, M.; Amlashi, S.B. Enhanced Ultra-Sensitive Metamaterial Resonance Sensor based on Double Corrugated Metal stripe for Terahertz Sensing. Sci. Rep. 2019, 9, 7516. [Google Scholar] [CrossRef]
- Ma, A.; Zhong, R.; Wu, Z.; Wang, Y.; Yang, L.; Liang, Z.; Fang, Z.; Liu, S. Ultrasensitive THz Sensor Based on Centrosymmetric F-Shaped Metamaterial Resonators. Front. Phys. 2020, 8, 584639. [Google Scholar] [CrossRef]
- Saadeldin, A.S.; Hameed, M.F.O.; Elkaramany, E.M.A.; Obayya, S.S.A. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sens. J. 2019, 19, 7993–7999. [Google Scholar] [CrossRef]
- Chen, X.; Fan, W. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon. Sci. Rep. 2017, 7, 2092. [Google Scholar] [CrossRef]
- Hou, X.; Chen, X.; Li, T.; Li, Y.; Tian, Z.; Wang, M. Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection. Opt. Mater. Express 2021, 11, 2268–2277. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, F.; Lang, T.; Liu, J.; Hong, Z.; Qin, J. All-metal terahertz metamaterial biosensor for protein detection. Nanoscale Res. Lett. 2021, 16, 109. [Google Scholar] [CrossRef]
- Lin, S.; Xu, X.; Hu, F.; Chen, Z.; Wang, Y.; Zhang, L.; Peng, Z.; Li, D.; Zeng, L.; Chen, Y.; et al. Using Antibody Modified Terahertz Metamaterial Biosensor to Detect Concentration of Carcinoembryonic Antigen. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Banerjee, S.; Nath, U.; Dutta, P.; Jha, A.V.; Appasani, B.; Bizon, N. A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing. Inventions 2021, 6, 78. [Google Scholar] [CrossRef]
- Nickpay, M.R.; Danaie, M.; Shahzadi, A. Highly Sensitive THz Refractive Index Sensor Based on Folded Split-Ring Metamaterial Graphene Resonators. Plasmonics 2021, 17, 237–248. [Google Scholar] [CrossRef]
- Ou, H.; Lu, F.; Xu, Z.; Lin, Y.-S. Terahertz Metamaterial with Multiple Resonances for Biosensing Application. Nanomaterials 2020, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Wang, T.; Yue, X.; Wang, H.; Zhang, Y.-H.; Xu, P.; Wang, L.; Wang, Y.; Zhang, J. Highly sensitive plasmonic nanorod hyperbolic metamaterial biosensor. Photon. Res. 2022, 10, 84–95. [Google Scholar] [CrossRef]
- Li, C.; Gao, J.; Shafi, M.; Liu, R.; Zha, Z.; Feng, D.; Liu, M.; Du, X.; Yue, W.; Jiang, S. Optical fiber SPR biosensor complying with a 3D composite hyperbolic metamaterial and a graphene film. Photon. Res. 2021, 9, 379–388. [Google Scholar] [CrossRef]
- Nejad, H.E.; Mir, A.; Farmani, A. Supersensitive and Tunable Nano-Biosensor for Cancer Detection. IEEE Sens. J. 2019, 19, 4874–4881. [Google Scholar] [CrossRef]
- Li, D.; Hu, F.; Zhang, H.; Chen, Z.; Huang, G.; Tang, F.; Lin, S.; Zou, Y.; Zhou, Y. Identification of Early-Stage Cervical Cancer Tissue Using Metamaterial Terahertz Biosensor With Two Resonant Absorption Frequencies. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Gao, J.; Zu, Q.; Xu, S.; Yang, W.; Feng, J.; Liu, R.; Zha, Z.; Peng, Q.; Yue, W.; Huo, Y.; et al. Enhanced sensitivity of a surface plasmon resonance biosensor using hyperbolic metamaterial and monolayer graphene. Opt. Express 2021, 29, 43766–43777. [Google Scholar] [CrossRef]
- Li, F.; He, K.; Tang, T.; Mao, Y.; Wang, R.; Li, C.; Shen, J. The terahertz metamaterials for sensitive biosensors in the detection of ethanol solutions. Opt. Commun. 2020, 475, 126287. [Google Scholar] [CrossRef]
- Fang, W.; Lv, X.; Ma, Z.; Liu, J.; Pei, W.; Geng, Z. A Flexible Terahertz Metamaterial Biosensor for Cancer Cell Growth and Migration Detection. Micromachines 2022, 13, 631. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef]
- Danilov, A.; Tselikov, G.; Wu, F.; Kravets, V.G.; Ozerov, I.; Bedu, F.; Grigorenko, A.N.; Kabashin, A.V. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens. Bioelectron. 2018, 104, 102–112. [Google Scholar] [CrossRef] [PubMed]
- The-Lowest-Price-OTDR-Optical-Time. Available online: https://www.alibaba.com/product-detail/The-Lowest-Price-OTDR-Optical-Time_1600238078979.html?spm=a2700.7724857.normal_offer.d_title.520652e3RNmh6V (accessed on 23 September 2022).
- Relative Intensity Correction Standard for Raman Spectroscopy | Sigma-Aldrich. (n.d.). Relative Intensity Correction Standard for Raman Spectroscopy | Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/EG/en/search/relative-intensity-correction-standard-for-raman-spectroscopy?focus=products&page=1&perpage=30&sort=relevance&term=relative%20intensity%20correction%20standard%20for%20raman%20spectroscopy&type=product (accessed on 23 September 2022).
- Le Sage, G.P. 3D Printed Waveguide Slot Array Antennas. IEEE Access 2016, 4, 1258–1265. [Google Scholar] [CrossRef]
- Oguntoye, I.O.; Simone, B.K.; Padmanabha, S.; Hartfield, G.Z.; Amrollahi, P.; Hu, T.Y.; Ollanik, A.J.; Escarra, M.D. Silicon Nanodisk Huygens Metasurfaces for Portable and Low-Cost Refractive Index and Biomarker Sensing. ACS Appl. Nano Mater. 2022, 5, 3983–3991. [Google Scholar] [CrossRef]
- GE Biacore C SPR Surface Plasmon Resonance Analyzer | eBay. (n.d.). GE Biacore C SPR Surface Plasmon Resonance Analyzer | eBay. Available online: https://www.ebay.com/itm/333345226309 (accessed on 23 September 2022).
- Ramesh, P.; Karuppasamy, R.; Veerappapillai, S. A review on recent advancements in diagnosis and classification of cancers using artificial intelligence. Biomedicine 2020, 10, 5–17. [Google Scholar] [CrossRef]
- Moon, G.; Choi, J.-R.; Lee, C.; Oh, Y.; Kim, K.H.; Kim, D. Machine learning-based design of meta-plasmonic biosensors with negative index metamaterials. Biosens. Bioelectron. 2020, 164, 112335. [Google Scholar] [CrossRef]
- Li, X.; Shu, J.; Gu, W.; Li, G. Deep neural network for plasmonic sensor modeling. Opt. Mater. Express 2019, 9, 3857–3862. [Google Scholar] [CrossRef]
- Kaprin, A.D.; Kostin, A.A.; Andryukhin, M.I.; Ivanenko, K.V.; Popov, S.V.; Shegai, P.V.; Kruglov, D.P.; Mangutov, F.S.; Leushin, V.Y.; Agasieva, S.V. Microwave Radiometry in the Diagnosis of Various Urological Diseases. Biomed Eng. 2019, 53, 87–91. [Google Scholar] [CrossRef]
- Zolotovskaia, M.A.; Sorokin, M.I.; Petrov, I.V.; Poddubskaya, E.V.; Moiseev, A.A.; Sekacheva, M.I.; Borisov, N.M.; Tkachev, V.S.; Garazha, A.V.; Kaprin, A.D.; et al. Disparity between Inter-Patient Molecular Heterogeneity and Repertoires of Target Drugs Used for Different Types of Cancer in Clinical Oncology. Int. J. Mol. Sci. 2020, 21, 1580. [Google Scholar] [CrossRef] [Green Version]
- Shegay, P.V.; Zabolotneva, A.A.; Shatova, O.P.; Shestopalov, A.V.; Kaprin, A.D. Evolutionary View on Lactate-Dependent Mechanisms of Maintaining Cancer Cell Stemness and Reprimitivization. Cancers 2022, 14, 4552. [Google Scholar] [CrossRef] [PubMed]
Design | Application | Sensitivity nm/RIU |
---|---|---|
Enhanced microfluidics sensor [75] | Refractive index sensing n = 1.33:1.34 | 3000 |
Analyte-filled core sensor [76] | Refractive index sensing n = 1.46:1.458, n = 1.50:1.52 | 4354.3 |
Birefringent PCF SP sensor [77] | Refractive index sensing n = 1.33:1.34 | 2000 |
Bimetallic structure sensor [78] | Refractive index sensing n = 1.33:1.34 | 4000 |
Multi-channel PCF SP sensor [79] | Refractive index sensing n = 1.33:1.34 | 2000 |
Self-calibration SP PCF sensor [80] | Refractive index sensing n = 1.33:1.34 | 10,000 |
Gold-coated circular lattice PCF sensor [81] | Refractive index sensing n = 1.34:1.37 | 9000 |
Dual-layer SP sensor [82] | Refractive index sensing n = 1.36:1.39 | 6000 |
Ultra-low-loss SP sensor [83] | Refractive index sensing n = 1.34:1.37 | 8500 |
D-shaped PCF SP sensor [84] | Refractive index sensing n = 1.33:1.34 | 21,700 |
Circular-air-cavities-based sensor [85] | Refractive index sensing n = 1.32:1.43 | 41,500 |
Indium-tin-oxide-based sensor [86] | Refractive index sensing n = 1.26:1.38 | 35,000 |
Hela cancerous cells sensor [87] | Cancer detection n = 1.36:1.395 (Basal), (HELA), (Jurkat), (PC12), (MDA-MB- 231 and MCF-7) | 7142.86 |
Melanoma cancer tissue sensor [88] | Cancer detection (Melanoma tissue) | 300 |
Blood cancer sensor [90] | Cancer detection (Jurkat) | 8571.43 |
Planner SP multi-mode sensor [91] | Biomolecule detection vol% = 0%:30% | 608.6 |
Heart-shaped cancer sensor [94] | Cancer detection (Hela), (Jurkat), (PC12), (MCF-7) | 10,000 |
Cervical, breast and basal parts sensor [95] | Cancer detection n = 1.36:1.399 (Basal), (HELA), (MDA-MB- 231) | 10,625 |
Research | Application | Refractive Index Precision | Sensitivity |
---|---|---|---|
Double ring sensor [120] | Cancer detection n = 1.36: 1.401 | 0.001 | 1649.8 GHz/RIU |
Cross- and complementary-cross-shaped sensor [124] | Refractive index sensing n = 1:1.8 | 0.1 | 163 GHz/RIU |
Graphene-based dual-band sensor [127] | Refractive index sensing n = 1.0:1.5 | 0.1 | 416 GHz/RIU |
Double corrugation form sensor [128] | Refractive index sensing n = 1.0:1.2 | 0.2 | 1750 GHz/RIU |
Double-F-shaped sensor [129] | Refractive index sensing n = 1.0:1.4 | 0.1 | 1800 GHz/RIU |
Perfect absorber sensor [130] | Refractive index sensing n = 1:1.39 | 0.05 | 300 GHz/RIU |
Fabry–Perot resonance sensor [131] | Refractive index sensing n = 1.0:1.8 | 0.1 | 1966 GHz/RIU |
Bovine serum albumin sensor [132] | (BSA) detection n = 1.0:2.0 | 0.2 | 135 GHz/RIU |
All-metal THz [133] | Protein detection n = 1.0:1.4 | 0.1 | 294.95 GHz/RIU |
Antibody-modified sensor [134] | Carcinoembryonic Antigen n = 1.0:2.0 | 0.2 | 76.5 GHz/RIU |
Biomedical samples sensor [135] | Cancer detection n = 1.34:1.39 | 0.05 | 1500 GHz/RIU |
Folded SRR metamaterial sensor [136] | Refractive index sensing n = 1.0:1.6 | 0.01 | 851 GHz/RIU |
Sickle-shaped metamaterial [137] | Refractive index sensing n = 1.0:1.7 | 0.1 | 502 GHz/RIU |
Nanorod hyperbolic metamaterial [138] | Biomolecule detection n = 1.3323:1.3329 | - | 41,600 nm/RIU |
3D composite hyperbolic metamaterial [139] | Refractive index sensing n = 1.34:1.352 | ~0.005 | 4461 nm/RIU |
Compact footprint biosensor [140] | Cancer detection n = 1.35:1.39 | 0.005 | 658 nm/RIU |
Terahertz biosensor with two resonant absorptions [141] | Cancer detection n = 1.0:2.0 | 0.2 | 74 GHz/RIU |
Monolayer graphene biosensor [142] | Aqueous ethanol detection n = 1.34:1.352 | 0.0045 | 5166.7 nm/RIU |
Asymmetric double-ring resonator [143] | Biological solution detection c = 0 Kg/L:0.79 Kg/L | - | 112.05 GHz/RIU |
Double-U-shaped biosensor [144] | Breast cancer cell detection c = 0 nm/mL:20 ng/mL | - | 8 GHz/cell |
Hyperbolic metamaterial biosensor [145] | Diagnosis of diseases and routine point of care n = 1.3330:1.3336 | 0.0006 | 30,000 nm/RIU |
Glass-double Au nanoparticles biosensor [146] | Ethanol–water mixture sensing n = 1.33:1.37 | 0.001 | 320 nm/RIU |
Research | Technique | Measuring Method | Value |
---|---|---|---|
Au-Nanoparticle-Decorated sensor [26] | Colorimetric detection | Limit of detection | 160 pg/mL |
miRNA-155 sensor [27] | Colorimetric detection | Limit of detection | 100 aM |
Paper-based nanosensors [28] | Colorimetric detection | Limit of detection | |
Hela cancerous cell sensor [87] | SP PCF | Wavelength sensitivity | 7142.86 nm/RIU |
Melanoma cancer tissue sensor [88] | SP nanocavity | Wavelength sensitivity | 300 nm/RIU |
Breast cancer sensor [89] | SP optical fiber | Amplitude sensitivity | 11,928.25 dB/RIU |
Blood cancer sensor [90] | SP PCF | Wavelength sensitivity | 8571.43 nm/RIU |
Heart-shaped cancer sensor [94] | SP PCF | Wavelength sensitivity | 10,000 nm/RIU |
Cervical, breast and basal parts sensor [95] | SP PCF | Wavelength sensitivity | 10,625 nm/RIU |
Double-ring sensor [120] | Metamaterial | Frequency sensitivity | 1649.8 GHz/RIU |
Liver cancer biomarker sensor [126] | Metamaterial | Frequency sensitivity | 150 GHz/RIU |
Biomedical sample sensor [135] | Metamaterial | Frequency sensitivity | 1500 GHz/RIU |
Compact footprint biosensor [140] | Metamaterial | Wavelength sensitivity | 658 nm/RIU |
Terahertz biosensor with two resonant absorptions [141] | Metamaterial | Frequency sensitivity | 74 GHz/RIU |
Double-U-shaped biosensor [144] | Metamaterial | Frequency sensitivity | 8 GHz/cell |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azab, M.Y.; Hameed, M.F.O.; Obayya, S.S.A. Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives. Biology 2023, 12, 232. https://doi.org/10.3390/biology12020232
Azab MY, Hameed MFO, Obayya SSA. Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives. Biology. 2023; 12(2):232. https://doi.org/10.3390/biology12020232
Chicago/Turabian StyleAzab, Mohammad Y., Mohamed Farhat O. Hameed, and Salah S. A. Obayya. 2023. "Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives" Biology 12, no. 2: 232. https://doi.org/10.3390/biology12020232
APA StyleAzab, M. Y., Hameed, M. F. O., & Obayya, S. S. A. (2023). Overview of Optical Biosensors for Early Cancer Detection: Fundamentals, Applications and Future Perspectives. Biology, 12(2), 232. https://doi.org/10.3390/biology12020232