Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Media and Chemicals
2.2. Animals
2.3. Follicle Isolation, Encapsulation, and Culture
2.4. Follicle Diameter Measurement
2.5. Oocyte In Vitro Maturation
2.6. Oocyte In Vitro Fertilization
2.7. Immunostaining and Confocal Imaging
2.8. Assay of 17β-Estradiol, Progesterone, and AMH
2.9. Characterization of Genes Expression
2.10. Injection Protocol of IGF-1 during Mouse Superovulation
2.11. Statistical Analysis
3. Results
3.1. Effects of IGF-1 on Follicular Development and Maturation In Vitro
3.2. Effects of IGF-1 on 17β-Estradiol, Progesterone, and AMH Secreted by Follicles Cultured In Vitro
3.3. Effect of 10 ng/mL IGF-1 on the Expression of Hormone Secretion Related Genes, Oocyte-Secreted Factors Genes, and Gonadotropin Receptor Genes In Vitro
3.4. Effect of IGF-1 on the Expression of Apoptosis-Related Genes In Vitro
3.5. Effect of 10 ng/mL IGF-1 on Oocyte Quality and Fertilization Rate In Vitro
3.6. Effect of IGF-1 Treatment on Oocyte Number and Quality during Superovulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IGF-1 | Insulin-like growth factor-1 |
3D | Three-dimensional |
AMH | Anti-Müllerian hormone |
GCs | Granulosa cells |
GDF-9 | Growth and differentiation factor-9 |
BMP-15 | Bone morphogenetic protein-15 |
FGF-8 | Fibroblast growth factor-8 |
FSHR | Follicle Stimulating Hormone Receptor |
LHCGR | Luteinizing Hormone/Choriogonadotropin Receptor |
StAR | Steroidogenic Acute Regulatory Protein |
HSD3B1 | Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta- And Steroid Delta-Isomerase 1 |
IGFBPs | Insulin-like growth factor-1 binding proteins |
IGF-1R | Insulin-like growth factor-1 receptor |
FBS | Fetal bovine serum |
IVM | In vitro maturation |
SPSS | Statistical Package for the Social Sciences |
hCG | Human chorionic gonadotropin |
eCG | Equine chorionic gonadotropin |
References
- Smitz, J.E.J.; Cortvrindt, R.G. The earliest stages of folliculogenesis in vitro. Reproduction 2002, 123, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Monget, P.; Bobe, J.; Gougeon, A.; Fabre, S.; Monniaux, D.; Dalbies-Tran, R. The ovarian reserve in mammals: A functional and evolutionary perspective. Mol. Cell Endocrinol. 2012, 356, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Mazerbourg, S.; Bondy, C.A.; Zhou, J.; Monget, P. The insulin-like growth factor system: A key determinant role in the growth and selection of ovarian follicles? A comparative species study. Reprod. Domest. Anim. 2003, 38, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.V.; Figueiredo, J.R.; van den Hurk, R. Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology 2009, 71, 1193–1208. [Google Scholar] [CrossRef]
- Shiomi-Sugaya, N.; Komatsu, K.; Wang, J.W.; Yamashita, M.; Kikkawa, F.; Iwase, A. Regulation of secondary follicle growth by theca cells and insulin-like growth factor 1. J. Reprod. Develop. 2015, 61, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Rebouças, E.L.; Costa, J.J.N.; Passos, M.J.; Silva, A.W.B.; Rossi, R.O.D.S.; van den Hurk, R. Expression levels of mRNA for insulin-like growth factors 1 and 2, IGF receptors and IGF binding proteins in in vivo and in vitro grown bovine follicles. Zygote 2014, 22, 521–532. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, J.; Li, M.; Yan, L.; Zhao, Y.; Lian, Y. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Hum. Reprod. 2012, 27, 2146–2159. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, H.; Yakar, S.; LeRoith, D. Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice. Endocrinology 2009, 150, 4395–4403. [Google Scholar] [CrossRef] [Green Version]
- Wandji, S.A.; Wood, T.L.; Crawford, J.; Levison, S.W.; Hammond, J.M. Expression of mouse ovarian insulin growth factor system components during follicular development and atresia. Endocrinology 1998, 139, 5205–5214. [Google Scholar] [CrossRef]
- Zhao, J.; Taverne, M.A.M.; van der Weijden, G.C.; Bevers, M.M.; van den Hurk, R. Immunohistochemical localisation of growth hormone (GH), GH receptor (GHR), insulin-like growth factor I (IGF-I) and type I IGF-I receptor, and gene expression of GH and GHR in rat pre-antral follicles. Zygote 2002, 10, 85–94. [Google Scholar] [CrossRef]
- Monte, A.P.O.; Barros, V.R.P.; Santos, J.M.; Menezes, V.G.; Cavalcante, A.Y.P.; Gouveia, B.B. Immunohistochemical localization of insulin-like growth factor-1 (IGF-1) in the sheep ovary and the synergistic effect of IGF-1 and FSH of on follicular development in vitro and LH receptor immunostaining. Theriogenology 2019, 129, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Orisaka, M.; Tajima, K.; Tsang, B.K.; Kotsuji, F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J. Ovarian Res. 2009, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Kumar, T.R.; Matzuk, M.M.; Bondy, C. Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary. Mol. Endocrinol. 1997, 11, 1924–1933. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.M.; Fenwick, M.A.; Cheng, Z.R.; Sharma, M.K.; Singh, D.; Wathes, D.C. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduction 2010, 139, 139–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.Y.; Rajamahendran, R. Morphological and biochemical identification of apoptosis in small, medium, and large bovine follicles and the effects of follicle-stimulating hormone and insulin-like growth factor-I on spontaneous apoptosis in cultured bovine granulosa cells. Biol. Reprod. 2000, 62, 1209–1217. [Google Scholar] [CrossRef] [Green Version]
- Demeestere, I.; Gervy, C.; Centner, J.; Devreker, F.; Englert, Y.; Delbaere, A. Effect of insulin-like growth factor-I during preantral follicular culture on steroidogenesis, in vitro oocyte maturation, and embryo development in mice. Biol. Reprod. 2004, 70, 1664–1669. [Google Scholar] [CrossRef]
- Carabatsos, M.J.; Sellitto, C.; Goodenough, D.A.; Albertini, D.F. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 2000, 226, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Belli, M.; Vigone, G.; Merico, V.; Redi, C.A.; Zuccotti, M.; Garagna, S. Towards a 3D culture of mouse ovarian follicles. Int. J. Dev. Biol. 2012, 56, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, S.; Ren, J.; Wang, C.; Zhang, Y.; Su, X. Effect of animal-sourced bioactive peptides on the in vitro development of mouse preantral follicles. J. Ovarian Res. 2020, 13, 108. [Google Scholar] [CrossRef]
- Merz, C.; Saller, S.; Kunz, L.; Xu, J.; Yeoman, R.R.; Ting, A.Y. Expression of the beta-2 adrenergic receptor (ADRB-2) in human and monkey ovarian follicles: A marker of growing follicles? J. Ovarian Res. 2015, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.; Abdelhafez, F.; Calabro, A.; Falcone, T. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: A preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod. Biol. Endocrinol. 2012, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filatov, M.A.; Khramova, Y.V.; Semenova, M.L. In vitro mouse ovarian follicle growth and maturation in alginate hydrogel: Current state of the art. Acta Naturae 2015, 7, 48–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; West-Farrell, E.R.; Stouffer, R.L.; Shea, L.D.; Woodruff, T.K.; Zelinski, M.B. Encapsulated three-dimensional culture supports development of nonhuman primate secondary follicles. Biol. Reprod. 2009, 81, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pangas, S.A.; Saudye, H.; Shea, L.D.; Woodruff, T.K. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes. Tissue Eng. 2003, 9, 1013–1021. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Kreeger, P.K.; Shea, L.D.; Woodruff, T.K. Tissue-engineered follicles produce live, fertile offspring. Tissue Eng. 2006, 12, 2739–2746. [Google Scholar] [CrossRef]
- Demeestere, I.; Centner, J.; Gervy, C.; Englert, Y.; Delbaere, A. Impact of various endocrine and paracrine factors on in vitro culture of preantral follicles in rodents. Reproduction 2005, 130, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Walters, K.A.; Binnie, J.P.; Campbell, B.K.; Armstrong, D.G.; Telfer, E.E.J.R. The effects of IGF-I on bovine follicle development and IGFBP-2 expression are dose and stage dependent. Reproduction 2006, 131, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Arunakumari, G.; Shanmugasundaram, N.; Rao, V.H. Development of morulae from the oocytes of cultured sheep preantral follicles. Theriogenology 2010, 74, 884–894. [Google Scholar] [CrossRef]
- Jimenez, C.; de Azevedo, J.; Silveira, R.; Penitente-Filho, J.; Carrascal-Triana, E.; Zolini, A. Effects of growth hormone on in situ culture of bovine preantral follicles are dose dependent. Reprod. Domest. Anim. 2016, 51, 575–584. [Google Scholar] [CrossRef]
- Zhou, P.; Baumgarten, S.C.; Wu, Y.G.; Bennett, J.; Winston, N.; Hirshfeld-Cytron, J. IGF-I signaling is essential for FSH stimulation of AKT and steroidogenic genes in granulosa cells. Mol. Endocrinol. 2013, 27, 511–523. [Google Scholar] [CrossRef]
- Xu, M.; Barrett, S.L.; West-Farrell, E.; Kondapalli, L.A.; Kiesewetter, S.E.; Shea, L.D. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum. Reprod. 2009, 24, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Spicer, L.J.; Chamberlain, C.S.; Maciel, S.M.J.D.A.E. Influence of gonadotropins on insulin- and insulin-like growth factor-I (IGF-I)-induced steroid production by bovine granulosa cells. Domest. Anim. Endocrinol. 2002, 22, 237–254. [Google Scholar] [CrossRef]
- Sharma, G.T.; Dubey, P.K.; Meur, S.K. Survival and developmental competence of buffalo preantral follicles using three-dimensional collagen gel culture system. Anim. Reprod. Sci. 2009, 114, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Samar, Z.; Saleem, M.; Arshad, U.; Shahzad, M.; Mushtaq, M.H. Effect of plasma progesterone on oocyte recovery, oocyte quality, and early in-vitro developmental competence of embryos in Bos indicus dairy cows. Anim. Reprod. Sci. 2019, 202, 80–86. [Google Scholar] [CrossRef]
- Komatsu, K.; Satoru, M. The concentration-dependent effect of progesterone on follicle growth in the mouse ovary. J. Reprod. Dev. 2017, 63, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Joo, S.; Oh, S.H.; Sittadjody, S.; Opara, E.C.; Jackson, J.D.; Lee, S.J.; Yoo, J.J.; Atala, A. The effect of collagen hydrogel on 3D culture of ovarian follicles. Biomed. Mater. 2016, 11, 065009. [Google Scholar] [CrossRef] [Green Version]
- Durlinger, A.L.; Gruijters, M.J.; Kramer, P.; Karels, B.; Kumar, T.R.; Matzuk, M.M. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 2001, 142, 4891–4899. [Google Scholar] [CrossRef]
- Durlinger, A.L.; Visser, J.A.; Themmen, A.P.N. Regulation of ovarian function: The role of anti-Mullerian hormone. Reproduction 2002, 124, 601–609. [Google Scholar] [CrossRef]
- Steinkampf, M.P.; Mendelson, C.R.; Simpson, E.R. Effects of epidermal growth-factor and insulin-like growth factor-I on the levels of messenger-rna encoding aromatase cytochrome-P-450 of human ovarian granulosa-cells. Mol. Cell Endocrinol. 1988, 59, 93–99. [Google Scholar] [CrossRef]
- Xu, J.; Hennebold, J.D.; Seifer, D.B. Direct vitamin D3 actions on rhesus macaque follicles in three-dimensional culture: Assessment of follicle survival, growth, steroid, and antimüllerian hormone production. Fertil. Steril. 2016, 106, 1815–1820. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.S.; Thompson, J.G.; Gilchrist, R.B. Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 2006, 296, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.E.; Skinner, M.K. Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development. Biol. Reprod. 2002, 67, 1018–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.W.; Albertini, D.F.; Nishimori, K.; Kumar, T.R.; Lu, N.F.; Matzuk, M.M. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996, 383, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; McGee, E.A.; Min, G.; Klein, C.; Rose, U.M.; van Duin, M.; Hsueh, A.J. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology 1999, 140, 1236–1244. [Google Scholar] [CrossRef]
- Hreinsson, J.G.; Scott, J.E.; Rasmussen, C.; Swahn, M.L.; Hsueh, A.J.; Hovatta, O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J. Clin. Endocrinol. Metab. 2002, 87, 316–321. [Google Scholar] [CrossRef]
- Orisaka, M.; Orisaka, S.; Jiang, J.Y.; Craig, J.; Wang, Y.; Kotsuji, F.; Tsang, B.K. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol. Endocrinol. 2006, 20, 2456–2468. [Google Scholar] [CrossRef] [Green Version]
- Hanrahan, J.P.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 2004, 70, 900–909. [Google Scholar] [CrossRef]
- Hussein, T.S.; Froiland, D.A.; Amato, F.; Thompson, J.G.; Gilchrist, R.B. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 2005, 118, 5257–5268. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, O.; McMahon, H.E.; Sharma, S.; Shimasaki, S. A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc. Natl. Acad. Sci. USA 2006, 103, 10678–10683. [Google Scholar] [CrossRef] [Green Version]
- Chaves, R.; Matos, M.; Buratini, J.; Figueiredo, J. The fibroblast growth factor family: Involvement in the regulation of folliculogenesis. Reprod. Fertil Dev. 2012, 24, 905–915. [Google Scholar] [CrossRef]
- Sugiura, K.; Su, Y.Q.; Diaz, F.J.; Pangas, S.A.; Sharma, S.; Wigglesworth, K.; O’Brien, M.J.; Matzuk, M.M.; Shimasaki, S.; Eppig, J.J. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 2007, 134, 2593–2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, P.G.; Glister, C. TGF-beta superfamily members and ovarian follicle development. Reproduction 2006, 132, 191–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, O.; Moore, R.K.; Shimasaki, S. Posttranslational processing of mouse and human BMP-15: Potential implication in the determination of ovulation quota. Proc. Natl. Acad. Sci. USA 2005, 102, 5426–5431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, H.; Maizels, E.T.; Park, Y.; Ghaey, S.; Feiger, Z.J.; Chandel, N.S. Follicle-stimulating hormone activation of hypoxia-inducible factor-1 by the phosphatidylinositol 3-kinase/AKT/Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) pathway is necessary for induction of select protein markers of follicular differentiation. J. Biol. Chem. 2004, 279, 19431–19440. [Google Scholar] [PubMed] [Green Version]
- Baumgarten, S.C.; Armouti, M.; Ko, C.; Stocco, C. IGF1R expression in ovarian granulosa cells is essential for steroidogenesis, follicle survival, and fertility in female mice. Endocrinology 2017, 158, 2309–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeleznik, A.J.; Saxena, D.; Little-Ihrig, L. Protein kinase B is obligatory for follicle-stimulating hormone-induced granulosa cell differentiation. Endocrinology 2003, 144, 3985–3994. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, T.; Minegishi, T.; Abe, K.; Kishi, H.; Ibuki, Y.; Miyamoto, K. A role of insulin-like growth factor I in luteinizing hormone receptor expression in granulosa cells. Endocrinology 1999, 140, 4965–4971. [Google Scholar] [CrossRef]
- Rawan, A.F.; Yoshioka, S.; Abe, H.; Acosta, T.J. Insulin-like growth factor-1 regulates the expression of luteinizing hormone receptor and steroid production in bovine granulosa cells. Reprod. Domest. Anim. 2015, 50, 283–291. [Google Scholar] [CrossRef]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2015, 7, a026716. [Google Scholar] [CrossRef] [Green Version]
- Pollak, M.N.; Schernhammer, E.S.; Hankinson, S.E. Insulin-like growth factors and neoplasia. Nat. Rev. Cancer 2004, 4, 505–518. [Google Scholar] [CrossRef]
- Moore, S.F.; Williams, C.M.; Brown, E.; Blair, T.A.; Harper, M.T.; Coward, R.J.; Poole, A.W.; Hers, I. Loss of the insulin receptor in murine megakaryocytes/platelets causes thrombocytosis and alterations in IGF signalling. Cardiovasc Res. 2015, 107, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reverchon, M.; Cornuau, M.; Ramé, C.; Guerif, F.; Royère, D.; Dupont, J. Chemerin inhibits IGF-1-induced progesterone and estradiol secretion in human granulosa cells. Hum. Reprod. 2012, 27, 1790–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perks, C.M.; Denning-Kendall, P.A.; Gilmour, R.S.; Wathes, D.C. Localization of messenger ribonucleic acids for insulin-like growth factor I (IGF-I), IGF-II, and the type 1 IGF receptor in the ovine ovary throughout the estrous cycle. Endocrinology 1995, 136, 5266–5273. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.S.; Russell, D.L.; Ochsner, S.; Espey, L.L. Ovulation: New dimensions and new regulators of the inflammatory-like response. Annu. Rev. Physiol. 2002, 64, 69–92. [Google Scholar] [CrossRef]
- De Munck, N.; Bayram, A.; Elkhatib, I.; Abdala, A.; El-Damen, A.; Arnanz, A.; Melado, L.; Lawrenz, B.; Fatemi, H.M. Marginal differences in preimplantation morphokinetics between conventional IVF and ICSI in patients with preimplantation genetic testing for aneuploidy (PGT-A): A sibling oocyte study. PLoS ONE 2022, 17, e0267241. [Google Scholar] [CrossRef]
- Su, H.; Lai, Y.; Li, J.; Liao, T.; Ji, L.; Hu, X.; Qian, K. Increasing dominant follicular proportion negatively associated with good clinical outcomes in normal ovarian responders using the depot GnRH agonist protocol: A large-sample retrospective analysis. J. Ovarian Res. 2022, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, S.; Hiraizumi, S.; Bai, H.; Takahashi, M.; Kawahara, M. Cattle production by intracytoplasmic sperm injection into oocytes vitrified after ovum pick-up. Theriogenology 2022, 185, 121–126. [Google Scholar] [CrossRef]
- Bebbere, D.; Nieddu, S.M.; Ariu, F.; Piras, D.; Ledda, S. 3D liquid marble microbioreactors support in vitro maturation of prepubertal ovine oocytes and affect expression of oocyte-specific factors. Biology 2021, 10, 1101. [Google Scholar] [CrossRef]
- Gorczyca, G.; Wartalski, K.; Romek, M.; Samiec, M.; Duda, M. The molecular quality and mitochondrial activity of porcine cumulus-oocyte complexes are affected by their exposure to three endocrine-active compounds under 3d in vitro maturation conditions. Int. J. Mol. Sci. 2022, 23, 4572. [Google Scholar] [CrossRef]
- Goel, P.; Malpotra, S.; Shyam, S.; Kumar, D.; Singh, M.K.; Palta, P. Global microrna expression profiling of buffalo (Bubalus bubalis) embryos at different developmental stages produced by somatic cell nuclear transfer and in-vitro fertilization using rna sequencing. Genes 2022, 3, 453. [Google Scholar] [CrossRef]
- Wiater, J.; Samiec, M.; Wartalski, K.; Smorąg, Z.; Jura, J.; Słomski, R.; Skrzyszowska, M.; Romek, M. Characterization of mono- and bi-transgenic pig-derived epidermal keratinocytes expressing human fut2 and gla genes-in vitro studies. Int. J. Mol. Sci. 2021, 22, 9683. [Google Scholar] [CrossRef] [PubMed]
- Assareh, N.; Shahemabadi, M.; Varnosfaderani, S.R.; Jafarpour, F.; Hajian, M.; Nasr-Esfahani, M.H. Sequential IVM by CNP preincubation and cooperating of PGE2 with AREG enhances developmental competence of SCNT reconstructs in goat. Sci. Rep. 2022, 12, 4243. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence | bp | No. NCBI |
---|---|---|---|
Gapdh | F: 5′-GGGTCCCAGCTTAGGTTCATC-3′ R: 5′-CCCAATACGGCCAAATCCGT-3′ | 100 | NM_001289726.1 |
Gdf-9 | F: 5′-TCACCTCTACAATACCGTCCGG-3′ R: 5′-GAGCAAGTGTTCCATGGCAGTC-3′ | 139 | XM_006532220.3 |
Bmp-15 | F: 5′-GCACGATTGGAGCGAAAATG-3′ R: 5′-CGTACGCTACCTGGTTTGATGC-3′ | 123 | NM_009757.5 |
Fgf-8 | F:5′-CAGGTCTCTACATCTGCATGAACAA-3′ R: 5′-TCTCCAGCACGATCTCTGTGAATA-3′ | 96 | XM_006526668.3 |
Amh | F: 5′-TGCTAGTCCTACATCTGGCTGA-3′ R: 5′-GTCCAGGGTATAGCACTAACAGG-3′ | 120 | XM_006513119.3 |
Star | F: 5′-GCTGCAGAAGCTCAACAACC-3′ R: 5′-TTGTCCCGTTCATCTGGTGG-3′ | 104 | NM_010828.3 |
Cyp19a1 | F: 5′-GAACAACCCTTGAGCACCTC-3′ R: 5′-AGCTTGGTGCCTTAATCCTTTC-3′ | 111 | NM_011485.5 |
Hsd3b1 | F: 5′-TTTTCGCTGAGAGACGTGGAG-3′ R: 5′-CCTCTGGATACTCTGCGACG-3′ | 135 | NM_007810.4 |
Lhcgr | F: 5′-GCTGCACAGGAATAAAGGACA-3′ R: 5′-CATGCCTGCTTCGTGACCAT-3′ | 89 | NM_008293.4 |
Fshr | F: 5′-AATGAGTCCATCACGCTGAAAC-3′ R: 5′-CCTGCAATTTGGTGGAAGAGA-3′ | 187 | NM_001364898.1 |
Bcl2 | F: 5′-AGTACCTGAACCGGCATCTG-3′ R: 5′-TATGCACCCAGAGTGATGCAG-3′ | 169 | NM_009741.5 |
Bax | F: 5′-CCCGAGCTGATCAGAACCAT-3′ R: 5′-TTCCTAATGCCAACCTGTGAAG-3′ | 139 | XM_011250780.2 |
Caspase3 | F: 5′-GCTTGGAACGGTACGCTAAG-3′ R: 5′-CCACTGACTTGCTCCCATGT-3′ | 112 | NM_001284409.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, S.; Zhang, H.; Yang, F.; Shang, W.; Zeng, S. Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice. Biology 2022, 11, 833. https://doi.org/10.3390/biology11060833
Dai S, Zhang H, Yang F, Shang W, Zeng S. Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice. Biology. 2022; 11(6):833. https://doi.org/10.3390/biology11060833
Chicago/Turabian StyleDai, Shizhen, Hanxue Zhang, Feng Yang, Wei Shang, and Shenming Zeng. 2022. "Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice" Biology 11, no. 6: 833. https://doi.org/10.3390/biology11060833
APA StyleDai, S., Zhang, H., Yang, F., Shang, W., & Zeng, S. (2022). Effects of IGF-1 on the Three-Dimensional Culture of Ovarian Preantral Follicles and Superovulation Rates in Mice. Biology, 11(6), 833. https://doi.org/10.3390/biology11060833