Measurement of Force and Intramuscular Pressure Changes Related to Thrust Spinal Manipulation in an In Vivo Animal Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Spinal Manipulation Devices
2.2. Feedback Motor Device
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- George, S.Z.; Fritz, J.M.; Silfies, S.P.; Schneider, M.J.; Beneciuk, J.M.; Lentz, T.A.; Gilliam, J.R.; Hendren, S.; Norman, K.S. Interventions for the management of acute and chronic low back pain: Revision 2021. J. Orthop. Sport. Phys. Ther. 2021, 51, CPG1–CPG60. [Google Scholar] [CrossRef]
- Chou, R.; Deyo, R.; Friedly, J.; Skelly, A.; Hashimoto, R.; Weimer, M.; Fu, R.; Dana, T.; Kraegel, P.; Griffin, J.; et al. Nonpharmacologic Therapies for Low Back Pain: A Systematic Review for an American College of Physicians Clinical Practice Guideline. Ann. Intern. Med. 2017, 166, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Bailly, F.; Trouvin, A.; Bercier, S.; Dadoun, S.; Deneuville, J.; Faguer, R.; Fassier, J.B.; Koleck, M.L.; Lassalle, L.; Vraux, T.L.; et al. Clinical guidelines and care pathway for management of low back pain with or without radicular pain. Jt. Bone Spine 2021, 88, 105227. [Google Scholar] [CrossRef]
- Herzog, W. The biomechanics of spinal manipulation. J. Bodyw. Mov. Ther. 2010, 14, 280–286. [Google Scholar] [CrossRef] [PubMed]
- LaPelusa, A.; Bordoni, B. High velocity low amplitude manipulation techniques. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Liebschner, M.A.; Chun, K.; Kim, N.; Ehni, B. In vitro biomechanical evaluation of single impulse and repetitive mechanical shockwave devices utilized for spinal manipulative therapy. Ann. Biomed. Eng. 2014, 42, 2524–2536. [Google Scholar] [CrossRef]
- Colloca, C.J.; Keller, T.S.; Black, P.; Normand, M.C.; Harrison, D.E.; Harrison, D.D. Comparison of mechanical force of manually assisted chiropractic adjusting instruments. J. Manip. Physiol. Ther. 2005, 28, 414–422. [Google Scholar] [CrossRef]
- Kawchuk, G.N.; Carrasco, A.; Beecher, G.; Goertzen, D.; Prasad, N. Identification of spinal tissues loaded by manual therapy: A robot-based serial dissection technique applied in porcine motion segments. Spine 2010, 35, 1983–1990. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Zhang, J.; Feng, W.; Liu, Q.; Yang, X.; Zhang, H.; Han, L.; Min, Y.; Zhao, P. Comparison of human lumbar disc pressure characteristics during simulated spinal manipulation vs. spinal mobilization. Mol. Med. Rep. 2018, 18, 5709–5716. [Google Scholar] [CrossRef]
- Funabashi, M.; Breen, A.C.; De Carvalho, D.; Paigé, I.; Nougarou, F.; Descarreaux, M.; Kawchuk, G.N. Force distribution within spinal tissues during posterior to anterior spinal manipulative therapy: A secondary analysis. Front. Integr. Neurosci. 2022, 15, 809372. [Google Scholar] [CrossRef]
- Gudavalli, M.R.; Potluri, T.; Carandang, G.; Havey, R.M.; Voronov, L.I.; Cox, J.M.; Rowell, R.M.; Kruse, R.A.; Joachim, G.C.; Patwardhan, A.G.; et al. Intradiscal Pressure Changes during Manual Cervical Distraction: A Cadaveric Study. Evid. Based Complement. Altern. Med. 2013, 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.P.; Huang, Y.Q.; Zhou, W.H.; Manas, D.; Zhao, W.D.; Chen, J.Z.; Yin, Q.S.; Wang, L.H. Influence of cervical spine position, turning time, and cervical segment on cadaver intradiscal pressure during cervical spinal manipulative therapy. J. Manip. Physiol. Ther. 2012, 35, 428–436. [Google Scholar] [CrossRef]
- Funabashi, M.; Nougarou, F.; Descarreaux, M.; Prasad, N.; Kawchuk, G.N. Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application. Spine 2017, 42, 635–643. [Google Scholar] [CrossRef]
- Funabashi, M.; Nougarou, F.; Descarreaux, M.; Prasad, N.; Kawchuk, G.N. Does the application site of spinal manipulative therapy alter spinal tissues loading? Spine J. 2018, 18, 1041–1052. [Google Scholar] [CrossRef]
- Funabashi, M.; Kawchuk, G.N.; Vette, A.H.; Goldsmith, P.; Prasad, N. Tissue loading created during spinal manipulation in comparison to loading created by passive spinal movements. Sci. Rep. 2016, 6, 38107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gál, J.; Herzog, W.; Kawchuk, G.; Conway, P.J.; Zhang, Y.T. Movements of vertebrae during manipulative thrusts to unembalmed human cadavers. J. Manip. Physiol. Ther. 1997, 20, 30–40. [Google Scholar]
- Tawackoli, W.; Marco, R.; Liebschner, M.A. The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine 2004, 29, 988–993. [Google Scholar] [CrossRef]
- Funabashi, M.; Nougarou, F.; Descarreaux, M.; Prasad, N.; Kawchuk, G. Influence of Spinal Manipulative Therapy Force Magnitude and Application Site on Spinal Tissue Loading: A Biomechanical Robotic Serial Dissection Study in Porcine Motion Segments. J. Manip. Physiol. Ther. 2017, 40, 387–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.R.; Martins, D.F.; Reed, W.R. Physiological responses induced by manual therapy in animal models: A scoping review. Front. Neurosci. 2020, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Colloca, C.J.; Keller, T.S.; Moore, R.J.; Gunzburg, R.; Harrison, D.E. Effects of disc degeneration on neurophysiological responses during dorsoventral mechanical excitation of the ovine lumbar spine. J. Electromyogr. Kinesiol. 2008, 18, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Colloca, C.J.; Gunzburg, R.; Freeman, B.J.; Szpalski, M.; Afifi, M.; Moore, R.J. Biomechancial quantification of pathologic manipulable spinal lesions: An in vivo ovine model of spondylolysis and intervertebral disc degeneration. J. Manip. Physiol. Ther. 2012, 35, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Lisi, A.J.; O’Neill, C.W.; Lindsey, D.P.; Cooperstein, R.; Cooperstein, E.; Zucherman, J.F. Measurement of in vivo lumbar intervertebral disc pressure during spinal manipulation: A feasibility study. J. Appl. Biomech. 2006, 22, 234–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Kikuchi, S.; Yonezawa, T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999, 24, 2468–2474. [Google Scholar] [CrossRef] [PubMed]
- Wilke, H.J.; Neef, P.; Caimi, M.; Hoogland, T.; Claes, L.E. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999, 24, 755–762. [Google Scholar] [CrossRef]
- Reed, W.R.; Liebschner, M.A.K.; Lima, C.R.; Singh, H.; Hurt, C.P.; Martins, D.F.; Cox, J.M.; Gudavalli, M.R. In vivo measurement of intradiscal pressure changes related to thrust and non-thrust spinal manipulation in an animal model: A pilot study. Chiropr. Man. Ther. 2022, 30, 36. [Google Scholar] [CrossRef]
- Reed, W.R.; Cao, D.Y.; Long, C.R.; Kawchuk, G.N.; Pickar, J.G. Relationship between Biomechanical Characteristics of Spinal Manipulation and Neural Responses in an Animal Model: Effect of Linear Control of Thrust Displacement versus Force, Thrust Amplitude, Thrust Duration, and Thrust Rate. Evid. Based Complement. Altern. Med. 2013, 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Vaillant, M.; Edgecombe, T.; Long, C.R.; Pickar, J.G.; Kawchuk, G.N. The effect of duration and amplitude of spinal manipulative therapy (SMT) on stiffness. Man. Ther. 2012, 17, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Hessell, B.W.; Herzog, W.; Conway, P.J.; McEwen, M.C. Experimental measurement of the force exerted during spinal manipulation using the Thompson technique. J. Manip. Physiol. Ther. 1990, 13, 448–453. [Google Scholar] [PubMed]
- Triano, J.J. Biomechanics of spinal manipulative therapy. Spine J. 2001, 1, 121–130. [Google Scholar] [CrossRef]
- Herzog, W.; Conway, P.J.; Kawchuk, G.N.; Zhang, Y.; Hasler, E.M. Forces exerted during spinal manipulative therapy. Spine 1993, 18, 1206–1212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reed, W.R.; Lima, C.R.; Liebschner, M.A.K.; Hurt, C.P.; Li, P.; Gudavalli, M.R. Measurement of Force and Intramuscular Pressure Changes Related to Thrust Spinal Manipulation in an In Vivo Animal Model. Biology 2023, 12, 62. https://doi.org/10.3390/biology12010062
Reed WR, Lima CR, Liebschner MAK, Hurt CP, Li P, Gudavalli MR. Measurement of Force and Intramuscular Pressure Changes Related to Thrust Spinal Manipulation in an In Vivo Animal Model. Biology. 2023; 12(1):62. https://doi.org/10.3390/biology12010062
Chicago/Turabian StyleReed, William R., Carla R. Lima, Michael A. K. Liebschner, Christopher P. Hurt, Peng Li, and Maruti R. Gudavalli. 2023. "Measurement of Force and Intramuscular Pressure Changes Related to Thrust Spinal Manipulation in an In Vivo Animal Model" Biology 12, no. 1: 62. https://doi.org/10.3390/biology12010062
APA StyleReed, W. R., Lima, C. R., Liebschner, M. A. K., Hurt, C. P., Li, P., & Gudavalli, M. R. (2023). Measurement of Force and Intramuscular Pressure Changes Related to Thrust Spinal Manipulation in an In Vivo Animal Model. Biology, 12(1), 62. https://doi.org/10.3390/biology12010062