Epstein–Barr Virus Association with Breast Cancer: Evidence and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Breast Cancer Classification
3. Epstein–Barr Virus Structure and Replication Cycle
4. Breast Cancer and EBV Epidemiology
5. EBV in Breast Cancer: Potential Mechanisms
6. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.A. Breast Cancer Disparities: Socioeconomic Factors versus Biology. Ann. Surg. Oncol. 2017, 24, 2869–2875. [Google Scholar] [CrossRef] [PubMed]
- Igene, H. Global Health Inequalities and Breast Cancer: An Impending Public Health Problem for Developing Countries. Breast J. 2008, 14, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Bartlett, J.; Slaets, L.; van Deurzen, C.; van Leeuwen-Stok, E.; Porter, P.; Linderholm, B.; Hedenfalk, I.; Schröder, C.; Martens, J.; et al. Characterization of male breast cancer: Results of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program. Ann. Oncol. 2017, 29, 405–417. [Google Scholar] [CrossRef]
- André, S.; Pereira, T.; Silva, F.; Machado, P.; Vaz, F.; Aparício, M.; Silva, G.L.; Pinto, A.E. Male breast cancer: Specific biological characteristics and survival in a Portuguese cohort. Mol. Clin. Oncol. 2019, 10, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Konduri, S.; Singh, M.; Bobustuc, G.; Rovin, R.; Kassam, A. Epidemiology of male breast cancer. Breast 2020, 54, 8–14. [Google Scholar] [CrossRef]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37,513,025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Barrios, C.H.; Reinert, T.; Werutsky, G. Global Breast Cancer Research: Moving Forward. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 441–450. [Google Scholar] [CrossRef]
- Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017, 50, 33. [Google Scholar] [CrossRef] [Green Version]
- Holm, J.; Eriksson, L.; Ploner, A.; Eriksson, M.; Rantalainen, M.; Li, J.; Hall, P.; Czene, K. Assessment of Breast Cancer Risk Factors Reveals Subtype Heterogeneity. Cancer Res. 2017, 77, 3708–3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lofterød, T.; Frydenberg, H.; Flote, V.; Eggen, A.E.; McTiernan, A.; Mortensen, E.S.; Akslen, L.A.; Reitan, J.B.; Wilsgaard, T.; Thune, I. Exploring the effects of lifestyle on breast cancer risk, age at diagnosis, and survival: The EBBA-Life study. Breast Cancer Res. Treat. 2020, 182, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.A.; Jian, J.-W.; Hung, C.-F.; Peng, H.-P.; Yang, C.-F.; Cheng, H.-C.S.; Yang, A.-S. Germline breast cancer susceptibility gene mutations and breast cancer outcomes. BMC Cancer 2018, 18, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannon, O.; Antonsson, A.; Bennett, I.; Saunders, N. Viral infections and breast cancer—A current perspective. Cancer Lett. 2018, 420, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Bittner, J.J. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 1936, 84, 162. [Google Scholar] [CrossRef]
- Lawson, J.S.; Glenn, W.K. Multiple oncogenic viruses are present in human breast tissues before development of virus associated breast cancer. Infect. Agents Cancer 2017, 12, 55. [Google Scholar] [CrossRef]
- Blanco, R.; Carrillo-Beltrán, D.; Muñoz, J.P.; Corvalán, A.H.; Calaf, G.M.; Aguayo, F. Human Papillomavirus in Breast Carcinogenesis: A Passenger, a Cofactor, or a Causal Agent? Biology 2021, 10, 804. [Google Scholar] [CrossRef]
- Labrecque, L.G.; Barnes, D.M.; Fentiman, I.S.; Griffin, B.E. Epstein-Barr virus in epithelial cell tumors: A breast cancer study. Cancer Res. 1995, 55, 39–45. [Google Scholar]
- Khabaz, M.N. Association of Epstein-Barr virus infection and breast carcinoma. Arch. Med. Sci. 2013, 9, 745–751. [Google Scholar] [CrossRef]
- Januškevičienė, I.; Petrikaitė, V. Heterogeneity of breast cancer: The importance of interaction between different tumor cell populations. Life Sci. 2019, 239, 117009. [Google Scholar] [CrossRef]
- Turashvili, G.; Brogi, E. Tumor Heterogeneity in Breast Cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morehead, J.R. Anatomy and Embryology of the Breast. Clin. Obstet. Gynecol. 1982, 25, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Cserni, G. Histological type and typing of breast carcinomas and the WHO classification changes over time. Pathologica 2020, 112, 25–41. [Google Scholar] [CrossRef]
- Cordera, F.; Jordan, V.C. Steroid Receptors and Their Role in the Biology and Control of Breast Cancer Growth. Semin. Oncol. 2006, 33, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.B.; Anderson, E.; Howell, A. Steroid receptors in human breast cancer. Trends Endocrinol. Metab. 2004, 15, 316–323. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Hu, Z.; Fan, C.; Oh, D.S.; Marron, J.S.; He, X.; Qaqish, B.F.; Livasy, C.; Carey, L.A.; Reynolds, E.; Dressler, L.; et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom. 2006, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef]
- Dunnwald, L.K.; Rossing, M.A.; Li, C.I. Hormone receptor status, tumor characteristics, and prognosis: A prospective cohort of breast cancer patients. Breast Cancer Res. 2007, 9, R6. [Google Scholar] [CrossRef]
- Cheang, M.C.U.; Chia, S.K.; Voduc, D.; Gao, D.; Leung, S.; Snider, J.; Watson, M.; Davies, S.; Bernard, P.S.; Parker, J.S.; et al. Ki67 Index, HER2 Status, and Prognosis of Patients with Luminal B Breast Cancer. JNCI J. Natl. Cancer Inst. 2009, 101, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Tao, Q.; Young, L.S.; Woodman, C.B.J.; Murray, P.G. Epstein-Barr virus (EBV) and its associated human cancers—Genetics, epigenetics, pathobiology and novel therapeutics. Front. Biosci. 2006, 11, 2672–2713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipman, M.; Andrews, L.; Niederman, J.; Miller, G. Direct Visualization of Enveloped Epstein-Barr Herpesvirus in Throat Washing with Leukocyte-Transforming Activity. J. Infect. Dis. 1975, 132, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Baer, R.; Bankier, A.T.; Biggin, M.D.; Deininger, P.; Farrell, P.; Gibson, T.J.; Hatfull, G.; Hudson, G.S.; Satchwell, S.C.; Séguin, C.; et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 1984, 310, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Sample, J.; Young, L.; Martin, B.; Chatman, T.; Kieff, E.; Rickinson, A. Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol. 1990, 64, 4084–4092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyashita, E.M.; Yang, B.; Babcock, G.J.; Thorley-Lawson, D.A. Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J. Virol. 1997, 71, 4882–4891. [Google Scholar] [CrossRef] [Green Version]
- Young, L.; Yap, L.-F.; Murray, P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer 2016, 16, 789–802. [Google Scholar] [CrossRef]
- Chan, K.; Tam, J.; Peiris, J.S.M.; Seto, W.; Ng, M. Epstein-Barr virus (EBV) infection in infancy. J. Clin. Virol. 2001, 21, 57–62. [Google Scholar] [CrossRef]
- Lemon, S.M.; Hutt, L.M.; Shaw, J.E.; Li, J.-L.H.; Pagano, J.S. Replication of EBV in epithelial cells during infectious mononucleosis. Nature 1977, 268, 268–270. [Google Scholar] [CrossRef]
- Sixbey, J.W.; Nedrud, J.G.; Raab-Traub, N.; Hanes, R.A.; Pagano, J.S. Epstein-Barr Virus Replication in Oropharyngeal Epithelial Cells. N. Engl. J. Med. 1984, 310, 1225–1230. [Google Scholar] [CrossRef]
- Tierney, R.J.; Steven, N.; Young, L.S.; Rickinson, A.B. Epstein-Barr virus latency in blood mononuclear cells: Analysis of viral gene transcription during primary infection and in the carrier state. J. Virol. 1994, 68, 7374–7385. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hutt-Fletcher, L.M. Epstein-Barr Virus Lacking Glycoprotein gp42 Can Bind to B Cells but Is Not Able To Infect. J. Virol. 1998, 72, 158–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingeroth, J.D.; Weis, J.J.; Tedder, T.F.; Strominger, J.L.; Biro, P.A.; Fearon, D.T. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. USA 1984, 81, 4510–4514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, J.; Weis, J.; Fearon, D.; Whang, Y.; Kieff, E. Epstein-barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 1987, 50, 203–213. [Google Scholar] [CrossRef]
- Lindahl, T.; Adams, A.; Bjursell, G.; Bornkamm, G.W.; Kaschka-Dierich, C.; Jehn, U. Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J. Mol. Biol. 1976, 102, 511–530. [Google Scholar] [CrossRef]
- Babcock, G.J.; Hochberg, D.; Thorley-Lawson, D.A. The Expression Pattern of Epstein-Barr Virus Latent Genes In Vivo Is Dependent upon the Differentiation Stage of the Infected B Cell. Immunity 2000, 13, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Laichalk, L.L.; Thorley-Lawson, D.A. Terminal Differentiation into Plasma Cells Initiates the Replicative Cycle of Epstein-Barr Virus In Vivo. J. Virol. 2005, 79, 1296–1307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, Y.; Wang, H.-B.; Zhang, A.; Chen, M.-L.; Fang, Z.-X.; Dong, X.-D.; Li, S.-B.; Du, Y.; Xiong, D.; et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat. Microbiol. 2018, 3, 164–171. [Google Scholar] [CrossRef]
- Miller, N.; Hutt-Fletcher, L.M. Epstein-Barr virus enters B cells and epithelial cells by different routes. J. Virol. 1992, 66, 3409–3414. [Google Scholar] [CrossRef] [Green Version]
- Rooney, C.M.; Rowe, D.T.; Ragot, T.; Farrell, P.J. The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J. Virol. 1989, 63, 3109–3116. [Google Scholar] [CrossRef] [Green Version]
- Ragoczy, T.; Heston, L.; Miller, G. The Epstein-Barr Virus Rta Protein Activates Lytic Cycle Genes and Can Disrupt Latency in B Lymphocytes. J. Virol. 1998, 72, 7978–7984. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, P.M.; Hardwick, J.M.; Sample, J.; Hayward, G.S.; Hayward, S.D. The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J. Virol. 1990, 64, 1143–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fixman, E.D.; Hayward, G.S.; Hayward, S.D. Trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J. Virol. 1992, 66, 5030–5039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerschmidt, W.; Sugden, B. Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 1988, 55, 427–433. [Google Scholar] [CrossRef]
- Aubry, V.; Mure, F.; Mariamé, B.; Deschamps, T.; Wyrwicz, L.S.; Manet, E.; Gruffat, H. Epstein-Barr Virus Late Gene Transcription Depends on the Assembly of a Virus-Specific Preinitiation Complex. J. Virol. 2014, 88, 12825–12838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr Virus and Kaposi’s Sarcoma Herpesvirus/Human Herpesvirus 8. In Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, France, 17–24 June, 1997; International Agency for Research on Cancer: Lyon, France, 1997; Volume 70, pp. 1–492. [Google Scholar]
- Wong, Y.; Meehan, M.T.; Burrows, S.R.; Doolan, D.L.; Miles, J.J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. 2021, 148, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.; Rooney, C.M.; Edwards, C.F.; Lenoir, G.M.; Rickinson, A.B. Epstein-Barr virus status and tumour cell phenotype in sporadic Burkitt’s lymphoma. Int. J. Cancer 1986, 37, 367–373. [Google Scholar] [CrossRef]
- Weiss, L.M.; Strickler, J.G.; Warnke, R.A.; Purtilo, D.T.; Sklar, J. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am. J. Pathol. 1987, 129, 86–91. [Google Scholar]
- Raab-Traub, N.; Flynn, K.; Pagano, J.; Pearson, G.; Huang, A.; Levine, P.; Lanier, A. The differentiated form of nasopharyngeal carcinoma contains epstein-barr virus DNA. Int. J. Cancer 1987, 39, 25–29. [Google Scholar] [CrossRef]
- Burke, A.P.; Yen, T.S.; Shekitka, K.M.; Sobin, L.H. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod. Pathol. 1990, 3, 377–380. [Google Scholar]
- Jones, J.F.; Shurin, S.; Abramowsky, C.; Tubbs, R.R.; Sciotto, C.G.; Wahl, R.; Sands, J.; Gottman, D.; Katz, B.Z.; Sklar, J. T-Cell Lymphomas Containing Epstein-Barr Viral DNA in Patients with Chronic Epstein-Barr Virus Infections. N. Engl. J. Med. 1988, 318, 733–741. [Google Scholar] [CrossRef]
- Pan, X.; Zhu, X.; Li, Q.Q. Case report of concurrent primary malignancies of the breast and nasopharynx. Oncol. Lett. 2012, 4, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Leach, B.I.; Sun, B.; Petrovic, L.; Liu, S.V. Breast metastasis from nasopharyngeal carcinoma: A case report and review of the literature. Oncol. Lett. 2013, 5, 1859–1861. [Google Scholar] [CrossRef] [PubMed]
- Kalkan, A.; Ozdarendeli, A.; Bulut, Y.; Yekeler, H.; Cobanoglu, B.; Doymaz, M.Z. Investigation of Epstein-Barr Virus DNA in Formalin-Fixed and Paraffin- Embedded Breast Cancer Tissues. Med. Princ. Pract. 2005, 14, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Preciado, M.V.; Chabay, P.A.; De Matteo, E.N.; Gonzalez, P.; Grinstein, S.; Actis, A.; Gass, H.D. Epstein-Barr Virus in Breast Carcinoma in Argentina. Arch. Pathol. Lab. Med. 2005, 129, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Glaser, S.L.; Canchola, A.J.; Keegan, T.H.M.; Clarke, C.A.; Longacre, T.A.; Gulley, M.L. Variation in risk and outcomes of Epstein-Barr virus-associated breast cancer by epidemiologic characteristics and virus detection strategies: An exploratory study. Cancer Causes Control 2017, 28, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Fina, F.; Romain, S.; Ouafik, L.; Palmari, J.; Ben Ayed, F.; Benharkat, S.; Bonnier, P.; Spyratos, F.; Foekens, J.A.; Rose, C.; et al. Frequency and genome load of Epstein-Barr virus in 509 breast cancers from different geographical areas. Br. J. Cancer 2001, 84, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Kijima, Y.; Hokita, S.; Takao, S.; Baba, M.; Natsugoe, S.; Yoshinaka, H.; Aridome, K.; Otsuji, T.; Itoh, T.; Tokunaga, M.; et al. Epstein-Barr virus involvement is mainly restricted to lymphoepithelial type of gastric carcinoma among various epithelial neoplasms. J. Med. Virol. 2001, 64, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.G.; Chang, K.L.; Chen, Y.-Y.; Chen, W.-G.; Weiss, L.M. No Significant Association of Epstein-Barr Virus Infection with Invasive Breast Carcinoma. Am. J. Pathol. 2001, 159, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Joshi, D.; Quadri, M.; Gangane, N.; Joshi, R.; Gangane, N. Association of Epstein Barr Virus Infection (EBV) with Breast Cancer in Rural Indian Women. PLoS ONE 2009, 4, e8180. [Google Scholar] [CrossRef] [Green Version]
- Lorenzetti, M.A.; De Matteo, E.; Gass, H.; Vazquez, P.M.; Lara, J.; Gonzalez, P.; Preciado, M.V.; Chabay, P.A. Characterization of Epstein Barr Virus Latency Pattern in Argentine Breast Carcinoma. PLoS ONE 2010, 5, e13603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazouni, C.; Fina, F.; Romain, S.; Ouafik, L.; Bonnier, P.; Brandone, J.-M.; Martin, P.-M. Epstein-Barr virus as a marker of biological aggressiveness in breast cancer. Br. J. Cancer 2011, 104, 332–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguayo, F.; Khan, N.; Koriyama, C.; González, C.; Ampuero, S.; Padilla, O.; Solís, L.; Eizuru, Y.; Corvalán, A.; Akiba, S. Human papillomavirus and Epstein-Barr virus infections in breast cancer from chile. Infect. Agents Cancer 2011, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zekri, A.-R.N.; Bahnassy, A.A.; Mohamed, W.; El-Kassem, F.A.; El-Khalidi, S.J.; Hafez, M.M.; Hassan, Z.K. Epstein-Barr virus and breast cancer: Epidemiological and Molecular study on Egyptian and Iraqi women. J. Egypt. Natl. Cancer Inst. 2012, 24, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Yahia, Z.A.; Adam, A.A.; Elgizouli, M.; Hussein, A.; Masri, M.A.; Kamal, M.; Mohamed, H.S.; Alzaki, K.; Elhassan, A.M.; Hamad, K.; et al. Epstein Barr virus: A prime candidate of breast cancer aetiology in Sudanese patients. Infect. Agents Cancer 2014, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.K.; Currie, M.J.; Robinson, B.A.; Morrin, H.; Phung, Y.; Pearson, J.F.; Anderson, T.P.; Potter, J.D.; Walker, L.C. Cytomegalovirus and Epstein-Barr Virus in Breast Cancer. PLoS ONE 2015, 10, e0118989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Naby, N.E.H.; Mohamed, H.H.; Goda, A.M.; Mohamed, A.E.S. Epstein-Barr virus infection and breast invasive ductal carcinoma in Egyptian women: A single center experience. J. Egypt. Natl. Cancer Inst. 2017, 29, 77–82. [Google Scholar] [CrossRef]
- Pai, T.; Gupta, S.; Gurav, M.; Nag, S.; Shet, T.; Patil, A.; Desai, S. Evidence for the association of Epstein-Barr Virus in breast cancer in Indian patients using in-situ hybridization technique. Breast J. 2018, 24, 16–22. [Google Scholar] [CrossRef]
- Fessahaye, G.; Elhassan, A.M.; Elamin, E.M.; Adam, A.A.M.; Ghebremedhin, A.; Ibrahim, M.E. Association of Epstein-Barr virus and breast cancer in Eritrea. Infect. Agents Cancer 2017, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Sharifpour, C.; Makvandi, M.; Samarbafzadeh, A.; Talaei-Zadeh, A.; Ranjbari, N.; Nisi, N.; Azaran, A.; Jalilian, S.; Varnaseri, M.; Pirmoradi, R.; et al. Frequency of Epstein-Barr Virus DNA in Formalin-fixed Paraffin-embedded Tissue of Patients with Ductal Breast Carcinoma. Asian Pac. J. Cancer Prev. 2019, 20, 687–692. [Google Scholar] [CrossRef] [Green Version]
- Mofrad, M.G.; Kazeminezhad, B.; Faghihloo, E. Prevalence of Epstein-Barr virus (EBV) in Iranian Breast Carcinoma Patients. Asian Pac. J. Cancer Prev. 2020, 21, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.-S.; Chen, C.-C.; Chang, K.-J. In situ detection of Epstein-Barr virus in breast cancer. Cancer Lett. 1998, 124, 53–57. [Google Scholar] [CrossRef]
- Glaser, S.L.; Ambinder, R.F.; DiGiuseppe, J.A.; Horn-Ross, P.L.; Hsu, J.L. Absence of Epstein-Barr virus EBER-1 transcripts in an epidemiologically diverse group of breast cancers. Int. J. Cancer 1998, 75, 555–558. [Google Scholar] [CrossRef]
- Deshpande, C.G.; Badve, S.; Kidwai, N.; Longnecker, R. Lack of Expression of the Epstein-Barr Virus (EBV) Gene Products, EBERs, EBNA1, LMP1, and LMP2A, in Breast Cancer Cells. Lab. Investig. 2002, 82, 1193–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, K.; Niedobitek, G. Lack of evidence for an association of Epstein-Barr virus infection with breast carcinoma. Breast Cancer Res. 2002, 5, R13–R17. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.G.; Lissauer, D.; Junying, J.; Davies, G.; Moore, S.; Bell, A.; Timms, J.; Rowlands, D.; McConkey, C.; Reynolds, G.M.; et al. Reactivity with A monoclonal antibody to Epstein-Barr virus (EBV) nuclear antigen 1 defines a subset of aggressive breast cancers in the absence of the EBV genome. Cancer Res. 2003, 63, 2338–2343. [Google Scholar]
- Perrigoue, J.G.; Boon, J.A.D.; Friedl, A.; Newton, M.A.; Ahlquist, P.; Sugden, B. Lack of Association between EBV and Breast Carcinoma. Cancer Epidemiol. Biomark. Prev. 2005, 14, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Kadivar, M.; Monabati, A.; Joulaee, A.; Hosseini, N. Epstein-Barr Virus and Breast Cancer: Lack of Evidence for an Association in Iranian Women. Pathol. Oncol. Res. 2011, 17, 489–492. [Google Scholar] [CrossRef]
- Dowran, R.; Joharinia, N.; Safaei, A.; Bakhtiyarizadeh, S.; Soleimani, A.A.; Alizadeh, R.; Mir-Shiri, S.; Sarvari, J. No detection of EBV, BKV and JCV in breast cancer tissue samples in Iran. BMC Res. Notes 2019, 12, 171. [Google Scholar] [CrossRef]
- Arbach, H.; Viglasky, V.; Lefeu, F.; Guinebretière, J.-M.; Ramirez, V.; Bride, N.; Boualaga, N.; Bauchet, T.; Peyrat, J.-P.; Mathieu, M.-C.; et al. Epstein-Barr Virus (EBV) Genome and Expression in Breast Cancer Tissue: Effect of EBV Infection of Breast Cancer Cells on Resistance to Paclitaxel (Taxol). J. Virol. 2006, 80, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Luo, M.-L.; Desmedt, C.; Nabavi, S.; Yadegarynia, S.; Hong, A.; Konstantinopoulos, P.A.; Gabrielson, E.; Hines-Boykin, R.; Pihan, G.; et al. Epstein-Barr Virus Infection of Mammary Epithelial Cells Promotes Malignant Transformation. eBioMedicine 2016, 9, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.B.; Manet, E.; Gruffat, H.; Busson, P.; Blondel, M.; Fahraeus, R. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus-Associated Cancers. Cancers 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Ning, S. New Look of EBV LMP1 Signaling Landscape. Cancers 2021, 13, 5451. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Aguayo, F. Role of BamHI-A Rightward Frame 1 in Epstein-Barr Virus-Associated Epithelial Malignancies. Biology 2020, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Akhil, K.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 2020, 38, 675–678. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, Y.-J.; Xue, S.-A.; Chen, H.; Wedderburn, N.; Griffin, B.E. Hypothesis: A novel route for immortalization of epithelial cells by Epstein-Barr virus. Oncogene 2002, 21, 825–835. [Google Scholar] [CrossRef]
- Xue, S.A.; Lampert, I.A.; Haldane, J.S.; Bridger, J.E.; Griffin, B.E. Epstein-Barr virus gene expression in human breast cancer: Protagonist or passenger? Br. J. Cancer 2003, 89, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Tsao, S.W.; Tsang, C.M.; Pang, P.S.; Zhang, G.; Chen, H.; Lo, K.W. The biology of EBV infection in human epithelial cells. Semin. Cancer Biol. 2012, 22, 137–143. [Google Scholar] [CrossRef]
- Aguayo, F.; Castillo, A.; Koriyama, C.; Higashi, M.; Itoh, T.; Capetillo, M.; Shuyama, K.; Corvalan, A.; Eizuru, Y.; Akiba, S. Human papillomavirus-16 is integrated in lung carcinomas: A study in Chile. Br. J. Cancer 2007, 97, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Yasui, Y.; Potter, J.; Stanford, J.L.; Rossing, M.A.; Winget, M.D.; Bronner, M.; Daling, J. Breast cancer risk and “delayed” primary Epstein-Barr virus infection. Cancer Epidemiol. Biomark. Prev. 2001, 10, 9–16. [Google Scholar]
- Nanbo, A.; Kawanishi, E.; Yoshida, R.; Yoshiyama, H. Exosomes Derived from Epstein-Barr Virus-Infected Cells Are Internalized via Caveola-Dependent Endocytosis and Promote Phenotypic Modulation in Target Cells. J. Virol. 2013, 87, 10334–10347. [Google Scholar] [CrossRef] [Green Version]
- Sobral-Leite, M.; Salomon, I.; Opdam, M.; Kruger, D.T.; Beelen, K.J.; Van Der Noort, V.; Van Vlierberghe, R.L.P.; Blok, E.J.; Giardiello, D.; Sanders, J.; et al. Cancer-immune interactions in ER-positive breast cancers: PI3K pathway alterations and tumor-infiltrating lymphocytes. Breast Cancer Res. 2019, 21, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajbongshi, L.; Noh, M.H.; Kim, Y.S.; Hur, D.Y. Effects of Epstein-Barr Virus Infection on the Response of Human Breast Cancer Cells to Nicotine. Anticancer Res. 2021, 41, 3449–3458. [Google Scholar] [CrossRef] [PubMed]
- Calaf, G.M.; Bleak, T.C.; Roy, D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells (Review). Oncol. Rep. 2021, 45, 24. [Google Scholar] [CrossRef] [PubMed]
- Calaf, G.M.; Bleak, T.C.; Muñoz, J.P.; Aguayo, F. Markers of epithelial-mesenchymal transition in an experimental breast cancer model induced by organophosphorous pesticides and estrogen (Review). Oncol. Lett. 2020, 20, 84. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.J.; Lee, J.; Park, H.L. Organophosphate Pesticide Exposure and Breast Cancer Risk: A Rapid Review of Human, Animal, and Cell-Based Studies. Int. J. Environ. Res. Public Health 2020, 17, 5030. [Google Scholar] [CrossRef]
- Morales-Sánchez, A.; Fuentes-Panana, E.M. The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers 2018, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Gupta, I.; Ulamec, M.; Peric-Balja, M.; Ramic, S.; Al Moustafa, A.-E.; Vranic, S.; Al-Farsi, H.F. Presence of high-risk HPVs, EBV, and MMTV in human triple-negative breast cancer. Hum. Vaccines Immunother. 2021, 17, 4457–4466. [Google Scholar] [CrossRef]
Author/Year | BC Type | EBV Detection | Detection Method |
---|---|---|---|
Labrecque 1995 | IDC-DCIS BD/L-ILC MC-T/C | 19/91 (21%) | PCR SB ISH |
Fina 2001 | IDC | 162/509 (31.8%) | PCR SB ISH RT-qPCR |
Chu 2001 | IDC ILC | 195/48 (10%) | ISH |
Kalkan 2005 | IDC-ILC NEC | 13/57 (23%) | PCR |
Preciado 2005 | DC-LCI PC-AC | 24/69 (35%) | PCR SB IHC |
Joshi 2009 | IDC-ILC NEC | 28/51 (54.9%) | ELISA IHC |
Lorenzetti 2010 | IDC-ILC | 22/71 (31%) | PCR IHC ISH |
Mazouni 2011 | IDC-ILC | 65/196 (33.2%) | RT-qPCR |
Hachana 2011 | IDC-ILC MC | 33/123 (27%) | PCR ISH IHC |
Aguayo 2011 | IDC-ILC CC | 3/46 (6.5%) | RT-qPCR ISH IHC |
Zekri 2012 | IDC-ILC | 18/40 (45%) 14/50 (28%) | PCR ISH IHC |
Khabaz 2013 | IDC-ILC MC-CC | 24/92 (26%) | PCR IHC |
Yahia 2014 | IDC-ILC CIS | 49/92 (53%) | PCR ISH |
Richardson 2015 | IDC | 25/70 (34.3%) | qPCR |
El-Nabi 2017 | IDC | 12/42 (28.5%) | Nested PCR IHC |
Pai 2017 | IDC-MPC ILC | 25/83 (30.1%) | ISH |
Fessahaye 2017 | IDC-LC MC-NEC | 40/144 (27.7%) | PCR ISH IHC |
Sharifpour 2019 | DC | 10/37 (27%) | Nested PCR IHC |
Mofrad 2020 | IDC-ILC | 4/59 (6.7%) | PCR |
Author/Year | BC Type | EBV Detection | Detection Method |
---|---|---|---|
Chu 1998 | IDC-ILC | 0/60 (0%) | IHC ISH |
Glaser 1998 | BCs | 0/107 (0%) | ISH |
Kijima 2001 | ADC | 0/61 (0%) | ISH |
Deshpande 2002 | DC LC | 0/43 (0%) | ISH IHC |
Herrmann 2003 | IDC-ILC MC NEC | 0/59 (0%) | ISH IHC PCR |
Murray 2003 | DCIS-MC CC | 0/98 (0%) | RT-qPCR ISH IHC |
Perrigoue 2005 | IDC-ILC TC-CC | 0/45 (0%) | RT-qPCR ISH |
Kadivar 2011 | IDC-ILC AC-CRC PC-CC | 0/100 (0%) | PCR IHC |
Dowran 2019 | DC-LC IDC-ILC | 0/150 (0%) | PCR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Calvachi, C.; Blanco, R.; Calaf, G.M.; Aguayo, F. Epstein–Barr Virus Association with Breast Cancer: Evidence and Perspectives. Biology 2022, 11, 799. https://doi.org/10.3390/biology11060799
Arias-Calvachi C, Blanco R, Calaf GM, Aguayo F. Epstein–Barr Virus Association with Breast Cancer: Evidence and Perspectives. Biology. 2022; 11(6):799. https://doi.org/10.3390/biology11060799
Chicago/Turabian StyleArias-Calvachi, Claudia, Rancés Blanco, Gloria M. Calaf, and Francisco Aguayo. 2022. "Epstein–Barr Virus Association with Breast Cancer: Evidence and Perspectives" Biology 11, no. 6: 799. https://doi.org/10.3390/biology11060799
APA StyleArias-Calvachi, C., Blanco, R., Calaf, G. M., & Aguayo, F. (2022). Epstein–Barr Virus Association with Breast Cancer: Evidence and Perspectives. Biology, 11(6), 799. https://doi.org/10.3390/biology11060799