Uric Acid Deteriorates Load-Free Cell Shortening of Cultured Adult Rat Ventricular Cardiomyocytes via Stimulation of Arginine Turnover
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Concerns
2.2. Materials
2.3. Cell Preparation and Cultivation
2.4. Determination of Cell Contraction
2.5. Quantification of Calcium Transients
2.6. Western Blot
2.7. Statistics
3. Results
3.1. Effect of UA on Load-Free Cell Shortening
3.2. Effect of UA on Arginine Metabolism
3.3. Effect of Extracellular Arginine on UA Effects
3.4. Effect of Protein Kinase Inhibition on UA Effects
3.5. Effect of UA on Calcium Sensitization
3.6. Reversibility of UA Effects
3.7. Interaction of Hyperglycemia and UA
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keira, N.; Tatsumi, T.; Matoba, S.; Shiraishi, J.; Yamanaka, S.; Akashi, K.; Kobara, M.; Asayama, J.; Fushiki, S.; Fliss, H.; et al. Lethal effect of cytokine-induced nitric oxide and peroxynitrite on cultured rat cardiac myocytes. J. Mol. Cell. Cardiol. 2002, 34, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Zhang, H.F.; Guo, W.Y.; Su, H.; Zhang, K.R.; Li, Q.X.; Yan, W.; Ma, X.L.; Lopez, B.L.; Christopher, T.A.; et al. Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: Role of peroxynitrite formation. Apoptosis 2006, 11, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Dyachenko, V.; Rueckschloss, U.; Isenberg, G. Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium. 2009, 45, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Abou-Mohamed, G.; Johnson, J.A.; Jin, L.; El-Remessy, A.B.; Do, K.; Kaesemeyer, W.H.; Caldwell, R.B.; Caldwell, R.W. Roles of superoxide, peroxynitrite, and protein kinase C in the development of tolerance to nitroglycerin. J. Pharmacol. Exptl. Therap. 2004, 308, 289–299. [Google Scholar] [CrossRef]
- Cutler, R.G.; Camandola, S.; Feldman, N.H.; Yoon, J.S.; Haran, J.B.; Arguelles, S.; Mattson, M.P. Uric acid enhances longevity and endurance and protects the brain against ischemia. Neurobiol. Aging. 2019, 75, 159–168. [Google Scholar] [CrossRef]
- Saavedra, W.F.; Paolocci, N.; St John, M.E.; Skaf, M.W.; Stewart, G.C.; Xie, J.S.; Harrison, R.W.; Zeichner, J.; Mudrick, D.; Marban, E.; et al. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ. Res. 2002, 90, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Cicoira, M.; Zanolla, L.; Rossi, A.; Golia, G.; Franceschini, L.; Brighetti, G.; Zeni, P.; Zardini, P. Elevated serum uric acid levels are associated with diastolic dysfunction in patients with dilated cardiomyopathy. Am. Heart J. 2002, 1434, 1107–1111. [Google Scholar] [CrossRef]
- Erdogan, D.; Tayyar, S.; Uysal, B.A.; Icli, A.; Karabacak, M.; Ozaydin, M.; Dogan, A. Effects of allopurinol on coronary microvascular and left ventricular function in patients with idiopathic dilated cardiomyopathy. Can. J. Cardiol. 2012, 28, 721–727. [Google Scholar] [CrossRef]
- Yazicioglu, M.V.; Avci, A.; Acar, G.; Esen, Ö.; Karaca, O.; Alici, G.; Özkan, B.; Alizade, E.; Bulut, M.; Akcakoyun, M.; et al. Elevated uric acid and functional mitral regurgitation in dilated cardiomyopathy. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1637–1641. [Google Scholar]
- Ahmad, A.; Vakilian, F.; Maleki, M. Serum uric acid levels correlate with filling pressures in systolic heart failure. Congest. Heart Fail. 2011, 17, 79–83. [Google Scholar] [CrossRef]
- Kim, H.; Shin, H.W.; Son, J.; Yoon, H.J.; Park, H.S.; Cho, Y.K.; Han, C.D.; Nam, C.W.; Hur, S.H.; Kim, Y.N.; et al. Uric acid as prognostic marker in advanced nonischemic dilated cardiomyopathy: Comparison with N-terminal Pro B-Type natriuretic peptide level. Congest. Heart Fail. 2010, 16, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Hollander, S.A.; Bernstein, D.; Yeh, J.; Dao, D.; Sun, H.Y.; Rosenthal, D. Outcome of children following a first hospitalization for dilated cardiomyopathy. Circ. Heart Fail. 2012, 5, 437–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Zhang, L.; Zhang, M.; Zhou, C.; Lin, N. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction. Int. J. Mol. Med. 2016, 37, 989–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yamamoto, T.; Hisatome, I.; Li, Y.; Cheng, W.; Sun, N.; Cai, B.; Huang, T.; Zhu, Y.; Li, Z.; et al. Uric acid induces oxidative stress and growth inhibition by acting adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells. Mol. Cell. Endocrinol. 2013, 375, 89–96. [Google Scholar] [CrossRef]
- Taufiq, F.; Maharani, N.; Li, P.; Kurata, Y.; Ikeda, N.; Kuwabara, M.; Otani, N.; Miake, J.; Hasegawa, A.; Tsuneto, M.; et al. Uric acid-induced enhancements of Kv1.5 protein expression and channel activity via the Akt-HSF1-Hsp70 pathway in HL-1 atrial myocytes. Circ. J. 2019, 83, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Zhi, L.; Yuzhang, Z.; Tianliang, H.; Hisatome, I.; Yamamoto, T.; Jidong, C. High uric acid induces insulin resistance in cardiomyocytes in vitro and in vivo. PLos One 2016, 11, e0147737. [Google Scholar] [CrossRef]
- Nippert, F.; Schreckenberg, R.; Schlüter, K.D. Isolation and cultivation of adult rat cardiomyocytes. J. Vis Exp. 2017, 128, e56634. [Google Scholar] [CrossRef]
- Bøtker, H.E.; Hausenloy, D.; Andreadou, I.; Antonucci, S.; Boengler, K.; Davidson, S.M.; Deshwal, S.; Devaux, Y.; Di Lisa, F.; Di Sante, M.; et al. Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res. Cardiol. 2018, 113, 39. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, S.; Henning, K.; Habbig, A.; Forst, S.; Schreckenberg, R.; Heger, J.; Maxeiner, H.; Schlüter, K.D. TGF-β1 improves cardiac performance via up-regulation of laminin receptor 37/67 in adult ventricular cardiomoyctyes. Basic Res. Cardiol. 2010, 105, 621–629. [Google Scholar] [CrossRef]
- Schreckenberg, R.; Dyukova, E.; Sitdikova, G.; Abdallah, Y.; Schlüter, K.D. Mechanisms by which calcium receptor stimulation modifies electromechanical coupling in isolated ventricular cardiomyocytes. Pflügers Arch.—Eur. J. Physiol. 2015, 467, 379–388. [Google Scholar] [CrossRef]
- Wenzel, S.; Rohde, C.; Wingerning, S.; Roth, J.; Kojda, G.; Schlüter, K.D. Lack of endothelial nitric oxide synthase-derived nitric oxide formation favors hypertrophy in adult ventricular cardiomyocytes. Hypertension 2007, 49, 193–200. [Google Scholar] [CrossRef]
- Mörlein, C.; Schreckenberg, R.; Schlüter, K.D. Basal ornithine decarboxylase activity modifies apoptotic and hypertrophic marker expression in post-ischemic hearts. Open Heart Fail. J. 2010, 3, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Schreckenberg, R.; Weber, P.; Cabrera-Fuentes, H.A.; Steinert, I.; Preissner, K.T.; Bencsik, P.; Sarközy, M.; Csonka, C.; Ferdinandy, P.; Schulz, R.; et al. Mechanism and consequences of the shift in cardiac arginine metabolism following ischaemia and reperfusion in rats. Thromb. Haemost. 2015, 113, 482–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, M.; Lüttecke, D.; Schlüter, K.D. Mechanism of the positive contractile effect of nitric oxide on rat ventricular cardiomyocytes with positive force-frequency relationship. Pflügers Arch.—Eur. J. Physiol. 2003, 447, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Ladilov, Y.; Efe, Ö.; Schäfer, C.; Rother, B.; Kasseckert, S.; Abdallah, Y.; Meuter, K.; Schlüter, K.-D.; Piper, H.M. Reoxygenation-induced rigor-type contracture. J. Mol. Cell. Cardiol. 2003, 35, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, K.D.; Katzer, C.; Frischkopf, K.; Wenzel, S.; Taimor, G.; Piper, H.M. Expression, release, and biological activity of parathyroid hormone-related peptide from coronary endothelial cells. Circ. Res. 2000, 86, 946–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gladden, J.D.; Zelickson, B.R.; Guichard, J.L.; Ahmed, M.I.; Yancey, D.M.; Ballinger, S.; Shanmugam, M.; Babu, G.J.; Johnson, M.S.; Darley-Usmar, V.; et al. Xanthine oxidase inhibition preserves left ventricular systolic but not diastolic function in cardiac volume overload. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1440–H1450. [Google Scholar] [CrossRef] [Green Version]
- Baldus, S.; Müllerleile, K.; Chumley, P.; Steven, D.; Rudolph, V.; Lund, G.K.; Staude, H.J.; Stork, A.; Köster, R.; Kähler, J.; et al. Inhibition of xanthine oxidase improves myocardial contractility in patients with ischemic cardiomyopathy. Free Radic. Biol. Med. 2006, 41, 1282–1288. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.H.; Ghali, J.K.; Neuberg, G.W.; O’Connor, C.M.; Carson, P.E.; Levy, W.C. Uric acid level and allopurinol use as risk markers of mortality and morbidity in systolic heart failure. Am. Heart J. 2010, 160, 928–933. [Google Scholar] [CrossRef]
- Schlüter, K.D.; Frischkopf, K.; Flesch, M.; Rosenkranz, S.; Taimor, G.; Piper, H.M. Central role for ornithine decarboxylase in β-adrenoceptor mediated hypertrophy. Cardiovasc. Res. 2000, 45, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Kojda, G.; Kottenberg, K.; Nix, P.; Schlüter, K.D.; Piper, H.M.; Noack, E. Low increase in cyclic guanosine monophosphate induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ. Res. 1996, 78, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Zharikov, S.; Krotova, K.; Hu, H.; Baylis, C.; Johnson, R.J.; Block, E.R.; Patel, J. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am. J. Physiol. Cell Physiol. 2008, 295, C1183–C1190. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, I.F.; Grupper, A.; Chernichovski, T.; Grupper, A.; Hillel, O.; Engel, A.; Schwartz, D. Hyperurecemia attenuates aortic nitric oxide generation, through inhibition of arginine transport, in rats. J. Vasc. Res. 2011, 48, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jin, Y.M.; Hwang, S.; Cho, D.H.; Kang, D.H.; Jo, I. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: A mechanism for uric acid-induced cardiovascular disease development. Nitric Oxide. 2013, 32, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Luiking, Y.C.; ten Have, G.A.M.; Wolfe, R.R.; Deutz, N.E.P. Arginine de novo and nitric oxide production in disease states. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E1177–E1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernardos, K.M.; Zatta, A.J.; Marshall, T.; Ritchie, R.; Kaye, D.M. Reduced L-arginine transport contributes to the pathogenesis of myocardial ischemia-reperfusion injury. J. Cell. Biochem. 2009, 108, 156–168. [Google Scholar] [CrossRef]
- Xiong, Y.; Yu, Y.; Montani, J.P.; Yang, Z.; Ming, X.F. Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66shc and p53 independently of its L-arginine ureahydrolase activity: Implications for atherosclerotic plaque vulnerability. J. Am. Heart Assoc. 2013, 2, e000096. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, I.F.; Chernichovski, T.; Schwartz, D. Aortic arginine transport is attenuated, through post-translational modification of CAT-1 by PKCalpha, in old male rats. Vasc. Med. 2010, 15, 55–59. [Google Scholar] [CrossRef]
- Ramirez-Correra, G.A.; Cortassa, S.; Stanley, B.; Gao, W.D.; Murphy, A.M. Calcium sensitivity, force frequency relationship and cardiac troponin I: Critical role of PKA and PKC phosphorylation sites. J. Mol. Cell. Cardiol. 2010, 48, 943–953. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.E.; Stevenson, T.K.; Schatz, T.M.; Biesiadecki, B.J.; Westfall, M.V. Functional communication between PKC-targeted troponin I phosphorylation sites. Arch. Biochem. Biophys. 2017, 627, 1–9. [Google Scholar] [CrossRef]
- Wickley, P.J.; Shiga, T.; Murray, P.A.; Damron, D.S. Propofol decreases myofilament Ca2+ sensitivity via a protein kinase C-, nitric oxide synthase-dependent pathway in diabetic cardiomyocytes. Anesthesiology 2006, 104, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-T.; Yang, S.T.; Tsai, S.C.; Huang, C.C.; Lee, N.Y. L-arginine attenuates xanthine oxidase and myeloperoxidase activities in hearts of rats during exhaustive exercise. Br. J. Nutr. 2006, 95, 6775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Jiao, H.; Zhao, J.; Wang, X.; Lin, H. Rule of UA on cardiac myocytes uric acid differentially influence the oxidative damage induced by acute exposure to high level of glucose in chicken cardiac myocytes. Front. Vet. Sci. 2020, 7, 602419. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.; Soltanpur, G.; Schlüter, K.-D. No correlation between p38 MAPK pathway and the contractile dysfunction in diabetic cardiomyocytes. Pflügers Arch.—Eur. J. Physiol. 2005, 451, 328–337. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, M.; Schreckenberg, R.; Schlüter, K.-D. Uric Acid Deteriorates Load-Free Cell Shortening of Cultured Adult Rat Ventricular Cardiomyocytes via Stimulation of Arginine Turnover. Biology 2023, 12, 4. https://doi.org/10.3390/biology12010004
Weber M, Schreckenberg R, Schlüter K-D. Uric Acid Deteriorates Load-Free Cell Shortening of Cultured Adult Rat Ventricular Cardiomyocytes via Stimulation of Arginine Turnover. Biology. 2023; 12(1):4. https://doi.org/10.3390/biology12010004
Chicago/Turabian StyleWeber, Martin, Rolf Schreckenberg, and Klaus-Dieter Schlüter. 2023. "Uric Acid Deteriorates Load-Free Cell Shortening of Cultured Adult Rat Ventricular Cardiomyocytes via Stimulation of Arginine Turnover" Biology 12, no. 1: 4. https://doi.org/10.3390/biology12010004
APA StyleWeber, M., Schreckenberg, R., & Schlüter, K. -D. (2023). Uric Acid Deteriorates Load-Free Cell Shortening of Cultured Adult Rat Ventricular Cardiomyocytes via Stimulation of Arginine Turnover. Biology, 12(1), 4. https://doi.org/10.3390/biology12010004