Principal Component and Structural Element Analysis Provide Insights into the Evolutionary Divergence of Conotoxins
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Structure Based on PCA
2.1.1. Peptide Sequences Data Collection and Preparation
2.1.2. Multiple Sequence Alignment
2.1.3. Cluster Analysis through Principal Component Analysis and Neighbor-Joining Trees
2.2. Structural Analysis of Alpha-Conotoxins Based on Diet Preference
2.2.1. Data Collection
2.2.2. Structural Element Identification and Analysis
3. Results
3.1. Database Search and Feature Extraction
3.2. Multiple Sequence Alignment
3.3. Principal Component Analysis
3.4. Multiple Sequence Alignment of Alpha-Conotoxin Samples
3.5. Structural Element Analysis
4. Discussion
4.1. Principal Component Analysis
4.2. Structural Element Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gene Superfamily | PCA Plots | |||
---|---|---|---|---|
Overlay | Molluscivorous | Piscivorous | Vermivorous | |
A | ||||
B1 | ||||
C | ||||
B1 | ||||
H | ||||
Insulin | ||||
I1 | ||||
J | ||||
M | ||||
O1 | ||||
O2 | ||||
O3 | ||||
T |
Gene Superfamily | NJT Dendrograms | ||
---|---|---|---|
Molluscivorous | Piscivorous | Vermivorous | |
C | |||
Divergent M—L-LTVA | |||
Divergent MSTLGMTLL- | |||
H | |||
Insulin | |||
L | |||
P | |||
S | |||
U |
References
- Olivera, B.M.E.E. Just Lecture, 1996: Conus Venom Peptides, Receptor and Ion Channel Targets, and Drug Design: 50 Million Years of Neuropharmacology. Mol. Biol. Cell 1997, 8, 2101. [Google Scholar] [CrossRef] [Green Version]
- Bogin, O. Venom Peptides and Their Mimetics as Potential Drugs. Modulator 2005, 19, 14–20. [Google Scholar]
- Schroeder, C.I.; Craik, D.J. Therapeutic Potential of Conopeptides. Future Med. Chem. 2012, 4, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Olivera, B.M.; Teichert, R.W. Diversity of the Neurotoxic Conus Peptides: A Model for Concerted Pharmacological Discovery. Mol. Interv. 2007, 7, 251–260. [Google Scholar] [CrossRef]
- Olivera, B.M.; Rivier, J.; Clark, C.; Ramilo, C.A.; Corpuz, G.P.; Abogadie, F.C.; Mena, E.E.; Woodward, S.R.; Hillyard, D.R.; Cruz, L.J. Diversity of Conus Neuropeptides. Science 1990, 249, 257–263. [Google Scholar] [CrossRef]
- Tayo, L.L.; Lu, B.; Cruz, L.J.; Yates, J.R., 3rd. Proteomic Analysis Provides Insights on Venom Processing in Conus Textile. J. Proteome Res. 2010, 9, 2292–2301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuchi, A.K.V.; Tayo, L.L. Principal Component Analysis Provides Insights on the Evolutionary Divergence of Conotoxins. In Proceedings of the 2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB), Hangzhou, China, 13–15 May 2022; pp. 41–48. [Google Scholar]
- Gomez, M.C.; Alvarico, R.A.D.; Valbuena, R.E.; Aquino, A.M.C.; Matira, A.R.; Tayo, L.L. In Silico Protein Structure Comparison of Conotoxins with VI/VII Cysteine Framework. In Proceedings of the ACM International Conference Proceeding Series, Nagoya, Japan, 17–19 October 2019; pp. 52–57. [Google Scholar]
- Schendel, V.; Rash, L.D.; Jenner, R.A.; Undheim, E.A.B. The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins 2019, 11, 666. [Google Scholar] [CrossRef] [Green Version]
- Zancolli, G.; Casewell, N.R. Venom Systems as Models for Studying the Origin and Regulation of Evolutionary Novelties. Mol. Biol. Evol. 2020, 37, 2777–2790. [Google Scholar] [CrossRef]
- Gomez, M.C.; Aquino, A.M.C.; Matira, A.R.; Alvarico, R.A.D.; Valbuena, R.E.; Tayo, L.L. Alpha-Family of Conotoxins: An Analysis of Structural Determinants. In Proceedings of the ACM International Conference Proceeding Series, Nagoya, Japan, 17–19 October 2019; pp. 40–46. [Google Scholar]
- Conticello, S.G.; Gilad, Y.; Avidan, N.; Ben-Asher, E.; Levy, Z.; Fainzilber, M. Mechanisms for Evolving Hypervariability: The Case of Conopeptides. Mol. Biol. Evol. 2001, 18, 120–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex Cocktails: The Evolutionary Novelty of Venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef]
- Williams, V.; White, J.; Schwaner, T.D.; Sparrow, A. Variation in Venom Proteins from Isolated Populations of Tiger Snakes (Notechis Ater Niger, N. Scutatus) in South Australia. Toxicon 1988, 26, 1067–1075. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, L.; Wu, Y.; Zhu, X.; Feng, Y.; Chen, Z.; Li, Y.; Sun, D.; Ren, Z.; Xu, A. Characterizing the Evolution and Functions of the M-Superfamily Conotoxins. Toxicon 2013, 76, 150–159. [Google Scholar] [CrossRef]
- Pi, C.; Liu, J.; Peng, C.; Liu, Y.; Jiang, X.; Zhao, Y.; Tang, S.; Wang, L.; Dong, M.; Chen, S.; et al. Diversity and Evolution of Conotoxins Based on Gene Expression Profiling of Conus Litteratus. Genomics 2006, 88, 809–819. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Kennedy, M.A. Principal Components Analysis of Protein Sequence Clusters. J. Struct. Funct. Genom. 2014, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, R.J.; Gloor, G.B. Protein Sequence Alignment Analysis by Local Covariation: Coevolution Statistics Detect Benchmark Alignment Errors. PLoS ONE 2012, 7, e37645. [Google Scholar] [CrossRef] [Green Version]
- Needleman, S.B.; Wunsch, C.D. A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol. 1970, 48, 443–453. [Google Scholar] [CrossRef]
- Konishi, T.; Matsukuma, S.; Fuji, H.; Nakamura, D.; Satou, N.; Okano, K. Principal Component Analysis Applied Directly to Sequence Matrix. Sci. Rep. 2019, 9, 19297. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, H.; Najafabadi, H.; Hassani, K.; Nejad, H.; Torabi, N. On the Optimality of the Genetic Code, with the Consideration of Coevolution Theory by Comparison of Prominent Cost Measure Matrices. J. Theor. Biol. 2005, 235, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casari, G.; Sander, C.; Valencia, A. A Method to Predict Functional Residues in Proteins. Nat. Struct. Biol. 1995, 2, 171–178. [Google Scholar] [CrossRef]
- Gogos, A.; Jantz, D.; Sentürker, S.; Richardson, D.; Dizdaroglu, M.; Clarke, N.D. Assignment of Enzyme Substrate Specificity by Principal Component Analysis of Aligned Protein Sequences: An Experimental Test Using DNA Glycosylase Homologs. Proteins 2000, 40, 98–105. [Google Scholar] [CrossRef]
- Wang, B.; Jiang, L. Principal Component Analysis Applications in COVID-19 Genome Sequence Studies. Cogn. Comput. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Kaas, Q.; Westermann, J.-C.; Halai, R.; Wang, C.K.L.; Craik, D.J. ConoServer, a Database for Conopeptide Sequences and Structures. Bioinformatics 2008, 24, 445–446. [Google Scholar] [CrossRef] [Green Version]
- Kaas, Q.; Yu, R.; Jin, A.-H.; Dutertre, S.; Craik, D.J. ConoServer: Updated Content, Knowledge, and Discovery Tools in the Conopeptide Database. Nucleic Acids Res. 2012, 40, D325–D330. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Brandt, B.W.; Anton Feenstra, K.; Heringa, J. Multi-Harmony: Detecting Functional Specificity from Sequence Alignment. Nucleic Acids Res. 2010, 38, W40. [Google Scholar] [CrossRef] [Green Version]
- Kyte, J.; Doolittle, R.F. A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, H.R.; Blanton, M.P. Alpha-Conotoxins. Int. J. Biochem. Cell Biol. 2000, 32, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.D.; Norton, R.S. Conotoxin Gene Superfamilies. Mar. Drugs 2014, 12, 6058–6101. [Google Scholar] [CrossRef] [Green Version]
- Kauferstein, S.; Huys, I.; Kuch, U.; Melaun, C.; Tytgat, J.; Mebs, D. Novel Conopeptides of the I-Superfamily Occur in Several Clades of Cone Snails. Toxicon 2004, 44, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.D.; McIntosh, J.M.; Hillyard, D.R.; Cruz, L.J.; Olivera, B.M. The A-Superfamily of Conotoxins: Structural and Functional Divergence. J. Biol. Chem. 2004, 279, 17596–17606. [Google Scholar] [CrossRef] [PubMed]
- Olivera, B.M.; Quik, M.; Vincler, M.; McIntosh, J.M. Subtype-Selective Conopeptides Targeted to Nicotinic Receptors: Concerted Discovery and Biomedical Applications. Channels 2008, 2, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivera, B.M.; Hillyard, D.R.; Marsh, M.; Yoshikami, D. Combinatorial Peptide Libraries in Drug Design: Lessons from Venomous Cone Snails. Trends Biotechnol. 1995, 13, 422–426. [Google Scholar] [CrossRef]
- Terlau, H.; Shon, K.-J.; Grilley, M.; Stocker, M.; Stühmer, W.; Olivera, B.M. Strategy for Rapid Immobilization of Prey by a Fish-Hunting Marine Snail. Nature 1996, 381, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Roy, S. Is Mutation Random or Targeted?: No Evidence for Hypermutability in Snail Toxin Genes. Mol. Biol. Evol. 2016, 33, msw140. [Google Scholar] [CrossRef] [Green Version]
- Tobassum, S.; Tahir, H.M.; Zahid, M.T.; Gardner, Q.A.; Ahsan, M.M. Effect of Milking Method, Diet, and Temperature on Venom Production in Scorpions. J. Insect Sci. 2018, 18, 19. [Google Scholar] [CrossRef] [Green Version]
- Chippaux, J.P.; Williams, V.; White, J. Snake Venom Variability: Methods of Study, Results and Interpretation. Toxicon 1991, 29, 1279–1303. [Google Scholar] [CrossRef] [PubMed]
- Aman, J.W.; Imperial, J.S.; Ueberheide, B.; Zhang, M.M.; Aguilar, M.; Taylor, D.; Watkins, M.; Yoshikami, D.; Showers-Corneli, P.; Safavi-Hemami, H.; et al. Insights into the Origins of Fish Hunting in Venomous Cone Snails from Studies of Conus Tessulatus. Proc. Natl. Acad. Sci. USA 2015, 112, 5087–5092. [Google Scholar] [CrossRef] [Green Version]
- Puillandre, N.; Koua, D.; Favreau, P.; Olivera, B.M.; Stöcklin, R. Molecular Phylogeny, Classification and Evolution of Conopeptides. J. Mol. Evol. 2012, 74, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Puillandre, N.; Bouchet, P.; Duda, T.F.; Kauferstein, S.; Kohn, A.J.; Olivera, B.M.; Watkins, M.; Meyer, C. Molecular Phylogeny and Evolution of the Cone Snails (Gastropoda, Conoidea). Mol. Phylogenetics Evol. 2014, 78, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, J.K.; Tenorio, M.J. Systematic Classification of Recent and Fossil Conoidean Gastropods: With Keys to the Genera of Cone Shells; Conchbooks: Hackenheim, Germany, 2009; ISBN 3939767263. [Google Scholar]
- Tucker, J.K.; Tenorio, M.J. Illustrated Catalog of Living Cone Shells; MdM Publishing: Wellington, New Zealand, 2013; ISBN 0984714022. [Google Scholar]
- Azam, L.; McIntosh, J.M. Alpha-Conotoxins as Pharmacological Probes of Nicotinic Acetylcholine Receptors. Acta Pharmacol. Sin. 2009, 30, 783. [Google Scholar] [CrossRef] [PubMed]
Gene Superfamily | Data Feature Annotation | |
---|---|---|
Diet Type a | Organism Region b | |
A, T | M, P, V | IP, WAC, EP, EAM |
B1, D | P, V | IP, WAC, EAM |
C | P, V | IP |
Conodipine | P | EP |
Divergent MLLTVA and MSTLGMTLL, L | P, V | EP, IP |
E | M, P, V | IP, WAC, EAM |
G2 | V | IP, EP |
H, Insulin, J, S | M, P, V | IP |
I1 | M, P, V | IP, EP |
I2 | M, P, V | IP, WAC |
I3, K, Q, Y | V | IP |
M, O1, O2 | M, P, V | IP, EP, EAM |
O3 | M, P, V | IP, EAM |
P | M, V | IP, EP |
R | V | WAC |
U | M, V | IP |
Gene Superfamily | PCA Plots a | |||
---|---|---|---|---|
Overlay | Molluscivorous | Piscivorous | Vermivorous | |
A | ||||
B1 | ||||
C | ||||
O1 | ||||
T |
Alignment | Sequence Harmony | Multi-Relief | |
Score | Z-score | Weight | |
12 | 0.42 | −7.01 | 0.41 |
13 | 0.44 | −7.80 | 0.45 |
14 | 0.53 | −5.34 | 0.20 |
15 | 0.54 | −9.04 | 0.38 |
16 | 0.62 | −12.94 | 0.36 |
7 | 0.63 | −8.74 | 0.17 |
17 | 0.63 | −6.66 | 0.32 |
18 | 0.69 | −5.69 | 0.41 |
8 | 0.71 | −4.87 | 0.30 |
10 | 0.75 | −5.73 | 0.36 |
5 | 0.80 | −4.37 | 0.13 |
12 | 0.42 | −7.01 | 0.41 |
13 | 0.44 | −7.80 | 0.45 |
14 | 0.53 | −5.34 | 0.20 |
Position | Subgroup | Amino Acid | Property | Percentage (%) |
---|---|---|---|---|
12 | I | Glycine | Small/conformationally special | 54 |
II | Low consensus | – | – | |
III | Arginine, Lysine | Positively charged/basic | 59 | |
13 | I | Lysine, Arginine | Positively charged | 62 |
II | Valine, Alanine, Leucine, Methionine | Aliphatic/hydrophobic | 88 | |
III | Low consensus | – | – | |
15 | I | Tyrosine, Phenylalanine | Aromatic | 54 |
II | Asparagine, Histidine | Hydrophilic, positively charged | 95 | |
III | Gap prominence | – | – | |
16 | I | Serine | Hydrophilic | 63 |
II | Proline | Small/conformationally special | 88 | |
III | Gap prominence | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, A.K.V.; Tayo, L.L. Principal Component and Structural Element Analysis Provide Insights into the Evolutionary Divergence of Conotoxins. Biology 2023, 12, 20. https://doi.org/10.3390/biology12010020
Kikuchi AKV, Tayo LL. Principal Component and Structural Element Analysis Provide Insights into the Evolutionary Divergence of Conotoxins. Biology. 2023; 12(1):20. https://doi.org/10.3390/biology12010020
Chicago/Turabian StyleKikuchi, Akira Kio V., and Lemmuel L. Tayo. 2023. "Principal Component and Structural Element Analysis Provide Insights into the Evolutionary Divergence of Conotoxins" Biology 12, no. 1: 20. https://doi.org/10.3390/biology12010020
APA StyleKikuchi, A. K. V., & Tayo, L. L. (2023). Principal Component and Structural Element Analysis Provide Insights into the Evolutionary Divergence of Conotoxins. Biology, 12(1), 20. https://doi.org/10.3390/biology12010020