Decoding the Behavior of a Queenless Colony Using Sound Signals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Honeybee Colonies
2.2. Beekeeping Practices to Trigger the State
2.3. Recording System/Sound Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qandour, A.; Ahmad, I.; Habibi, D.; Leppard, M. Remote beehive monitoring using acoustic signals. Acoust. Aust. 2014, 42, 204–209. [Google Scholar]
- Van Engelsdorp, D.; Hayes, J.J.; Underwood, R.M.; Pettis, J.S. A survey of honey bee colony losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 2010, 49, 7–14. [Google Scholar] [CrossRef]
- Cecchi, S.; Terenzi, A.; Orcioni, S.; Piazza, F. Analysis of the Sound Emitted by Honey Bees in a Beehive. In Proceedings of the 147th Audio Engineering Society Convention, New York, NY, USA, 16–19 October 2019; p. 10255. [Google Scholar]
- Hrncir, M.; Friedrich, B.; Juergen, D. Vibratory and Airborne-Sound Signals in Bee Communication (Hymenoptera). In Insect Sounds and Communication: Physiology, Behaviour, Ecology, and Evolution, 1st ed.; Drosopoulos, S., Claridge, M.F., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 421–422. [Google Scholar]
- Abdollahi, M.; Giovenazzo, P.; Falk, T.H. Automated Beehive Acoustics Monitoring: A Comprehensive Review of the Literature and Recommendations for Future Work. Appl. Sci. 2022, 12, 3920. [Google Scholar] [CrossRef]
- Nolasco, I.; Benetos, E. To bee or not to bee: Investigating machine learning approaches for beehive sound recognition. In Proceedings of the Detection and Classification of Acoustic Scenes and Events Workshop (DCASE2018), Surrey, UK, 19–20 November 2018. [Google Scholar] [CrossRef]
- Woods, E.F. Electronic Prediction of Swarming Bees. Nature 1959, 184, 842–844. [Google Scholar] [CrossRef]
- Liao, Y.; McGuirk, A.; Biggs, B.; Chaudhuri, A.; Langlois, A.; Deters, V. Noninvasive Beehive Monitoring through Acoustic Data Using SAS® Event Stream Processing and SAS® Viya®; SAS Institute Inc.: Belgrade, Serbia, 2020. [Google Scholar]
- Bencsik, M.; Bencsik, J.; Baxter, M.; Lucian, A.; Romieu, J.; Millet, M. Identification of the honey bee swarming process by analysing the time course of hive vibrations. Comput. Electron. Agric. 2011, 76, 44–50. [Google Scholar] [CrossRef]
- Pérez, N.; Jesús, F.; Pérez, C.; Niell, S.; Draper, A.; Obrusnik, N.; Zinemanas, P.; Spina, Y.M.; Letelier, L.C.; Monzón, P. Continuous monitoring of beehives’ sound for environmental pollution control. Ecol. Eng. 2016, 90, 326–330. [Google Scholar] [CrossRef]
- Robles-Guerrero, A.; Saucedo-Anaya, T.; González-Ramérez, E.; Galván-Tejada, C. Frequency analysis of honey bee buzz for automatic recognition of health status: A Preliminary Study. Res. Comput. Sci. 2017, 142, 89–98. [Google Scholar] [CrossRef]
- Dietlein, D.G. A method for remote monitoring of activity of honeybee colonies by sound analysis. J. Apic. Res. 1985, 24, 176–183. [Google Scholar] [CrossRef]
- Fahrenholz, L.; Lamprecht, I.; Schricker, B. Calorimetric investigations of the different castes of honey bees, Apis mellifera carnica. J. Comp. Physiol. B 1992, 162, 119–130. [Google Scholar] [CrossRef]
- Bell, H.; Kietzman, P.; Nieh, J. The complex world of honey bee vibrational signaling: A response to Ramsey et al. (2017). UC San Diego 2022. preprint. [Google Scholar] [CrossRef]
- Greggers, U.; Koch, G.; Schmidt, V.; Dürr, A.; Floriou-Servou, A.; Piepenbrock, D.; Göpfert, M.C.; Menzel, R. Reception and learning of electric fields in bees. Proc. R. Soc. B 2013, 280, 20130528. [Google Scholar] [CrossRef]
- Cejrowski, T.; Szymanski, J.; Mora, H.; Gil, D. Detection of the bee queen presence using sound analysis. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Dong Hoi City, Vietnam, 19–21 March 2018; pp. 297–306. [Google Scholar]
- Zgank, A. Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service. Sensors 2020, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.H.; Nguyen, H.D.; Nguyen, D.D. Evaluation of Feature Extraction Methods for Bee Audio Classification. In Intelligence of Things: Technologies and Applications, Proceedings of the International Conference on Intelligence of Things (ICIT), Hanoi, Vietnam, 17–19 August 2022; Nguyen, N.T., Dao, N.N., Pham, Q.D., Le, H.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 194–203. [Google Scholar] [CrossRef]
- Polyniak, Y.; Fedasyuk, D.; Marusenkova, T. Identification of Bee Colony Acoustic Signals using the Dynamic Time Warping Algorithm. ECONTECHMOD Int. Q. J. Econ. Technol. Model. Process. 2019, 8, 19–27. [Google Scholar]
- Butler, C.G. The World of the Honeybee, 3rd ed.; Collins Clear-Type Press: London, UK, 1975. [Google Scholar]
- Seeley, T.D. Queen substance dispersal by messenger workers in honeybee colonies. Behav. Ecol. Sociobiol. 1979, 5, 391–415. [Google Scholar] [CrossRef]
- Punnett, E.N.; Winston, M.L. Events following queen removal in colonies of European-derived honey bee races (Apis mellifera). Insectes Soc. 1983, 30, 376–383. [Google Scholar] [CrossRef]
- Hatch, S.; Tarpy, D.; Fletcher, D. Worker regulation of emergency queen rearing in honey bee colonies and the resultant variation in queen quality. Insectes Soc. 1999, 46, 372–377. [Google Scholar] [CrossRef]
- Winston, M.L. The Biology of the Honey Bee, 2nd ed.; Harvard University Press: London, UK, 1991; pp. 124–125. [Google Scholar]
- Skirkevicius, A. First symptoms of queen loss in a honeybee colony (Apis mellifera). Apidologie 2004, 35, 565–573. [Google Scholar] [CrossRef]
- Butler, C.G. The process of queen supersedure in colonies of honeybees (Apis mellifera Linn.). Ins. Soc. 1957, 4, 211–223. [Google Scholar] [CrossRef]
- Stalidzans, E.; Berzonis, A. Temperature changes above the upper hive body reveal the annual development periods of honey bee colonies. Comput. Electron. Agric. 2013, 90, 1–6. [Google Scholar] [CrossRef]
- Meikle, W.G.; Holst, N. Application of continuous monitoring of honeybee colonies. Apidologie 2015, 46, 10–22. [Google Scholar] [CrossRef]
- Zacepins, A.; Kviesis, A.; Stalidzans, E.; Liepniece, M.; Meitalovs, J. Remote detection of the swarming of honey bee colonies by single-point temperature monitoring. Biosyst. Eng. 2016, 148, 76–80. [Google Scholar] [CrossRef]
- Hong, W.; Xu, B.; Chi, X.; Cui, X.; Yan, Y.; Li, T. Long-Term and Extensive Monitoring for Bee Colonies Based on Internet of Things. IEEE Internet Things J. 2020, 7, 7148–7155. [Google Scholar] [CrossRef]
- Howard, D.; Duran, O.; Hunter, G.; Stebel, K. Signal Processing the acoustics of honeybees (Apis mellifera) to identify the queenless state in Hives. Proc. Inst. Acoust. 2013, 35, 290–297. [Google Scholar]
- Sharif, M.Z.; Di, N.; Yu, B. Honeybee (Apis spp.) (Hymenoptera: Apidae) Colony Monitoring Using Acoustic Signals from the Beehive: An Assessment by Global Experts and Our Feedback. Agriculture 2023, 13, 769. [Google Scholar] [CrossRef]
- Nolasco, I.; Terenzi, A.; Cecchi, S.; Orcioni, S.; Bear, H.L.; Benetos, E. Audio-based identification of beehive states. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8256–8260. [Google Scholar] [CrossRef]
- Cejrowski, T.; Szymański, J. Buzz-based honeybee colony fingerprint. Comput. Electron. Agric. 2021, 191, 106489. [Google Scholar] [CrossRef]
- Terenzi, A.; Ortolani, N.; Nolasco, I.; Benetos, E.; Cecchi, S. Comparison of Feature Extraction Methods for Sound-Based Classification of Honey Bee Activity. IEEE/ACM Trans. Audio Speech Lang. 2022, 30, 112–122. [Google Scholar] [CrossRef]
- Rustam, F.; Sharif, M.Z.; Aljedaani, W.; Lee, E.; Ashraf, I. Bee detection in bee hives using selective features from acoustic data. Multimed. Tools Appl. 2023, 1–28. [Google Scholar] [CrossRef]
- Ramsey, M.; Bencsik, M.; Newton, M.I. Long-term trends in the honeybee ‘whooping signal’ revealed by automated detection. PLoS ONE 2017, 12, e0171162. [Google Scholar] [CrossRef]
- Wehmann, H.N.; Gustav, D.; Kirkerud, N.H.; Galizia, C.G. The sound and the fury—Bees hiss when expecting danger. PLoS ONE 2015, 10, e0118708. [Google Scholar] [CrossRef]
- Kawakita, S.; Ichikawa, K.; Sakamoto, F.; Moriya, K. Sound recordings of Apis cerana japonica colonies over 24 h reveal unique daily hissing patterns. Apidologie 2019, 50, 204–214. [Google Scholar] [CrossRef]
Mel Band | Range (Hz) | Mel Band | Range (Hz) |
---|---|---|---|
#0 | 0–80 | #5 | 876–1080 |
#1 | 80–279 | #6 | 1080–1326 |
#2 | 279–478 | #7 | 1326–1629 |
#3 | 478–677 | #8 | 1629–2000 |
#4 | 677–876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanelis, D.; Liolios, V.; Papadopoulou, F.; Rodopoulou, M.-A.; Kampelopoulos, D.; Siozios, K.; Tananaki, C. Decoding the Behavior of a Queenless Colony Using Sound Signals. Biology 2023, 12, 1392. https://doi.org/10.3390/biology12111392
Kanelis D, Liolios V, Papadopoulou F, Rodopoulou M-A, Kampelopoulos D, Siozios K, Tananaki C. Decoding the Behavior of a Queenless Colony Using Sound Signals. Biology. 2023; 12(11):1392. https://doi.org/10.3390/biology12111392
Chicago/Turabian StyleKanelis, Dimitrios, Vasilios Liolios, Fotini Papadopoulou, Maria-Anna Rodopoulou, Dimitrios Kampelopoulos, Kostas Siozios, and Chrysoula Tananaki. 2023. "Decoding the Behavior of a Queenless Colony Using Sound Signals" Biology 12, no. 11: 1392. https://doi.org/10.3390/biology12111392
APA StyleKanelis, D., Liolios, V., Papadopoulou, F., Rodopoulou, M. -A., Kampelopoulos, D., Siozios, K., & Tananaki, C. (2023). Decoding the Behavior of a Queenless Colony Using Sound Signals. Biology, 12(11), 1392. https://doi.org/10.3390/biology12111392